
An Architecture for Next Generation

Mobile Agent Infrastructure

Ichiro Satoh∗

Department of Information Sciences, Ochanomizu University†/
Japan Science and Technology Corporation

Abstract

This paper presents a portable and adaptive mobile
agent system. The system consists of a core system
and subcomponents like micro-kernel operating sys-
tems. The core system offers only the minimal and
common facilities and the latter is implemented as a
collection of mobile agents which offer various facili-
ties independent on its execution environment. The
system can dynamically evolve and extend its own fa-
cilities by moving agents which support the facilities,
according to its mobile computing environment. An
implementation of the mobile agent system is avail-
able.

1 Introduction

Over the past several years, there has been a lot of
work in the area of mobile agents. Mobile agents are
autonomous programs that can travel from computer
to computer under their own control. They can pro-
vide a convenient, efficient, and robust framework for
implementing distributed applications including mo-
bile applications. Several mobile agent systems have
been released over the last few years (for example
[8, 9, 14, 15]).
Mobile agents have been used in the development

of various networked applications. These applica-
tions often need to dynamically customize facilities
provided by mobile agent systems, for example exe-
cution and migration of agents. For example, a mo-
bile agent for electronic commerce needs to be trans-
formed into an encrypted bit stream before transfer-
ring itself over a network. In mobile computing set-
tings, network protocols for agent migration should
tolerate network disconnection. However, existing
mobile agent systems cannot dynamically adapt their
facilities, including network processing to the re-
quirements of visiting agents and changes in their
surrounding environments. This is because such fa-

∗E-mail: ichiro@is.ocha.ac.jp
†2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610, Japan

Tel: +81-3-5978-5388 Fax: +81-3-5978-5390

cilities in existing mobile agent systems are stati-
cally embedded inside their runtime systems. More-
over, most existing systems are explicitly and implic-
itly dependent on particular execution environments
such as operating systems, hardware, and networks.
This paper addresses a portable and adaptable mo-

bile agent system and describes the architecture and
implementation of the system. The system is charac-
terized in that it is composed of a collection of sub-
components implemented as mobile agents. Also, it
is unique among existing mobile agent systems in
having the ability to treat mobile agents as first-
class objects [7], in the sense that mobile agents
can be passed to and returned from other mobile
agents as values. Therefore, our framework allows
various operations for mobile agents, including net-
work processing for agent migration, to be naturally
constructed and performed by other mobile agents.
For example, network protocols for agent migration
are implemented by mobile agents. These mobile
agent-based protocols can transmit other agents to
the destinations of the agents in the most appropri-
ate way.
This paper consists of the following sections. Sec-

tion 2 states the basic ideas of the system and Section
3 presents presents an adaptive mobile agent system.
Section 4 describes the current implementation sta-
tus and Section 5 surveys related work and Section
6 gives some concluding remarks.

2 Background

A lot of mobile agent systems have been released
nowadays, for example see Aglets [8], Mole [14], Tele-
script [15], and Voyager [9]. However, to our knowl-
edge, no existing mobile agent systems can extend
and change their own functions, unlike ours. In the
literature on extensible operating systems and meta-
level architecture, several researchers have explored
frameworks to change the behavior of operating sys-
tems and applications according to their environ-
ments (for example, see [3, 4, 5, 16]). These systems
can adapt themselves to their surrounding environ-



ments by means of special operations such as code
migration or meta-level semantics. However, most of
them lack any mechanism for the migration of run-
ning programs between computers.
In an earlier paper [11], the author presented two

notions: agent hierarchy and inter-agent migration,
which give a mechanism for the development of a
large and complex mobile application by assembling
mobile agents into a single mobile agent, like soft-
ware component technology. On the other hand, this
paper addresses that the concepts are available in
the construction of an adaptable mobile agent sys-
tem. We present an architecture for extensible and
adaptive infrastructure for supporting mobile agents
based on the two notions. Also, we introduce agent
migration in an agent hierarchy as a unified mecha-
nism for computation and adaptation in the infras-
tructure.

