
International Journal on Digital Libraries (2006)
DOI 10.1007/s00799-006-0006-1

REGULAR PAPER

Ichiro Satoh

Location-based services in ubiquitous computing environments

c© Springer-Verlag 2006

Abstract This paper presents a framework for providing
dynamically deployable services in ubiquitous computing
settings. The goal of the framework is to provide people,
places, and objects with computational functionalities to
support and annotate them. Using RFID-based tracking sys-
tems, the framework detects the locations of physical enti-
ties, such as people or things, and deploys services bound
to the entities at proper computing devices near where they
are located. It enables location-based and personalized in-
formation services to be implemented as mobile agents and
operated at stationary or mobile computing devices, which
are at appropriate locations, even if the services do not have
any location-information. This paper presents the rationale,
design, implementation, and applications of our prototype
infrastructure.

Keywords Ubiquitous computing · Mobile agent ·
Location-based services · Location-sensing system ·
Middleware

1 Introduction

As Mark Weiser envisioned [21], a goal of ubiquitous com-
puting is to provide various services by making multiple
computers available throughout the physical environment,
but, in effect, making them invisible to the user. Another
goal of ubiquitous computing is for it to integrate the phys-
ical world with cyberspace. Actually, perceptual technolo-
gies have made it possible to detect the presence or po-
sitions of people and any other object we care to think
about. Context-awareness, in particular user-awareness and
location-awareness, is becoming an essential feature of ser-
vices that assist our everyday lives in ubiquitous and mobile
computing environments.

I. Satoh (B)
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo 101-8430, Japan
E-mail: ichiro@nii.ac.jp

However, ubiquitous/pervasive computing devices are
not suitable for providing multiple-purpose and personalized
services, because most devices tend to have limited storage
and processing capacities and are thus incapable of inter-
nally maintaining a variety of software and profile databases
on the users. In fact, although there have been many attempts
to develop location-based or personalized information ser-
vices thus far, most existing systems have inherently focused
on particular services, such as user navigation for visualiz-
ing locations on maps and information providing the infor-
mation relevant to the user’s current location. As a result, it
has been difficult for these systems to support other services
for which they were not initially designed. Furthermore, they
have often been implemented in an ad-hoc manner with cen-
tralized management. Therefore, it is difficult for the sys-
tems to dynamically reconfigure themselves when new ser-
vices are needed.

This paper presents a framework for deploying and oper-
ating location-based or personalized information services to
solve these problems and this is based on two key ideas. The
first is to introduce mobile agent technology [7] as a mecha-
nism for the deployment of services. Since many computing
devices in ubiquitous and mobile computing environments
only have limited resources, they cannot provide all services
required due to limited computational resources, even if they
are at suitable locations. Therefore, our framework provides
an infrastructure for dynamically deploying service-provider
agents to support services at computers that need the ser-
vices. The second idea is to separate application-specific
services from the infrastructure. Since each mobile agent is
a programmable entity, the framework enables application-
specific services, including user interfaces and application
logic, to be implemented within mobile agents. Using mo-
bile agents makes the framework independent of applica-
tions, because application-specific services are implemented
within mobile agents instead of the infrastructure. Since the
framework is responsible for automatically deploying mo-
bile agents at appropriate computers, they can provide their
services without any location-information. It delegates agent
migration to its underlying mobile agent platform to execute

I. Satoh

and migrate mobile agents over a network. Nevertheless,
it is available with various existing mobile agent platforms
because it has been designed to be independent particular
platforms.

In the remainder of this paper, we describe our basic
ideas (Sect. 2) and the design of our framework (Sect. 4).
We explain how information services can be bound to phys-
ical entities and places (Sect. 5) and describe the current im-
plementation of the framework (Sect. 6). We also discuss
our experience with several applications, which we devel-
oped with the infrastructure (Sect. 6.2). We briefly review
related work (Sect. 7). We also provide a summary and dis-
cuss some future issues (Sect. 8). We describe programming
models (Appendix).

2 Approach

The goal of the framework presented in this paper is to
provide a general infrastructure for supporting multiple
location-aware and personalized services in ubiquitous com-
puting environments.

2.1 Example scenarios

To outline the goals of this framework, we present two typi-
cal scenarios for it. The first provides personalized services
to users without portable computers. When a user enters an
unfamiliar building, he/she may lose his/her way or may
not able to find any cafes there. The framework provides
his/her personal agent that can assist him/her in his/her per-
sonal form any location. This is because these agents can
migrate between computers and be executed on public ter-
minals on streets or electric displays in front of cafes or
restaurants. As the user moves, they follow the user’s move-
ments. When the user stops in front of the electric display
of a cafe, the agent migrates to a computer in front of the
cafe and displays the list of his/her favorite coffees on the
screen of the computer. The second assumes that the user is
carrying a PDA. Suppose that a room has have many electric
lights. When he/she only wants to turn the electric lights near
him/her on, he/she may occasionally know which switches
on the wall-mounted central control panel controls the lights.
This framework enables his/her PDA to be used as a univer-
sal remote controller. When a user goes near the lights, the
framework displays a graphical user interface for the lights
on the screen of the PDA for him/her to control them. The
interface can turn the lights on or off through a stationary
agent running on the control panel. When he/she leaves from
the vicinity of the lights, the framework automatically closes
the interface from the PDA, because of the device’s memory
small.

The first scenario is where its services are contained in
the environment rather than carried on the person. The sec-
ond is where services are carried by users rather than con-
tained within the environment. Existing approaches aim at

supporting one of either of these scenarios, whereas our
framework can support the both scenarios with a unified
approach.

