
Physical Mobility and Logical Mobility in Ubiquitous
Computing Environments

Ichiro Satoh

National Institute of Informatics /
Japan Science and Technology Corporation

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
Tel: +81-3-4212-2546 Fax: +81-3-3556-1916

ichiro@nii.ac.jp

Abstract. This paper presents a framework for building context-aware applica-
tions in ubiquitous and mobile computing settings. The framework provides peo-
ple, places, and things with computational functionalities to support and annotate
them. It is unique among existing systems because the functionalities are imple-
mented by mobile agents. Using location-tracking systems, this framework can
navigate mobile agents to stationary or mobile computers near the locations of
the entities and places to which the agents are attached, even when the locations
change. The framework provides a way for mobile agents to follow their users as
they move about and to adhere to places as virtual Post-its. A prototype imple-
mentation of the framework has been built on a Java-based mobile agent system
and tested with several practical applications, including follow-me applications
and a user- navigation system.

1 Introduction

Ubiquitous computing and mobile computing will be key areas in future computing.
However, the two approaches have their own advantages and disadvantages. The concept
of ubiquitous computing implies computation with elements that are contained in the
environment rather than carried on the person. Various computing and sensing devices
are in fact already present in almost every room of a modern building or house and in
many of the public facilities of cities. They may now be disappearing inside all sorts of
appliances and thus integrate with every aspect of life. This demonstrates the suitability of
ubiquitous computing to provide environmental information and services. However, this
approach is not suited to providing multiple-purpose and personalized services, because
the devices embedded in various items within the environment tend to have limited
storage and processing capacities. They are thus incapable of internally maintaining a
variety of software and profile databases on the potential users. This approach may also
raise serious privacy issues, because a ubiquitous computing environment would be able
to monitor the preferences and locations of individuals.

On the other hand, the concept of mobile computing can mean that computing de-
vices, for example, notebook-PCs, PDAs, wearable computers, are carried by users rather
than contained within the environment. Recently, portable computing devices have be-
come very small and powerful, giving their users access to a variety of applications in

N. Suri (Ed.): MA 2002, LNCS 2535, pp. 186–201, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Physical Mobility and Logical Mobility in Ubiquitous Computing Environments 187

personalized form, regardless of the user locations. Each of these devices is intended
to stay with a particular user so the user’s profile can be maintained in the portable
device and can it easily evolve over time, without having to be transferred from place to
place in an external environment. Therefore, the mobile computing approach provides
both personalization and privacy. However, its users are forced to carry devices, such as
PCs, PDAs, and smart-phones, which may not be light and may only have small screens
and clamped keyboards. Moreover, this approach is not suitable for context-dependent
services because it is difficult for a portable device to sense its environment.

The two approaches are posed as polar opposites. We have attempted to alleviate
the disadvantages of each approach by using the advantages of the other. Therefore, this
paper presents a location-aware framework, called SpatialAgent, in which mobile agent
technology is applied to provide a bridge between the two approaches. This framework
enables mobile agents to be spatially bound to people, places, and things, which the
agents support and annotate. Location-tracking systems are used within the framework
to migrate such agents to stationary and mobile computing devices that are near the
locations of the entities and places to which the agents are attached, even when the
locations of the entities change.

Several ways of reducing the number of disadvantages of in both approaches have
been explored. AT&T’s Sentient Computing [3], for example, proposed a so-called
follow-me application to support the provision of personalized services in ubiquitous
computing settings. With HP’s Cooltown [6], mobile computing devices such as PDAs
and smart phones are attached to positioning sensors to provide location-awareness to
web-based applications running on the devices. In contrast to these approaches, the
framework presented in this paper does not distinguish between mobile and ubiquitous
computing. Since mobile agents can travel between computers, the framework can natu-
rally map the movements of physical entities such as people and objects to the movements
of mobile agents in mobile and ubiquitous computing systems.

In the remainder of this paper, we describe our design goals (Section 2), the design of
our framework, called SpatialAgent, and a prototype implementation of the framework
(Section 3). We also discuss our experience with several applications that we developed
by using the framework (Section 4), and briefly review related work (Section 5). We
briefly discuss some future issues (Section 6) and provide a summary (Section 7).

2 Approach

The framework presented in this paper aims to enhance the capabilities of users, particu-
larly those of mobile users, of things that include computing devices and non-electronic
objects, and places such as rooms, buildings and cities with computational functionali-
ties.