3 Architecture Overview

In our mobile agent system, mobile agents are com-
putational entities like other mobile agents. When
each agent migrates, not only the code of the agent
but also its state can be transferred to the desti-
nation. Furthermore, our mobile agent system is
characterized in that it can dynamically extend and
adapt itself to the changes of its execution environ-
ments. the requirements of users. The system is
built on two ideas. The first idea is to construct
a mobile agent system according to a micro-kernel
architecture as shown in several operating systems.
That is, it consists of two parts: a core system and
subcomponents. The former offers only minimal and
common functions independent of the underlying en-
vironment. The latter is introduced as a collection
of subcomponents outside the core system and pro-
vides the other functions. The second idea is to im-
plement all subcomponents as mobile agents so that
these subcomponents can be dynamically added to
and removed from the system by migrating and re-
placing the corresponding agents. Therefore, the sys-
tem can adapt itself to its execution environment and
the requirements of its executing mobile agents. It
introduces mobile agents as the only constituent of
the system. This gives users/programmers a single
unified perspective of the system and applications
running on the system.
Therefore, we need a mechanism for dynamically

and structurally combining mobile agents as software
components. However, existing mobile agent systems
unfortunately lack any mechanism for structurally
assembling more than one mobile agent. This is be-
cause each mobile agent is basically designed as an
isolated entity which always acts and migrates in-
dependently. Therefore, we introduce the following

unique concepts. (1) Agent Hierarchy: Each mobile
agent can be contained within one mobile agent. (2)
Inter-agent Migration: Each mobile agent can mi-
grate between mobile agents as a whole with all its
inner agents.
These concepts are available in the development of

not only a mobile agent-based application which is
large in scale and complicated, but also an adaptable
mobile agent system and its extendable application.

Mobile Agents as Service Providers: As men-
tioned previously, our mobile agent system is charac-
terized by offering its own facilities through mobile
agents. The concepts allow our mobile agent system
to be constructed as a collection of mobile agents
organized structurally. The system can customize
its structure and its functions by migrating agents
into it, while it is running. Accordingly, the system
can dynamically change and evolve its facilities by
migrating agents implementing the facilities. For ex-
ample, while the system is running, it can add a new
function to itself by migrating a new mobile agent
which implements the function to the system. The
system can be open to evolve and adapt itself to its
execution environment and the requirements of vis-
iting agents.

Agent Migration as Meta Mechanism: It is
often argued that the advantage of agent migration
lies in the reduction of communication costs in dis-
tributed computing settings. Although this argu-
ment is understandable, our system can make use of
agent migration as a meta mechanism for changing
and evolving a system consisting of one or more mo-
bile agents. When an agent wants a service, it can
access the service by migrating itself to the agent
which provides the service. The semantics and prop-
erties of an agent are partially provided by its parent
agent and these can be changed by moving to other
agents. In this sense, a parent agent can be viewed
as a meta interpreter of its children.

4 Architecture Details

Next, we will describe our method for using the
MobileSpaces system to construct mobile compound
documents.1 The system can execute and migrate
mobile agents that are incorporated with the two
concepts presented in the previous section. It has
been incorporated in Java Development Kit version
1.2 and can run on any computer that has a runtime
compatible with this version.

1Details of the MobileSpaces mobile agent system can be
found in our previous paper [11].



migrationstep 1

step 2

Agent A Agent B

Agent C

Agent D
Agent E

Agent A Agent B

Agent C

Agent D
Agent E

Figure 1: Agent Hierarchy and Inter-agent Migration

4.1 Core System

Our mobile agent runtime system is a platform for
executing and migrating mobile agents. It is built on
a Java virtual machine and mobile agents are given
as Java objects [2]. The runtime system has the fol-
lowing functions:

Agent Hierarchy Management: The agent hi-
erarchy is given as a tree structure in which each
node contains a mobile agent and its attributes. The
runtime system is assumed to be at the root node of
the agent hierarchy. Agent migration in an agent hi-
erarchy is performed just as a transformation of the
tree structure of the hierarchy. In the runtime sys-
tem, each agent has direct control of its inner agent.
That is, a container agent can instruct its embedded
agents to move to other agents or computers, serial-
ize and destroy them. In contrast, each agent has no
direct control over its container agent. Instead, each
container can offer a collection of service methods
which can be accessed by its embedded agents.