2.2 Location sensing systems

The framework offers a location-aware system where spatial
regions can be determined within a few square feet, which
distinguishes between one or more portions of a room or
building. Existing location-based services are typically tai-
lored to a particular type of tracking or positioning tech-
nology, such as GPS. The current implementation of the
framework uses RFID (radio frequency identification) tech-
nology as an alternate approach to locate objects. An RFID
system consists of RFID readers (so-called sensors or re-
ceivers), which detect the presence of small RF transmitters,
often called tags. Advances in wireless technology enable
passive RFID tags to be scanned over a few meters. For
example, the Auto-ID center (currently called EPCGlobal)
[1] and its sponsors are working to develop flexible tags
and readers operating at ultra-high frequency (915 MHz in
the US, 868 MHz in the EU, and 950 MHz in Japan). It
expects that RFID tags will cost around 5 cents when pro-
duced in bulk and RFID readers will cost around a 100 dol-
lars in volume. The framework assumes that physical enti-
ties, including people, computing devices, and places will be
equipped with RFID tags so that they will be automatically
locatable.

The framework reads to provide a unified model for
spatial information to hide the differences between the
underlying location-sensing systems from applications
as much as possible. Spatial information should also be
bound within the requirements of an application that uses
it to avoid unnecessary exposure of details on underlying
tracking and positioning systems. Therefore, the model is
based on symbolic location. This is because the framework
aims at building location-aware applications for annotating
and supporting people, objects, and places and such appli-
cations are often associated with semantic and structural
spaces, such as buildings, rooms, and portions of a room or
building, rather than geometric locations.

2.3 Dynamically deployable services

Suitable services should be operated on suitable computing
devices in the sense that the services are both required
according to the location of users and their associated
contexts and the locations and capabilities of the devices
can satisfy the requirements of the services. However, most
ubiquitous and mobile computing devices often have only
limited resources, such as restricted levels of CPU power
and amounts of memory. As a result, even if a device is at a
suitable location for the required service to be provided, the
device may not be available because of a lack of software
or capabilities, such as input or output facilities, to execute
the software. Various kinds of infrastructure have been used

Location-based services in ubiquitous computing environments

to construct and manage location-aware services. However,
such infrastructures have mostly focused on a particular
application, such as user navigation. To solve these limita-
tions, our framework uses mobile agent technology because
the technology has the following advantages for ubiquitous
and mobile computing settings:1

• Each mobile agent can travel from computer to computer
under its own control. When a mobile agent moves to an-
other computer, both the code and the state of the agent
is transferred to the destination. Each agent only needs
to be present on the device at the time when the device
is required to offer the services provided by that agent.
Therefore, mobile agents can help to conserve the lim-
ited resources of computing devices. After arriving at its
destination, a mobile agent can continue working with-
out losing the results, e.g., the content of instance vari-
ables in the agent’s program, at the source computers.

• Since each mobile agent is a programmable entity,
the framework enables application-specific services, in-
cluding the user interface and application logic, to be
implemented within mobile agents. It then separates
application-specific services from itself. Therefore, it
can be a general infrastructure for a variety of location-
aware services. It can also directly access various equip-
ment belonging to that device as long as the security
mechanisms of the device permit this.

The infrastructure presented in this paper enables a phys-
ical entity and place to spatially bind with one or more
mobile agent-based services. These services annotate and
support the entities or places in the sense that they can be
dynamically deployed at stationary and mobile computing
devices that are near or within the locations of the entities
and places. Therefore, the services can easily be customized
to be person- and location-dependent. They can directly
interact with their users, whereas other existing approaches,
e.g., remote procedure calls and web-based interaction can
be seriously affected by network latency between client-side
and service-side computers.

2.4 Architecture

The framework consists of three parts: (1) location infor-
mation servers, called LISs, (2) mobile agents, and (3)
agent hosts. The first provides a layer of indirection be-
tween the underlying RFID locating sensing systems and
mobile agents. Each LIS manages more than one RFID
reader and provides the agents with up-to-date information
on the identifiers of RFID tags, which are present in the spe-
cific places its readers cover instead of on tags throughout
the whole space. The second offers application-specific ser-
vices, which are attached to physical entities and places, as

1 Some applications can be constructed by means of a mobile code
approach rather than mobile agent approach. However, since the for-
mer can be treated as a subset of the latter, our framework should sup-
port a more general approach, i.e., using mobile agents.

collections of mobile agents. The third is a computing device
that can execute mobile agent-based applications and issue
specific events to the agents running in it when RFID readers
detect the movement of the physical entities and places that
the agents are bound to.

When an LIS detects a moving tag, it notifies mobile
agents attached to it about the network addresses and ca-
pabilities of the candidate hosts that are near its location.
Each of these agents selects one host from the candidate
agent hosts recommended by the LIS and migrate to the se-
lected host. The capabilities of a candidate host do not al-
ways satisfy all the requirements of an agent. No agent has
to have any information about the network addresses and lo-
cations of devices, which it may migrate to. This framework
assumes that each agent itself should decide, on the basis of
to its own configuration policy, whether or not it will migrate
itself to the destination and adapt itself to the destination’s
capabilities.

Our final goal is widespread building-wide and city-wide
deployment. It is almost impossible to deploy and admin-
ister a system in a scalable way when all the control and
management functions are centralized. LISs are individually
connected to other servers in a peer-to-peer manner and ex-
change information with one another. LISs and agent hosts
may be mobile and frequently shut down. The framework
permits each LIS to run independently of the other LISs and
it offers an automatic mechanism to register agent hosts and
RFID readers. The mechanism requires agent hosts to be
equipped with tags so that they are locatable.

3 Design

This section presents the design of this framework and de-
scribes a prototype implementation of it. Figure 1 outlines
the basic structure of the framework.