2.1 Locating Systems

Our goal is to offer a location-aware system in which spatial regions can be determined
to within a few square feet, so that one or more portions of a room or building can
be distinguished. The framework itself is designed to be independent of any particular

188 I. Satoh

locational infrastructure and is accompanied by more than one locating system. It deter-
mines the positions of objects by identifying the spatial regions that contain the objects.
In general, such locating systems consist of RF (radio frequency) or infrared sensors,
which detect the presence of small RF or infrared transmitters, often called tags, each of
which periodically transmits a unique identifier. The framework assumes that physical
entities and places are equipped with their own unique tags so that they are automatically
locatable entities.

The framework consists of two parts: (1) mobile agents and (2) location information
servers, called LISs. The former offers application-specific services, which are attached
to physical entities and places, as collections of mobile agents. The latter provide a layer
of indirection between the underlying locating sensing systems and mobile agents. Each
LIS manages more than one sensor and provides the agents with up-to-date information
on the state of the real world, such as the locations of people, places, and things, and the
destinations that the agents should migrate to.

2.2 Application-Specific Services

This framework enables application-specific services to be implemented as mobile
agents. Mobile agent technology also has the following advantages in ubiquitous and
mobile computing settings.

– After arriving at its destination, a mobile agent can continue working without los-
ing the work results, for example the content for instance variables in the agent’s
program, at the source computers. Thus, the technology enables us to easily build
follow-me applications as proposed by Cambridge University [3].

– Mobile and ubiquitous computers often have only limited resources, such as fixed
levels of CPU power and restricted memory. Mobile agents can help to conserve
these limited resources, since each mobile agent needs to be present at a computer
only when the computer needs the services provided by that agent.

– Each mobile agent is locally executed on the computing device it is visiting and is
able to directly access various equipment, which belong to that device as long as the
security mechanisms of the device permits this.

In this framework, each mobile agent can be tied to radio-ID or infrared-ID tag attached
to a person, place, or thing in the physical world.

2.3 Narrowing the Gap between Physical and Logical Mobility

This framework can inform mobile agents attached to tags about their proper destinations
according to the current position of the tags. We call computing devices that can execute
mobile agent-based applications agent hosts. This framework permits agent hosts to be
mobile or stationary, but each host needs to be equipped with its own tag and must
advertise its profile information to the LISs that detect the tag. The framework supports
two types of linkages between a physical entity or place and more than one mobile agent:

– The framework binds one or more mobile agents to a tag, which is attached to a
moving entity such as a user and a non-electronic object. When a tagged entity moves

Physical Mobility and Logical Mobility in Ubiquitous Computing Environments 189

within a place, the framework prompts agents, which are bound to the moving entity,
to move to appropriate stationary hosts within the same place, as shown in Fig. 1.

– The framework allows physical places to have their own agents which support
location-dependent services. When a user with network-enabled computing de-
vices is in a given place, the framework instructs the agents that are attached to
the place to migrate themselves to the visiting devices, where they provide the
location-dependent services of the place as shown in Fig. 2.

This framework permits a combination of both forms of linkages, while existing related
work, such asAT&T’s Sentient Computing and HP’s Cooltown, only support one of them.
In addition to this, the framework does not distinguish between mobile and stationary
devices. In the framework, multiple sensors do not have to be neatly distributed in a
space such as rooms or buildings to completely cover the spaces; instead, they can be
placed near more than one agent host and the coverage of sensors can overlap.

sensor

stationary

computer

(agent host)
sensorsensorsensor

Step 1

the movement of a user with a tag

tag

tag

tagtagtagtag

tag

the migration of an agent

attached to a moving userStep 2

stationary

computer

(agent host)

cell 1 cell 2 cell 1 cell 2

Fig. 1. Migration of an agent, which is attached to a moving entity, to a computer at the current
location of the entity

mobile agent attached

to the place

sensorsensor

Step 1

the movement of a user with

a PDA (Agent Host)

invisiblecomputer
(agent host)

tagtag
agent

migration

the migration of an agent to the PDA

Step 2

tagtag

cell cell

Fig. 2. Migration of an agent which is attached to a particular place to a computer visiting that
place

190 I. Satoh

2.4 Design Principles

In addition to achieving the goals presented above, the framework has the following
advantages:

Autonomy: When an LIS detects the movement of a tag in the physical world, it informs
agents bound to the tag about the network address and the capabilities of more than one
candidate destination that the agents should visit, but the LIS itself does not send agents
to a destination. Each of these agents selects one host among the candidate destinations
recommended by the LIS and migrates to the selected host, since it is an autonomous
entity. Moreover, when the capabilities of a candidate destination do not satisfy all the
requirements of an agent, the agent itself should decide, on the basis of to its own
configuration policy, whether or not it will migrate to the destination and adapt itself to
the destination’s capabilities.