3.1 Location information server

LISs are responsible for managing location sensing systems
and recommending devices at which the agents can provide
their services. They can run on a stationary or mobile com-
puter and provide all LISs that can run on a stationary or
mobile computer that have the following functionalities:

3.1.1 RFID-based location model

This framework represents the locations of objects with
symbolic names to specify the sensing ranges of RFID
readers, instead of geographical models. Each LIS man-
ages more than one RFID reader that detect the presence
of tags and maintain up-to-date information on the identi-
ties of those that are within the zone of coverage. This is
achieved by polling the readers or receiving events issued
by them. An LIS does not require any knowledge on other
LISs, but it needs to be able to exchange its information with

I. Satoh

Location Server A Location Server B

directory
database

directory
database

profile
handler

profile
handler

event handlerevent handler

abstraction
layer

abstraction
layer

abstraction
layer

peer-to-peer
communication

agent
migration

locating sensor locating sensor locating sensor

agent host agent host agent host
desklamp-
bound agent

user-bound agent

MobileSpaces MobileSpaces MobileSpaces tag

tagtag
tag

tag

tag

tag

cell 3cell 1 cell 2

user migration

Fig. 1 Architecture

others through multicast communication. To hide the differ-
ences between underlying locating systems, each LIS maps
low-level positional information from the other LISs into
information in a symbolic model of location. An LIS rep-
resents an entity’s location in symbolic terms of the RFID
reader’s unique identifier that detects the entity’s tag. Each
RFID reader’s coverage is called a cell, as in the models of
location reported by several other researchers [8]. Multiple
RFID readers in the framework do not have to be neatly dis-
tributed in spaces such as rooms or buildings to completely
cover the spaces; instead, they can be placed near more than
one agent host and reader coverage can overlap.

3.1.2 Location management

Each LIS is responsible for discovering mobile agents bound
to tags within its cells. Each maintains a database in which it
stores information about each of the agent hosts and each of
the mobile agents attached to a tagged entity or place. When
an LIS detects a new tag in a cell, the LIS multicasts a query
that contains the identity of the new tag and its own network
address to all the agent hosts in its current subnetwork. It
then waits for reply messages from the agent hosts. Here,
there are two possible situations: the tag may be attached to
an agent host or the tag may be attached to a person, place,
or thing other than an agent host.

• In the first, the newly arriving agent host will send its
network address and device profile to the LIS; the profile
describes the capabilities of the agent host, e.g., input
devices and screen size. After receiving a reply message,
the LIS stores the profile in its database and forwards the
profile to all agent hosts within the cell.

• In the second, agent hosts that have agents tied to the tag
will send their network addresses and the requirements
of acceptable agents to the LIS. The requirements for
each agent specify the capabilities of the agent hosts that
the agent can visit and perform its services at.

The LIS then stores the requirements of the agents in its
database and moves the agents to appropriate agent hosts
in a manner that will be discussed later. If the LIS has no re-
ply messages from the agent hosts, it can multicast a query
message to other LISs. When the absence of a tag is detected
in a cell, each LIS multicasts a message with the identifier
of the tag and the identifier of the cell to all agent hosts in
its current subnetwork. Figure 2 shows the sequence for mi-
grating an agent to a suitable host when an LIS detects the
presence of a new tag.

3.1.3 Location-dependent deployment of agents

We will now explain how the framework deploys agents at
suitable agent hosts. When an LIS detects the movement
of a tag attached to a person or thing to a cell, it searches
its database for agent hosts that are present in the current
cell of the tag. It also selects candidate destinations from the
set of agent hosts within the cell, according to their respec-
tive capabilities. The framework offers a language based on
CC/PP (composite capability/preference profiles) [22]. The
language is used to describe the capabilities of agent hosts
and the requirements of mobile agents in an XML notation.
For example, a description contains information on the fol-
lowing properties of a computing device: vendor and model
class of the device (i.e, PC, PDA, or phone), its screen size,
the number of colors, CPU, memory, input devices, sec-
ondary storage, and the presence/absence of loudspeakers.
The framework also allows each agent to specify the prefer-
able capabilities of agent hosts that it may visit as well as the
minimal capabilities in a CC/PP-based notation. Each LIS is
able to determine whether or not the device profile of each
agent host satisfies the requirements of an agent by symbol-
ically matching and quantitatively comparing properties.

The LIS then unicasts a navigation message to each of
the agents that are bound to the tagged entities or places,
where the message specifies the profiles of those agent hosts
that are present in the cell and satisfy the requirements of

Location-based services in ubiquitous computing environments

step 3:
query message
about the tag's ID

step 1:
the movement of
an agent host

tag

cell

sensor

tag

Location Server A

directory
database

profile
handler

sensor-
abstraction
layer

Location Server B

directory
database

profile
handler

sensor-
abstraction
layer

agent
hostagent

host

step 3:
query message

about the tag's ID

step 5:
query message
about the tag's ID

step 2:
tag
detection

agent
host

step 6:
query message
about the tag's ID

step 7:
reply message

step 5:
query message
about the tag's ID

step 4:
host
profile

step 8:
host profile

step 9:
agent migration

Fig. 2 Agent discovery and deployment

the agent. The agents are then able to autonomously migrate
to the appropriate hosts. When there are multiple candidate
destinations, each of the agents that is tied to a tag must
select one destination based on their profiles. When one or
more cells geographically overlap, a tag may be in multiple
cells at the same time and agents tied to that tag may then
receive candidate destinations from multiple LISs. However,
since the message includes the network address of the LIS,
the agents can explicitly ask it about the cell ranges. For
example, in the first scenario in Sect. 2 the assistant agent
is bound to the RF-tag that the user has. When an LIS de-
tects the tag is moving, it instructs the agent to migrate to
a computer near the current position of the user. In the sec-
ond scenario, an LIS detects the presence of the tag bound
to a visiting PDA and the tags bound to the lights and then
instruct agents controlling the lights to migrate to the PDA.

Our goal is to provide physical entities and places with
computational functionality from locations that are near
them. Therefore, if there are no appropriate agent hosts in
any of the cells at which a tag is present but there are some
agent hosts in other cells, the current implementation of our
framework forces agents tied to the tag to move to hosts in
different cells.

3.2 Mobile agent-based service-provider

The framework encapsulates application-specific services
into mobile agents so that it is independent of all applica-
tions and can support multiple services. In the appendix to
this paper, each mobile agent is constructed as a collection
of Java objects and is equipped with the identifier of the tag
to which it is attached.2 Each is a self-contained program
and is able to communicate with other agents and external
systems. An agent that is attached to a user always inter-
nally maintains that user’s personal information and carries
all its internal information to other hosts. For example, in

2 Appendix describes programming interfaces of agents.

the first scenario in Sect. 2, the assistant agent stores its
user profile in its inner database, so that it can encapsu-
late privacy information inside it. A mobile agent may also
have one or more graphical user interfaces for interaction
with its users. When such an agent moves to other hosts,
it can easily adjust its windows to the new host’s screen
by using the compound document framework for the Mo-
bileSpaces system that was presented in our previous paper
[14].

3.3 Agent host

Each agent host must be equipped with a tag. It has two
forms of functionality: the first for advertising its capabilities
and the second for executing and migrating mobile agents.
The current implementation assumes that LISs and agent
hosts can be directly connected through a wired LAN e.g.,
Ethernet or a wireless LAN e.g., IEEE802.11a/b/g. When a
host receives a query message with the identifier of a newly
arriving tag from an LIS, it replies with one of the following
three responses: (i) if the identifier in the message is iden-
tical to the identifier of the tag to which it is attached, it
returns profile information on its capabilities to the LIS; (ii)
if one of the agents running on it is tied to the tag, it re-
turns its network address and the requirements of the agent;
and (iii) if neither of the above cases applies, it ignores the
message.

The current implementation of this framework is based
on a Java-based mobile agent system called MobileSpaces
[13].3 Each MobileSpaces runtime system is built on the
Java virtual machine, which conceals differences between
the platform architecture of the source and destination hosts,
such as the operating system and hardware. Each of the
runtime systems moves agents to other agent hosts over
a TCP/IP connection. The runtime system governs all the

3 The framework itself is independent of the MobileSpaces mobile
agent system and can thus work with other Java-based mobile agent
systems.

I. Satoh

stationary
sensor

Step 1
a tagged entity
movement

Step 2

cell

(b) moving tagged entity and stationary sensor

tag tag

agent
host

agent
host

agent
host

tag

agent
host

agent
host

(c) moving tagged entity with sensor

mobile
sensor

agent
host

Step 1 agent host
with sensor
movement

tag

agent migration
to visiting host

Step 2

cell

cell

tag

agent
host

agent
host

place-
bound
tag

place-bound
tag

mobile
sensor

mobile
sensor

entity and sensor
movement

tag
cell

cell

(d) moving entity with sensor and stationary host

tag

agent
host

agent
host

agent
host

Step 1

Step 2

mobile
sensor

Step 1

Step 2

(a) moving agent host and stationary sensor

stationary
sensor

agent
host

host movement

tag

agent migration
to visiting host

cell

cell

stationary
sensor

agent
host tag

cell

agent
host

agent migration
to host near
moving entity

agent migration to host
near entity

Fig. 3 Linkages between physical and logical entities

agents inside it and maintains the life-cycle state of each
agent. When the life-cycle state of an agent changes, e.g.,
when it is created, terminates, or migrates to another host,
the runtime system issues specific events to the agent. This
is because the agent may have to acquire various resources
or release them, such as files, windows, or sockets, which
it had previously captured. When a notification on the pres-
ence or absence of a tag is received from a LIS, the runtime
system dispatches specific events to the agents that are tied
to that tag and these run inside it.

4 Linkages physical worlds to logical worlds

The framework does not have to distinguish between mobile
and stationary computing devices or between mobile and
stationary location sensing systems. Therefore, it can sup-
port the following four types of linkages between a physical
entity, such as a person or object, or place, and more than
one mobile agent. Figure 3 illustrates the four linkages when
entities and agent hosts are attached to RFID tags.

• Figure 3a shows that a moving entity carries an RFID-
tagged agent host and a space contains a place-bound

RFID tag and an RFID reader. When the reader detects
the presence of the RFID tag that is bound to the agent
host, the LIS instructs the agents attached to the tagged
place to migrate to the visiting agent host to offer the
location-dependent services of the place.

• Figure 3b shows that an RFID-tagged agent host and an
RFID reader have been allocated. When an RFID-tagged
moving entity enters the coverage area of the reader, the
LIS instructs the agents attached to the entity to migrate
to the agent host within the same coverage area to offer
the entity-dependent services for the entity.

• Figure 3c shows that a moving entity carries a reader
and agent host and a space contains a place-bound RFID
tag. When the entity moves near the tag and the reader
detects the presence of the tag within its coverage area,
the LIS instructs the agents attached to the tagged place
to migrate to the visiting agent host to offer the location-
dependent services of the place.

• Figure 3d shows that an entity carries an RFID reader
and a space contains a place-bound RFID tag and an
RFID-tagged agent host. When the entity moves and the
reader detects the presence of an agent host’s tag within
its coverage area, the LIS instructs the agents attached to
the moving entity to migrate to the agent host within the

Location-based services in ubiquitous computing environments

same coverage area to offer services dependent on the
entity.

Note that the above linkages are independent of the un-
derlying locating systems. Therefore, they are available in
various sources of location information, e.g., GPS, local
wireless networks, and cellular networks. Existing location-
aware systems can only support one of the above linkages,
whereas our infrastructure does not have to distinguish be-
tween them and can synthesize them seamlessly. For exam-
ple, the linkage in Fig. 3a corresponds to the person tracking
display approach in the EasyLiving project [2], the linkage
shown in Fig. 3b corresponds to the follow-me applications
approach in the Sentient Computing project [4] and the link-
age shown in Fig. 3c corresponds to services on location-
aware portable devices in the Cooltown [6] and NEXUS [5]
projects.

5 Implementation

The framework presented in this paper was implemented us-
ing Sun’s Java Developer Kit version 1.1 or later versions,
including Personal Java. The remainder of this section dis-
cusses some features of the current implementation.