Scalability: Our final goal is widespread building-wide and city-wide deployment. It is
almost impossible to deploy and administer a system in a scalable way when all of the
control and management functions are centralized. Our framework consists of multiple
servers, which are connected to individual servers in a peer-to-peer manner. Each LIS
only maintains up-to-date information on the identifiers of tags, which are present in one
or more of the specific places it manages, instead of on tags in the whole space.

Extensibility: LISs and agent hosts may be dynamically deployed and frequently shut
down. The framework permits each LIS to run independently of the other LISs and offers
an automatic mechanism for the registration of agent hosts. The mechanism requires
agent hosts to be equipped with tags so that they are locatable and can advertise their
capabilities.

Reconfigurability: In the framework, not only portable components but also system
components, such as the sensors and agent hosts, are movable. As a result, it is almost
impossible to maintain a geographical model of the whole system. To solve this problem,
the framework provides a demand-driven mechanism for discovering the agents and
agent hosts that are required, where the mechanism was inspired by ad-hoc mobile
networking technology [12].

Modularity and Application-Independence: The framework should be as indepen-
dent as possible of the underlying sensor technologies and mobile agent systems. This
minimizes the effects of the distribution and heterogeneity of the underlying locating
infrastructure on the applications. The framework itself is independent of application-
specific tasks because such tasks are performed within mobile agents.

Personalization and Privacy: The framework only maintains per-user profile infor-
mation within those agents that are bound to the user. It promotes the movement of such

Physical Mobility and Logical Mobility in Ubiquitous Computing Environments 191

agents to appropriate hosts near the user in response to the user’s movement. Thus, the
agents do not leak profile information on their users to other parties and can interact with
their mobile users in personalized forms that have been adapted to respective individual
users.

3 Design and Implementation

This section presents the design of the SpatialAgent framework and describes a prototype
implementation of the framework. Fig. 3 shows the basic structure of the framework.

MobileSpaces

Location Server A Location Server B

directory

database
directory

database

profile

handler

profile

handler

event handlerevent handler

abstraction

layer

abstraction

layer
abstraction

layer

agent host agent host agent host

tagtag tag

tag

tag

cell 3cell 1 cell 2

user migration

tag

tag

desklamp-

bound agent
user-bound agent

MobileSpaces MobileSpaces

peer-to-peer

communication

agent

migration

locating sensor locating sensor locating sensor

Fig. 3. Architecture of the SpatialAgent Framework

3.1 Location Information Server

Each LIS can run on a stationary or mobile computer and provides the following func-
tionality:

Management of Locating Sensors: Each LIS manages multiple sensors that detect
the presence of tags and maintains up-to-date information on the identities of tags that
are within the zone of coverage by its sensors. This is achieved by polling the sensors
or receiving events issued by the sensors themselves. An LIS does not require any
knowledge of other LISs. To hide differences among the underlying locating systems,
each LIS maps low-level positional information from each of the locating systems into
information that is symbolic model of location. An LIS represents an entity’s location
in terms of the unique identifier of the sensor that detects the tag of the entity. We call
each sensor’s coverage a cell, as in the model of location studied in [8].

192 I. Satoh

Mechanism for Agent Discovery: Each LIS discovers mobile agents bound to tags
within its cells and maintains a database in which it stores information about each of the
agent hosts and each of the mobile agents attached to a tagged entity or place. When an
LIS detects a new tag in a cell, the LIS multicasts a query that contains the identity of the
new tag and its own network address to all of the agent hosts in its current sub-network.
It then waits for replies from the agent hosts. Here, there are two possible cases: the tag
may be attached to an agent host or the tag may be attached to a person, place, or thing
other than an agent host.

– In the first case, the newly arriving agent host will send its network address and
device profile to the LIS; the profile describes the capabilities of the agent host, e.g.,
input devices and screen size. After receiving the reply, the LIS stores the profile in
its database and forwards the profile to all agent hosts within the cell.

– In the second case, agent hosts that have agents tied to the tag will send their network
addresses and the requirements of acceptable agents to the LIS; the requirements
for each agent specify the capabilities of the agent hosts that the agent can visit and
perform its services at.

The LIS then stores the requirements of the agents in its database and moves the agents
to appropriate agent hosts in the following way. If the LIS has not received any replies
from the agent hosts, it can multicast a query message to other LISs. When the absence
of a tag is detected in a cell, each LIS multicasts message with the identifier of the tag
and the identifier of the cell to all agent hosts in its current sub-network.

Navigation Service: We will now explain how agents navigate to reach appropriate
agent hosts. When an LIS detects the movement of a tag attached to a person or a
thing to a cell, it searches its database for agent hosts that are present in the current
cell of the tag. It also selects candidate destinations from the set of agent hosts within
the cell, according to their respective capabilities. The framework offers a language
based on CC/PP (composite capability/preference profiles) [20]. The language is used to
describe the capabilities of agent hosts and the requirements of mobile agents in an XML
notation. For example, a description contains information on the following properties of
a computing device: the vendor and model class of the device (PC, PDA, phone, etc.),
its screen size, the number of colors, CPU, memory, input devices, secondary storage,
and presence/absence of speakers. Each LIS is able to determine whether or not the
device profile of each agent host satisfies the requirements of an agent by symbolically
matching and quantitatively comparing properties. The LIS informs each agent about
the profiles of agent hosts that are present in the cell and satisfies the requirements of
the agent. The agents are then able to autonomously migrate to the appropriate hosts.
The current implementation allows each agent to specify the preferable capabilities of
agent hosts that it may visit as well as the minimal capabilities.

When there are multiple candidate destinations, each of the agents that is tied to a tag
must select one destination on the basis of the profiles of the destinations. Also, when
one or more cells geographically overlap, a tag may be in multiple cells at the same time;
agents tied to that tag may then receive candidate destinations from multiple LISs. Our
goal is to provide physical entities and places with computational functionality from

Physical Mobility and Logical Mobility in Ubiquitous Computing Environments 193

locations near them. Therefore, if there are no appropriate agent hosts in any of the
cells at which a tag is present but there are some agent hosts in other cells, the current
implementation of our framework is not intended to move agents tied to the tag to hosts
in different cells.

3.2 Agent Host

Each agent host has two forms of functionality: one for advertising its capabilities and
the other for executing and migrating mobile agents. When a host receives a query with
the identifier of a newly arriving tag from an LIS, it responds in one of the following
three ways: (i) if the identifier in the message is equal to the identifier of the tag to which
it is attached, it returns profile information on its capabilities to the LIS; (ii) if one of the
agents running on it is tied to the tag, it returns its network address and the requirements
of the agent; and (iii) if neither of the above cases applies, it ignores the message.1

The current implementation of this framework is based on a Java-based mobile
agent system called MobileSpaces [14].2 Each MobileSpaces runtime system is built
on the Java virtual machine, which hides differences between the platform architecture
of source and destination hosts, such as the operating system and hardware. Each of
the runtime systems moves agents to other agent hosts over a TCP/IP connection. The
runtime system governs all agents inside it and maintains the life-cycle state of each
agent. When the life-cycle state of an agent changes, for example, when it is created,
terminates, or migrates to another host, the runtime system issues specific events to the
agent. This is because the agent may have to acquire or release various resources, such
as files, windows, and sockets, which it has previously captured. When a notification on
the presence or absence of a tag is received from an LIS, the runtime system dispatches
specific events to the agents that are tied to that tag and run inside it.

3.3 Mobile Agent Program

Each mobile agent is a collection of Java objects and is equipped with the identifier of the
tag to which it is attached. It is a self-contained program and is able to communicate with
other agents. An agent that is attached to a user always internally maintains that user’s
personal information and carries all its internal information to other hosts. A mobile
agent may also have one or more graphical user interfaces for interaction with its users.
When such an agent moves to another host, it can easily adjust its windows to the screen
of the new host by using a compound document framework for the MobileSpaces system
that was presented in our previous paper [15].

Next, we will explain the programming interface for our mobile agents. Every agent
program must be an instance of a subclass of the abstract class TaggedAgent as follows:

1 The current implementation assumes that LISs and agent hosts can be directly connected through
a wireless LAN such as IEEE802.11b and thus does not support any multiple-hop query mech-
anisms, unlike mobile ad-hoc networking technology [12].

2 The framework itself is independent of the MobileSpaces mobile agent system and can thus
work with other Java-based mobile agent systems.

194 I. Satoh

1: class TaggedAgent extends Agent implements Serializable {
2: void go(URL url) throws NoSuchHostException { ... }
3: void duplicate() throws IllegalAccessException { ... }
4: void destroy() { ... }
5: void setTagIdentifier(TagIdentifier tid) { ... }
6: void setAgentProfile(AgentProfile apf) { ... }
7: URL getCurrentHost() { ... }
8: boolean isConformableHost(HostProfile hfs) { ... }
9:

10: }

Here are some of the methods defined in the TaggedAgent class. An agent executes the
go(URL url) method to move to the destination host specified as url by its runtime
system. The duplicate() method creates a copy of the agent, including its code and
instance variables. The setTagIdentifier method ties the agent to the identity of the
tag specified as tid. Each agent can specify requirements that its destination hosts must
satisfy by invoking the setAgentProfile() method, with the requirements specified
as apf. The class provides a service method, isConformableHost(), which the agent
uses to decide whether or not the capabilities of an agent host specified as an instance
of the HostProfile class satisfy the requirements of the agent.