5.1 Management of locating systems

The current implementation of our framework supports five
commercial RFID systems: the RF Code’s Spider, Alien
Technology’s 915 MHz RFID-tag, Philips’s I-Code, and Hi-
tachi’s mu-chip. The first system provides active RF-tags.
Each tag has a unique identifier that periodically emits an
RF-beacon (every second) that conveys an identifier via a
305 MHz radio pulse. The system allows us to explicitly
control the omnidirectional range of each RF reader to read
tags within a range of 1 to 20 m. It can generate enter or
leave events when it detects the presence or absence of tags
in the range of an RFID reader. As the system’s readers have
their own batteries, they are portable. The second system
provides passive RFID-tags and its readers periodically scan
for present tags within a range of 3 m by sending a short
915 MHz-RF pulse waiting for answers. The third system
provides passive RFID-tags based on a 13.56 MHz-RF pulse
and can scan for present tags within a range of 30 cm. The
fourth system provides passive 2.45 GHz-RFID tags and can
scan for the presence of tags within a range of 20 cm. The
framework converts the resulting list of present tags to enter
and leave event notifications by calculating the differences
between consecutive scan results. Although there are many
differences between the four RFID systems, the framework
abstracts these differences away.

5.2 Performance evaluation

Although the current implementation of the framework was
not built for performance, we measured the cost of migrat-

ing a 3 KB agent (zip-compressed) from a source to the des-
tination host that was recommended by the LIS. This experi-
ment was conducted with two LISs and two agent hosts, each
of which was running on one of four computers (Pentium
III- 1GHz with Windows XP and JDK 1.4). These were di-
rectly connected via an IEEE802.11g wireless network. The
latency of an agent’s migration to the destination after the
LIS had detected the presence of the agent’s tag was 350 ms,
and the cost of agent migration between two hosts over a
TCP connection was 39 ms. The latency included the cost of
the following processes: UDP-multicasting of the tags’ iden-
tifiers from the LIS to the source host, TCP-transmission of
the agent’s requirements from the source host to the LIS,
TCP-transmission of a candidate destination from the LIS
to the source host, marshaling of the agent, migration of an
agent from the source host to the destination host, unmar-
shaling of the agent, and security verification. We believe
that this latency is acceptable for a location-aware system
where people are walking.

5.3 Security and privacy

Security is essential in mobile agent computing. The frame-
work can be built on many Java-based mobile agent systems
with the Java virtual machine. Therefore, it can directly use
the security mechanisms of the underlying mobile agent sys-
tems. The Java virtual machine explicitly restrict agents so
that they can only access specified resources to protect hosts
from malicious agents. To protect against malicious agents
being passed between agent hosts, the MobileSpaces sys-
tem supports a Kerberos-based authentication mechanism
for agent migration. It authenticates users without exposing
their passwords on the network and generates secret encryp-
tion keys that can selectively be shared between mutually
suspicious parties.

The framework only maintains per-user profile informa-
tion within those agents that are bound to the user. It pro-
motes the movement of such agents to appropriate hosts near
the user in response to user movements. Since agents carry
the profile information of their users within them, they must
protect such private information while they are moving over
a network.4 The MobileSpaces system can encrypt agents
before migrating them over a network and decrypt them after
they arrive at the destination. Moreover, since each mobile
agent is just a programmable entity, it can explicitly encrypt
particular inner fields except for its secret keys and migrate
itself with the fields and its own cryptographic procedure.

6 Applications

This section presents several typical location-based and per-
sonalized services that were developed through the frame-
work. Note that these services can be executed at the

4 This problem is beyond the scope of this paper. Since the frame-
work delegates the execution and migration of agents to its underlying
mobile agent platforms, it cannot protect agents from malicious hosts.

I. Satoh

same time, since the framework itself is independent of
all application-specific services and each service is imple-
mented within mobile agents.

6.1 Location-bound universal remote controller

The first example corresponds to Fig. 3a and allows us to
use a PDA to remotely control nearby electric lights in a
room. Each light was equipped with a tag and was within
the range covered by an RFID reader in the room. We con-
trolled power outlets for lights through a commercial pro-
tocol called X10. In both approaches described here, the
lights were controlled by switching their power sources on
or off according to the X10 protocol. Place-bound controller
agents, which can communicate with X10-base servers to
switch lights on or off, are attached to locations with room
lights in this system. Each user has a tagged PDA, which
supports the agent host with WindowsCE and a wireless
LAN interface (IEEE 802.11b). When a user with a PDA
visits a cell that contains a light, the framework moves a
controller agent to the agent host of the visiting PDA. The
agent, now running on the PDA, displays a graphical user
interface to control the light. When the user leaves that lo-
cation, the agent automatically closes its user interface and
returns to its home host. The latency of deployment of the
agent at the PDA after the LIS detected the presence of the
PDA’s tag, was about 3.5 s, where the greater part of la-
tency was in loading the agent to the PDA because the PDA
does not have a powerful processor. In the current imple-
mentation, the agent is just a collection of Java programs
that defined the application logic to display its own GUI on
the PDA’s screen and the protocol to communicate with the
servers, but did not involve any location-based behaviors.
This means that we can reuse plain Java-based GUI pro-
grams to control lights as location-based service providers
with minor modifications. In fact, the size of the agent pro-
gram was about 8 KB, which is 15% larger than Java-based
X10-controller program that offers the same user interface
as shown in Fig. 4.

6.2 Mobile personal assistance

The second example corresponds to Fig. 3b and offers a user
assistant agent that follows the user and maintains profile in-
formation about him/her inside itself, so that he/she can al-
ways assist the agent in his/her personalized form from any
location. Suppose that a user has a 915 MHz-RFID tag and is
moving in front of a restaurant, which offers an RFID reader
and an agent host with a touch screen. When the tagged user
enters inside the coverage area of the reader, the framework
enables his/her assistant agents to move to the agent host
near his/her current location. After arriving at the host, the
agent accesses a database provided by the restaurant to ob-
tain a menu from the restaurant.5 It then selects appropriate

5 The current implementation of the database maintains some in-
formation about each available food, such as name and price, in an
XML-based entry.

meal candidates from the menu according to his/her profile
information, such as favorite foods and recent experiences,
stored inside it. It next displays only the list of selected meals
on the screen of its current agent host in his/her personal-
ized form. Figure 5 shows a user’s assistant agent running
on the agent host of the restaurant seamlessly embedding
a list of pictures, names, and prices of selected meal can-
didates with buttons for ordering them through its graphi-
cal user interface. Since a mobile agent is a program en-
tity, we can easily define a more intelligent assistant agent.
In our early implementation, the cost for the agent to dis-
play the selected menu on the screen of a PC (Pentium-
III 1-GHz) after the user stopped is within 2 s, where the
cost depended on the complexity of the agent. We could
easily develop an agent by adding a tiny database to store
its user profile and callback methods in response to life-
cycle events to a Java applet for selecting and displaying
food menus. Also, the agent program is still simple because
it does not have to control sensing devices or identify the
user.

6.3 User navigation system

We developed a user navigation system that assists visitors
to a building. Several researchers have reported on other
similar systems [3, 5]. RF-tags in our system are distributed
to several places within the building, such as the ceilings,
floors, and walls. As we can see from Fig. 3c, each visi-
tor is carrying a wireless-LAN enabled tablet PC, which is
equipped with an RF-tag reader to detect tags, that has ac-
cess to an LIS and an agent host. The system initially de-
ploys place-bound agents to invisible computers within the
building. When a tagged position is located by a cell of
the moving RF-tag reader, the LIS running on the visitor’s
tablet PC detects the presence of the tag. The LIS detects the

Fig. 4 Controlling desk lamp from PDA

Location-based services in ubiquitous computing environments

Fig. 5 Screenshot of follow-me user assistant agent for selecting its
user’s favorite, i.e., sushi from the menu database of a restaurant that
the user is in front of

place-bound agent that is tied to the tag. It then instructs the
agent to migrate to its agent host and to provide the agent’s
location-dependent services at the host. The system enables
more than one agent tied to a place to move to the tablet PC.
The agents then return to their home computers, and other
agents, which are tied to another place, may move to the
tablet PC. Figure 6 shows a place-bound agent displaying a
map of its surrounding area on the screen of a tablet PC.

6.4 Personal server with location sensor

The fourth system corresponds to Fig. 3d. As the personal
server proposed by Want [20], it provides a handheld file-
sharing server that has no integral user interface but does
include secondary storage, a wireless LAN network, and a
small 13.56 MHz-RFID reader. RFID tags are located near
stationary agent hosts with touch-screens. When a user car-
ries the handheld server near a tagged host, the RFID reader
acquires the presence of the tag attached to the host and
then the LIS running on the handheld server migrates the
agent that is bound to the user to the host. The agent then
establishes a TCP connection to the server through a wire-
less LAN network. It then gathers data from the server and

Fig. 6 Positions of RF-tags in floor (A) and screen-shot of map-viewer agent running on table PC (B)

displays this on the screen of the current host. Figure 7
shows that an image viewer agent bound to a user access-
ing image files from the handheld file server and displaying
them on the screen of the agent host near the user’s current
location. The agent program itself could only provide appli-
cation logic, which communicates with a server and display
the information gathered from the server, independent of any
computing devices and locations, because it was always de-
ployed at a suitable computing device by the framework.

7 Related work

Much work has been done on location-aware and person-
alized information systems and existing services can be
classified into two types.

The first is to make computing devices move with
the user. It often assumes that such devices are attached
to positioning systems, such as Global Positioning Sys-
tem (GPS) receivers. For example, HP’s Cooltown project
[6] is an infrastructure for bridging people, places, and
things in the physical world with web resources that are
used to store information about them. It allow users to
access resources via browsers running on handheld com-
puting devices. All the services available in the Cooltown
system are constrained by limitations with web browsers
and HTTP. Stuttgart University’s NEXUS project [5] pro-
vides a platform that supports location-aware applications
for mobile users with handheld devices, like the Cooltown
project. Unlike our approach, however, both projects aim
at providing location-dependent services in outdoor en-
vironments and are not suitable for supporting mobile
users from stationary computers distributed in a smart
environment.

The second approach assumes that a space has been
equipped with tracking systems that establish the location
of physical entities, including people and objects, within it
so that application-specific services can be provided at ap-
propriate computers. Cambridge University’s Sentient Com-
puting project [4] provides a location-aware platform using
infrared-based or ultrasonic-based locating systems [19] in
a building. Using the VNC system [11], the platform can
track the movement of a tagged entity, such as individuals
and things, so that the graphical user interfaces for the user’s

I. Satoh

Fig. 7 Agent host with large-screen and handheld file server

applications follow him/her while he/she is moving around.
Since the applications must be executed in remote servers,
the platform may have non-negligible interactive latency be-
tween the servers and hosts the user accesses locally. A
CORBA-based middleware, called LocARE, has been pro-
posed [10] that can move CORBA objects to hosts according
to the location of tagged objects. Although the middleware
provides similar functionality to that of our framework, its
management is centralized and it is difficult to dynamically
reconfigure the platform when sensors are added to or re-
moved from the environment.

Microsoft’s EasyLiving project [2] provides context-
aware spaces, with a particular focus on the home and of-
fice. A computer-vision approach is used to track users
within the spaces. Both the projects assume that locating
sensors have initially been allocated in a room, and it is
difficult to dynamically configure the platform when sen-
sors are added to or removed from the environment, whereas
our framework permits sensors to be mobile and scatteredly
throughout the space. MIT’s Project Oxygen Alliance has
tried to introduce intelligent spaces into people’s lives that
are as abundant and natural to use as oxygen in the air,
by incorporating several perceptual devices, including lo-
cation systems. It has provided agent-based infrastructures
to construct and manage location-aware services in such
spaces [9].

The goal of these infrastructures based on the second ap-
proach has been to offer suitable services at suitable loca-
tions within the space based on the contextual information
within the environment emanating from users, but they have
not been able to dynamically deploy service-provider ser-
vices at suitable computers in the space, as we have done.