Each agent can have more than one listener object that implements a specific listener
interface to hook certain events issued before or after changes in its life-cycle state or
the movements of its tag.

1: interface TaggedAgentListener extends AgentEventListener {
2: // invoked after creation at url
3: void agentCreated(URL url);
4: // invoked before termination
5: void agentDestroying();
6: // invoked before migrating to dst
7: void agentDispatching(URL dst);
8: // invoked after arrived at dst
9: void agentArrived(URL dst);

10: // invoked after the tag arrived at another cell
11: void tagArrived(HostProfile[] apfs, CellIdentifier cid);
12: // invoked after the tag left rom the current cell
13: void tagLeft(CellIdentifier cid);
14: // invoked after an agent host arrived at the current cell
15: void hostArrived(AgentProfile apfs, CellIdentifier cid);
16:
17: }

The above interface specifies the fundamental methods that are invoked by the runtime
system when agents are created, destroyed, or migrate to another agent host. Also, the
tagArrived callback method is invoked after the tag to which the agent is bound has
entered another cell, to obtain the device profiles of the agent hosts that are present in
the new cell. The tagLeft method is invoked after the tag is no longer in a cell.

Physical Mobility and Logical Mobility in Ubiquitous Computing Environments 195

3.4 Current Status

The framework presented in this paper was implemented in Sun’s Java Developer Kit
version 1.1 or later versions, including Personal Java. The remainder of this section
discusses some features of the current implementation.

Locating Systems: The current implementation of our framework supports two com-
mercial locating systems: RF Code’s Spider and Elpas’s EIRIS. The former provides
active RF-tags. Each tag has a unique identifier that periodically emits an RF-beacon
that conveys an identifier (every second). The system allows us to explicitly control the
omnidirectional range of each of the RF receivers to read tags within a range of 1 to
20 meters. The latter provides active infrared-tags, which periodically broadcast their
identifiers through an infrared interface (every four seconds), like the Active Badge sys-
tem [19]. Each infrared receiver has omnidirectional infrared coverage, which can be
adjusted to cover distances within the range of 0.5 to 10 meters. Although there are many
differences between the two locating systems, the framework minimizes the differences.

Performance Evaluation: Although the current implementation of the framework was
not built for performance, we measured the cost of migration of an agent with a size
of 3 Kbytes (zip-compressed) from a source host to the destination host recommended
by the LIS. This experiment was performed with two LISs and two agent hosts, each
of which was running on one of four computers (Pentium III-1GHz with Windows2000
and JDK 1.4), which were directly connected via an IEEE802.11b wireless network.
The latency of an agent’s migration to the destination after an LIS had detected the
presence of the tag of an agent was 380 msec; the cost of agent migration between
two hosts over a TCP connection was 48 msec. The latency includes the cost of the
following processes: UDP-multicasting of the identifier of the tags from the LIS to
the source host; TCP-transmission of the agent’s requirements from the source host to
the LIS; TCP-transmission of a candidate destination from the LIS to the source host;
marshaling of the agent; the migration of an agent from the source host to the destination
host; unmarshaling of the agent; and security verification. We believe that this latency
is acceptable for a location-aware system used in a room or building.

4 Initial Experience

To demonstrate the utility of the SpatialAgent framework, we developed several typical
location-aware applications for mobile or ubiquitous computing settings.

4.1 Follow-Me Desktop Application

A simple application of the framework is a desktop teleporting system, like a follow-
me application [3], within a richly equipped, networked environment such as a modern
office. The system tracks the current location of a user and allows him or her to access
his or her applications at the nearest computer as he or she moves around in the build-
ing. Unlike previous studies of such applications, our framework can migrate, not only

196 I. Satoh

the user interfaces of applications but also the applications themselves, to appropriate
computers in the cell that contains the tag of the user. In our previous paper [15], we
also developed a mobile window manager, which is a mobile agent that can carry its
desktop applications as a whole to another computer and control the size, position, and
overlap of the windows of the applications. Using the framework presented in this paper,
the window manager and desktop applications can be automatically moved to and then
executed at the computer that is in the current cell of the user and that has the resources
required by the applications in the manner shown in Fig. 4.