Several researchers have explored location-sensitive
servers like our LIS. Their location models can be classi-
fied into two types: spatial models based on concrete geo-
graphical coordinates of objects and spatial models based

on geographical containment between objects. For example,
the EasyLiving project provides a geometric model based on
the former approach, so it accurately represents the physical
relationships between entities in the world. Leonhardt [8]
developed a location-tree model based on the latter approach
and used location-aware directory servers. Our framework
is based on a symbolic location model similar to the geo-
graphical containment model. However, it is unique in hav-
ing the ability to dynamically manage spatial models. That
is, it provides a demand-driven mechanism that discovers the
locations of agent hosts and agents because it permits all its
elements, such as hosts and sensors, to both be mobile in and
to be dynamically added to or removed from a space.

ETH has developed an event-based architecture for man-
aging RF-tags [12]. Like our framework, the architecture can
link physical objects with software entities, called virtual
counterparts. However, the goal of the architecture is to de-
velop software frameworks that ease the development of par-
ticular applications rather than a general framework for sup-
porting various applications. However, it does not support
moving computing devices and sensors. Moreover, since the
architecture cannot migrate its software entities among ubiq-
uitous computing devices, it cannot effectively support mov-
ing objects in the physical world, unlike our framework.

We presented an early prototype of the present frame-
work in previous papers [15], which was just an infras-
tructure for allowing Java-based agents to follow mov-
ing users through locating systems that did not encapsu-
late application-specific tasks into mobile agents, unlike the
framework presented in this paper. We presented another
prototype system of the present framework in another pre-
vious paper [16]. Since the previous system did not sup-
port the mobility of sensors, all the four linkages shown
in Sect. 4 were not available in the the previous infrastruc-
ture, whereas the framework presented in this paper was de-
signed to be based on RFID-based sensors and therefore
permitted the mobility of sensors as well as physical en-
tities, such as people, objects, and computing devices. We
presented an extension to the framework that had the abil-
ity of managing various location sensors other than RFID-
based sensors in another conference paper [18], but this was
aimed at integrating the first and second approaches in ex-
isting location-aware systems discussed at the beginning of
this section using positioning sensors, e.g., Global Position-
ing System (GPS). The framework presented in this paper,
on the other hand, focused on RFID-based sensing systems,
because RFID technologies are expected to be widely used
in product distribution and inventory management and tags
will be placed on many low-cost items, including cans and
books in the near future.

8 Conclusion

We presented a framework for the development and man-
agement of location-aware applications in mobile and
ubiquitous computing environments. The framework pro-

Location-based services in ubiquitous computing environments

vides people, places, and things with mobile agents to sup-
port and annotate them. Using location tracking systems, the
framework can migrate mobile agents to stationary or mo-
bile computers near the locations of the people, places, and
things to which the agents are attached. The framework is
decentralized and is a generic platform independent of any
higher-level applications or locating systems and supports
stationary and mobile computing devices in a unified man-
ner. Furthermore, we designed and implemented a prototype
system for the infrastructure and demonstrated its effective-
ness in several practical applications.

Finally, we would like to point out further issues that
need to be resolved. Since the framework presented in this
paper is general-purpose, in future work we need to apply
it to specific applications as well as the three applications
presented in this paper. The location model for the frame-
work was designed for operating real location sensing sys-
tems in ubiquitous computing environments. We plan to de-
sign a more elegant and flexible world model to represent
the locations of people, things, and places in the real world
by incorporating existing spatial database technologies. We
have developed an approach to testing context-aware appli-
cations on mobile computers [17]. We are interested in de-
veloping a methodology that would test applications based
on the framework.

Appendix: Service provider programs

This section explains the programming interface for service providers,
which were implemented using mobile agents. Every agent program
must be an instance of a subclass of the abstract class TaggedAgent
as follows:

1: class TaggedAgent extends Agent implements
Serializable {

2: void go(URL url) throws NoSuchHostException
{...}

3: void duplicate() throws IllegalAccessException
{...}

4: void destroy() {...}
5: void setTagIdentifier(TagIdentifier tid) {...}
6: void setAgentProfile(AgentProfile apf) {...}
7: URL getCurrentHost() {...}
8: boolean isConformableHost(HostProfile hfs)

{...}
9: CellProfile getCellProfile(CellIdentifier cid)
10: throws NoSuchCellException {...}
11:
12:}

Let us explain some of the methods defined in the TaggedAgent
class. An agent executes the go(URL url) method to move to
the destination host specified as the url by its runtime system.
The duplicate() method creates a copy of the agent, including
its code and instance variables. The setTagIdentifier method
ties the agent to the identity of the tag specified as tid. Each
agent can specify a requirement that its destination hosts must sat-
isfy by invoking the setAgentProfile() method, with the re-
quirement specified as apf. The class has a service method named
isConformableHost(), which the agent uses to decide whether
or not the capabilities of the agent hosts specified as an instance of
the HostProfile class satisfy the requirements of the agent. Also,

the getCellProfile() method allows an agent to investigate the
measurable range and types of RFID readers specified as cid.6

Each agent can subscribe to the types of events they are interested
in and have more than one listener object that implements a specific
listener interface to hook certain events. The following program is the
definition for a listener object to receive events issued before or after
changes in its life-cycle state or movements of its tag.

1: interface TaggedAgentListener extends
AgentEventListener {

2: // invoked after creation at url
3: void agentCreated(URL url);
4: // invoked before termination
5: void agentDestroying();
6: // invoked before migrating to dst
7: void agentDispatching(URL dst);
8: // invoked after arrived at dst
9: void agentArrived(URL dst);

10: // invoked after the tag arrived at another cell
11: void tagArrived(HostProfile[] apfs, CellIdentifier

cid);
12: // invoked after the tag left rom the current cell
13: void tagLeft(CellIdentifier cid);
14: // invoked after an agent host arrived at the

current cell
15: void hostArrived(AgentProfile apfs, CellIdentifier

cid);
16:
17: }

The above interface specifies fundamental methods that are invoked
by the runtime system when agents are created, destroyed, or mi-
grated to another agent host. If a tagged entity or place is detected
for the first time, the agent associated with that object or place has
to be instantiated and then its agentCreated() method is in-
voked. Also, the tagArrived() callback method is invoked after
the tag to which the agent is bound has entered another cell, to ob-
tain the device profiles of agent hosts that are present in the new
cell. The tagLeft() method is invoked after the tag is no longer
in a cell for a specified period of time. The agentDispatching()
method is invoked before the agent migrates to another host and the
agentArrived() method is invoked after the agent arrives at the
destination.

References

1. Auto-ID center: http://www.autoidcenter.org/main.asp
2. Brumitt, B.L., Meyers, B., Krumm, J., Kern, A., Shafer, S.: Ea-

syLiving: technologies for intelligent environments, In: Proceed-
ings of the International Symposium on Handheld and Ubiquitous
Computing, pp. 12–27 (2000)

3. Cheverst, K., Davis, N., Mitchell, K., Friday, A.: Experiences
of developing and deploying a context-aware tourist guide: The
guide project. In: Proceedings of the Conference on Mobile Com-
puting and Networking (MOBICOM’2000), pp. 20–31, ACM
press, New York (2000)

4. Harter, A., Hopper, A., Steggeles, P., Ward, A., Webster, P.:
The anatomy of a context-aware application. In: Proceedings of
the Conference on Mobile Computing and Networking (MOBI-
COM’99), pp. 59–68, ACM Press, New York (1999)

5. Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K., Schwehm,
M.: Next century challenges: Nexus—an open global infrastruc-
ture for spatial-aware applications. In: Proceedings of the Con-
ference on Mobile Computing and Networking (MOBICOM’99),
pp. 249–255, ACM press, New York (1999)

6. Kindberg, T., et al.: People, places, things: web presence for the
real world, Technical Report HPL-2000-16, Internet and mobile
systems laboratory, HP Laboratories (2000)

6 The identifier of each RFID reader can be represented in string
format so that the framework can easily manage various RFID systems
even when the identifiers of readers in these systems are different.

I. Satoh

7. Lange, B.D., Oshima, M.: Programming and deploying java mo-
bile agents with aglets, Addison-Wesley, MA (1998)

8. Leonhardt, U., Magee, J.: Towards a general location service for
mobile environments. In: Proceedings of the IEEE Workshop on
Services in Distributed and Networked Environments, pp. 43–50,
IEEE Computer Society Los Alamitos, CA, USA (1996)

9. Lin, J., Laddaga, R., Naito, H.: Personal location agent for com-
municating entities (PLACE). In: Proceedings of mobile HCI’02,
LNCS, vol. 2411, pp. 45–59, Springer, Berlin Heidelberg New
York (2002)

10. Lopez de Ipina, D., Lo, S.: LocALE: a location-aware lifecycle en-
vironment for ubiquitous computing. In: Proceedings of the Con-
ference on Information Networking (ICOIN-15), IEEE Computer
Society (2001)

11. Richardson, T., Stafford-Fraser, Q., Wood, K., Hopper, A.: Virtual
network computing. Proc. IEEE Int. Comput. 2(1) (2003)

12. Romer, K., Schoch, T., Mattern, F., Dubendorfer, T.: Smart iden-
tification frameworks for ubiquitous computing applications. In:
Proceedings of the IEEE International Conference on Perva-
sive Computing and Communications (PerCom’03), pp. 253–262,
IEEE Computer Society (2003)

13. Satoh, I.: MobileSpaces: a framework for building adaptive dis-
tributed applications using a hierarchical mobile agent system. In:
Proceedings of the International Conference on Distributed Com-
puting Systems (ICDCS’2000), pp. 161–168, IEEE Computer So-
ciety (2000)

14. Satoh, I.: MobiDoc: a framework for building mobile compound
documents from hierarchical mobile agents. In: Proceedings of
Symposium on Agent Systems and Applications/Aymposium on
Mobile Agents (ASA/MA’2000), Lecture notes in computer sci-
ence (LNCS), vol. 1882, pp. 113–125, Springer, Berlin Heidelberg
New York (2000)

15. Satoh, I.: Physical mobility and logical mobility in ubiquitous
computing environments. In: Proceedings of International Con-
ference on Mobile Agents (MA’02), Lecture Notes in Computer
Science (LNCS), vol. 2535, pp. 186–202 (2002)

16. Satoh, I.: Location-based services in ubiquitous computing envi-
ronments. In: Proceedings of the International Conference on Ser-
vice Oriented Computing (ICSOC’2004), Lecture Notes in Com-
puter Science (LNCS), vol. 2910, pp. 527–542, Springer, Berlin
Heidelberg New York (2003)

17. Satoh, I.: A testing framework for mobile computing software.
Proc. IEEE Trans. Software Eng. 29(12), 1112–1121 (2003)

18. Satoh, I.: Linking phyical worlds to logical worlds with mobile
agents. In: Proceedings of International Conference on Mobile
Data Management (MDM 2004), pp. 332–343, IEEE Computer
Society (2004)

19. Want, R., Hopper, A., Falcao, A., Gibbons, J. (1992) The active
badge location system. In: Proceedings of the ACM Transactions
on Information Systems, vol. 10, no. 1, ACM press, New York pp
91–102 (1992)

20. Want, R.: The personal server—changing the way we think about
ubiquitous computing. In: Proceedings of the 4th Interenational
Conference on Ubiquitous Computing (Ubicomp 2002), LNCS
2498, pp. 194–290, Springer, Berlin Heidelberg New York (2002)

21. Weiser, M.: The computer for the 21st century, Scientific Ameri-
can, pp. 94–104 (1991)

22. World Wide Web Consortium (W3C): Composite capabil-
ity/preference profiles (CC/PP), http://www.w3.org/TR/NOTE-
CCPP (1999)