user movement

agent migration

tag

tag

tag

tag

agent host agent host

editor application

(mobile agent)

clock application

(mobile agent)

cell 1 cell 2

tag

Fig. 4. Follow-Me Desktop Applications

4.2 User Navigation System

We also developed a user navigation system that assists visitors to a building. Several
researchers have reported on other similar systems [2,4]. In this example, tags are dis-
tributed to several places within the building, such as its ceilings, floors, and walls; each
visitor carries a wireless-LAN enabled tablet PC, which is equipped with a locating
sensor to detect tags. It also includes an LIS and an agent host. The system initially
deploys place-bound agents to invisible computers within the building. When a tagged
position enters the cell of the moving sensor, the LIS running on the visitor’s tablet PC
detects the presence of the tag. The LIS detects the place-bound agent that is tied to
the tag. Next, it instructs the agent to migrate to its agent host and perform the agent’s
location-dependent services at the host. Fig. 5 shows a situation where a visitor with
his/her tablet PC and sensor is roaming, first approaching place A and then place B. The
system enables more than one agent tied to place A to move to the table PC. The agent
returns to its home computer and other agent, which is tied to place B. It then moves
to the tablet PC. Fig. 6 shows a place-bound agent displaying a map of its surrounding
area on the screen of a tablet PC.

Physical Mobility and Logical Mobility in Ubiquitous Computing Environments 197

sensor

Step 1

tag A

tag

a user with a tablet PC

and a sensor for tags

tablet PC

(agent host)

tag

sensor

tag

tag A

tag B

agent

migration

cell

cell

sensor

tag

tag A

tag B

agent

migration

cell agent migration

Step 2 Step 3

user movement

invisible computer A

(agent host)

invisible computer B

(agent host)

map agent

for place A

map agent

for place B

user movement

Fig. 5. The migration of an agent, which is attached to a place, to a visiting computer.

The positions of RF-sensors

RF-sensor

Tablet PC

(Agent Host)

Place-bound

Agent (Map Viewer)

RF-tag

IEEE

802.11b

(A) (B)

Fig. 6. (A) the positions of RF-tags on a floor (B) and a screen-shot of a map-viewer agent running
on a table PC

4.3 Proactive Control of Home Appliances

We also used this framework to implement two prototype systems to control the lights
in a room. Each light was equipped with a tag and was within the range covered by the
sensor. In a previous project [11], we developed a generic server to control power outlets
through a commercial protocol called the X10; in both the approaches we describe here
the lights are controlled by switching their power sources on or off through the X10
protocol.

User-aware Automatic Controller: The first system provides proactive control of
room lighting through a similar approach to that used by the EasyLiving project [1]. Our
approach can autonomously turn the room lights on whenever a tagged user is sufficiently
close to them. Suppose that each light is attached to a tag and is within the 3-meters
coverage of the stationary sensor for the RF Code’s Spider system. A tag attached to each
of the lights is correlated with a mobile agent, which is a client of our X10-based server
and is running on a stationary agent host in the room. When a tagged user approaches
a light, an LIS in the room detects the presence of his/her tag in the cell that contains
the light. Next, the LIS moves an agent that is bound to his/her tag to the agent host on

198 I. Satoh

which the light’s agent is running. The user’s agent then requests that the lights’ agent
to turn the light on through inter-agent communication.

Location-aware Remote Controller: The second system allows us to use a PDA as a
remote controller for nearby lights. In this system, place-bound controller agents, which
can communicate with X10-base servers to switch the lights on or off, are attached to the
places that contain room lights. Each user has a tagged PDA, which supports an agent
host with WindowsCE and a wireless LAN interface.3 When a user with his/her PDA
visits a cell that contains a light, the framework moves a controller agent to the agent
host of the visiting PDA. The agent, now running on the PDA, displays a graphical user
interface to control the light. When the user leaves that place, the agent automatically
closes its user interface and returns to its home host.

RF-tag

attached to

a desklamp

RF-sensor

PDA

(Agent Host)

Desklamp

X10 Appliance

Module

Controller

Agent

Fig. 7. Controlling a desk lamp from a PDA

5 Related Work

This section discusses several systems that have influenced various aspects of this frame-
work, which seamlessly integrate two different approaches: ubiquitous and mobile com-
puting.

First, we will compare some projects that support mobile users in ubiquitous com-
puting environment with our framework. Research on smart spaces and intelligent envi-
ronment is becoming increasingly popular at many universities and corporate research

3 Since existing Java VMs for WindowsCE-based PDAs are lacking in terms of function and
performance, the current implementation of this example uses a light-weight version of the
MobileSpaces system.

Physical Mobility and Logical Mobility in Ubiquitous Computing Environments 199

facilities. Cambridge University/AT&T’s Sentient Computing project [3] provides a plat-
form for location-aware applications using infrared-based or ultrasonic-based locating
systems in a building. Using the VNC system [13], the platform can track the movement
of a tagged entity, such as individuals and things, so that the graphical user interfaces
of the user’s applications follow the user while he, she, or it moves around. Although
the platform provides similar functionality to that of our framework, its management is
centralized and it is difficult to dynamically reconfigure the platform when sensors are
added to, or removed from, the environment. Since the applications must be executed
in remote servers, the platform may have non-negligible interactive latency between the
servers and the hosts that the user locally accesses. Recently, some Cambridge University
researchers [9] have proposed a CORBA-based middleware, called LocARE, for the Sen-
tient Computing project. The middleware can move CORBA objects to hosts according
to the location of tagged objects. CORBA objects, however, are not always suitable for
implementing user interface components. Microsoft’s EasyLiving project [1] provides
context-aware spaces, with a particular focus on the home and office. Computer-vision is
used to track users within the spaces. The system can organize the dynamic aggregation
of networked-enabled devices in a space and control devices according to the location
of users.

There have also been several studies on enhancing context-awareness in mobile com-
puting. HP’s Cooltown [6] is an infrastructure for supporting context-aware services on
portable computing devices. It is capable of automatically providing bridges between
people, places, and things in the physical world and the web resources that are used to
store information about them. The bridges that it forms allow users to access resources
stored on the web via a browser, using standard HTTP communication. Although it
would be an advantage in this system for users to be familiar with web browsers, all
of the services available in the Cooltown system are constrained by the limitations of
web browsers and HTTP. The NEXUS system [4], developed by Stuttgart University,
offers a generic platform that supports location-aware applications for mobile users.
Like the Cooltown system, users require PDA or tablet PC-like handheld devices, which
are equipped with GPS-based positioning sensors and wireless communication. Appli-
cations that run on such devices, e.g., user-navigation, maintain a spatial model of the
current vicinity of users and gather spatial data from remote servers. Unlike our ap-
proach, however, both of these approaches are not suited to supporting mobile users
from stationary computers distributed in a smart environment.

Despite this, even though a number of mobile agent systems have been developed,
few researchers have attempted to apply mobile agent technology to mobile and ubiq-
uitous computing. Kangas [5] developed a location-aware augmented-reality system
that enabled the migration of virtual objects to mobile computers, but only when the
computer was located in particular spaces, like our framework. However, the system
was not designed to move such virtual objects to ubiquitous computing devices. Hive
[10] is a mobile agent-based middleware to control devices in ubiquitous computing
environments, but it does not support any location-aware services.

200 I. Satoh

6 Future Work

Since the framework presented in this paper is designed as a general-purpose framework,
in future work we need to apply it to various applications as well as the three applications
presented in this paper. Moreover, the MobileSpaces system, which is one basis of the
framework, allows an application-specific service to be implemented as a collection
of multiple agents rather than as a single agent. We are now developing a mechanism
to divide an application-specific service into multiple mobile agents. For example, a
mobile agent-based service may often require various I/O devices, such as a keyboard
and speakers, but cannot find an agent host that has all of the devices. If there are two
hosts, where one has a keyboard and another has speakers, the service should be able to
be provided by the two in combination. The current mechanism to exchange information
between LISs is not yet satisfactory. We therefore plan to develop a publish-subscribe
system for the framework. We currently have an approach for building and managing
configurable sensor networks [18]. Since it allows sensor nodes to be organized and
configured according to the requirements of applications and changes in the physical
world, it is useful in dynamically customizing our location information servers. We have
also developed an approach to test context-aware applications on mobile computers
[16]. We are interested in providing a methodology for testing applications based on the
framework.

7 Conclusion

A novel framework for developing and managing location-aware applications in mobile
and ubiquitous computing environments has been presented in this paper. The framework
provides people, places, and things with mobile agents to support and annotate them.
Using location-tracking systems, the framework can migrate mobile agents to stationary
or mobile computers near the locations of the people, places, and things to which the
agents are attached. That is, it allows a mobile user to access its personalized services
in a ubiquitous computing environment and provides location-dependent services to the
user’s portable computing device. The framework is decentralized. In addition, it is a
generic platform independent of any higher-level applications and locating systems. We
designed and implemented a prototype system for the framework and tested several
practical applications.

References

1. B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer, “EasyLiving: Technologies for Intel-
ligent Environments”, Proceedings of International Symposium on Handheld and Ubiquitous
Computing, pp. 12-27, September, 2000.

2. K. Cheverst, N. Davis, K. Mitchell, andA. Friday, “Experiences of Developing and Deploying
a Context-Aware Tourist Guide: The GUIDE Project”, Proceedings of Conference on Mobile
Computing and Networking (MOBICOM’2000), pp.20-31, 2000.

3. A. Harter,A. Hopper, P. Steggeles,A. Ward, and P. Webster, “TheAnatomy of a Context-Aware
Application”, Proceedings of Conference on Mobile Computing and Networking (MOBI-
COM’99), pp.59-68, 1999.

Physical Mobility and Logical Mobility in Ubiquitous Computing Environments 201

4. F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm, “Next Century Chal-
lenges: Nexus -An Open Global Infrastructure for Spatial-AwareApplications, Proceedings of
International Conference on Mobile Computing and Networking (MOBICOM’99), 249-255,
1999.

5. K. Kangas and J. Roning, “Using Code Mobility to Create Ubiquitous and Active Augmented
Reality in Mobile Computing”, Proceedings of Conference on Mobile Computing and Net-
working (MOBICOM’99), pp.48-58, 1999.

6. T. Kindberg, et al. “People, Places, Things: Web Presence for the Real World”, Technical
Report HPL-2000-16, Internet and Mobile Systems Laboratory, HP Laboratories Palo Alto,
February, 2000.

7. B. D. Lange and M. Oshima, “Programming and Deploying Java Mobile Agents with Aglets”,
Addison-Wesley, 1998.

8. U. Leonhardt, and J. Magee, “Towards a General Location Service for Mobile Environments”,
Proceedings of IEEE Workshop on Services in Distributed and Networked Environments, pp.
43-50, IEEE Computer Society, 1996.

9. D. Lopez de Ipina and S. Lo, “LocALE: a Location-Aware Lifecycle Environment for Ubiqui-
tous Computing”, Proceedings of Conference on Information Networking (ICOIN-15), IEEE
Computer Society, 2001.

10. N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes, “Hive: Distributed agents for network-
ing things”, Proceedings of Symposium on Agent Systems and Applications / Symposium on
Mobile Agents (ASA/MA’99), IEEE Computer Society, 2000.

11. T. Nakajima, I. Satoh, and H. Aizu, “A Virtual Overlay Network for Integrating Home
Appliances”, Proceedings of International Symposium on Applications and the Internet
(SAINT’2002), pp.246-253, IEEE Computer Society, January, 2002.

12. C. E. Perkins “Ad Hoc Networking”, Addistion Wesley, 2001.
13. T. Richardson, Q, Stafford-Fraser, K. Wood, A. Hopper, “Virtual Network Computing”, IEEE

Internet Computing, Vol. 2, No. 1, 1998.
14. I. Satoh, “MobileSpaces: A Framework for Building Adaptive Distributed Applications Using

a Hierarchical MobileAgent System”, Proceedings of International Conference on Distributed
Computing Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, 2000.

15. I. Satoh, “MobiDoc: A Framework for Building Mobile Compound Documents from Hier-
archical Mobile Agents”, Proceedings of Symposium on Agent Systems and Applications
/ Symposium on Mobile Agents (ASA/MA’2000), LNCS, Vol.1882, pp.113-125, Springer,
2000.

16. I. Satoh, “Flying Emulator: Rapid Building and Testing of NetworkedApplications for Mobile
Computers”, in Proceedings of Conference on Mobile Agents (MA’2001), LNCS, Vol. 2240,
pp.103-118, Springer, 2001.

17. M. Strasser and J. Baumann, and F. Holh, “Mole: A Java Based Mobile Agent System”,
Proceedings of 2nd ECOOP Workshop on Mobile Objects (eds. J. Baumann, C. Tschudin and
J. Vitek), 1997.

18. T. Umezawa, I. Satoh, Y. Anzai, “A Mobile Agent-based Framework for Configurable Sensor
Networks”, to appear in International Workshop on Mobile Agents for Telecommunication
Applications (MATA’2002), LNCS, Springer, October, 2002.

19. R. Want, A. Hopper, A. Falcao, and J. Gibbons, “The Active Badge Location System”, ACM
Transactions on Information Systems, vol.10, no.1, pp. 91-102, ACM Press, January, 1992.

20. World Wide Web Consortium (W3C), Composite Capability/Preference Profiles (CC/PP),
http://www.w3.org/TR/NOTE-CCPP, 1999.

	Introduction
	Approach
	Locating Systems
	Application-Specific Services
	Narrowing the Gap between Physical and Logical Mobility
	Design Principles

	Design and Implementation
	Location Information Server
	Agent Host
	Mobile Agent Program
	Current Status

	Initial Experience
	Follow-Me Desktop Application
	User Navigation System
	Proactive Control of Home Appliances

	Related Work
	Future Work
	Conclusion