Agent Execution Management: The runtime
system is at the root node of the agent hierarchy and
can control all the agents in the agent hierarchy. Fur-
thermore, it maintains the life-cycle of agents: ini-
tialization, execution, suspension, and termination.
When the life-cycle state of an agent is changed, the
runtime system issues events to invoke certain meth-
ods in the agent and its containing agents. Moreover,
the runtime system enforces interoperation among
mobile agents. The runtime system monitors the
changes of agents and propagates certain events to
the right agents. For example, when an agent is
added to or removed from its parent agent, the sys-
tem dispatches specified events to the two agents.

Agent Serialization: When an agent is trans-
ferred, it has to be marshaled into a bit-stream and
then unmarshaled from it later. The core system

provides a mechanism for marshaling and unmar-
shaling the states of agents. The current system uses
the Java object serialization package for marshaling
agents. The package does not support the captur-
ing of stack frames of threads. Consequently, our
system cannot serialize the execution states of any
thread objects.2

4.2 Subcomponents

The core system supports only functions that are
independent of the underlying environment, includ-
ing agent migration in its agent hierarchy. Other
functions, including agent migration between differ-
ent computers, must be provided by subcomponents
outside the core system. Each subcomponent is im-
plemented as a mobile agent. Since our framework
can treat mobile agents as first-class objects, mobile
agents can handle and transfer other agents as data
packets. More specifically, it has the following char-
acteristics:

• Each subcomponent is designed to provide its
service to its inner agents. When an agent wants
a service, the agent migrates itself into a sub-
component that can provide the service in the
same agent hierarchy and then the subcompo-
nent automatically provides the service for the
visiting agent.

• Such subcomponents can offer various services
for mobile agents, for example migration be-
tween different computers, persistence, duplica-
tion, and higher level inter-agent communica-
tion. These subcomponents can be dynamically
and autonomously deployed at the runtime sys-
tems by migrating the agents corresponding to
them.

2This limitation is not serious in the development of real
mobile agent-based applications, as discussed in [14].



Transmitter Agent Transmitter Agent

serialized agents

migration
Agent A Agent B Agent A Agent B

migration

network

Computer A Computer B

Agent A Agent B

Figure 2: Transmitter mobile agents which establish channels between

4.2.1 Agent Migration between Computers

Agent migration between different computers is of-
fered by subcomponents, called transmitter mobile
agents, instead of the core system. Transmit-
ter agents are allocated on hosts. Each transmit-
ter agent can exchange its inner agents with each
other through its favorite communication protocol
(as shown in Figure 3). When a mobile agent is
preparing for a trip, the agent migrates itself into
an appropriate transmitter agent.
The transmitter suspends the moving agent (in-

cluding its nesting agents) and then serializes its
state, classes, and destination address into a proper
form for its communication protocol. Next, it trans-
fers the serialized agent to a transmitter agent on the
destination side. The transmitter agent receives the
data and then reconstructs an agent (including its
nesting agents) according to the data. Each runtime
system can be equipped with more than one trans-
mitter agent in order to exchange agents through
various communication protocols and networks. We
have already implemented several transmitter agents
which can transport their inner agents via several
communication protocols such as TCP, UDP, and
SMTP.

4.2.2 Routing Mechanisms for Agent Migra-
tion

Application-specific mobile agents often need to
travel to multiple computers to perform their tasks.
However, it is difficult to determine the itinerary at
the time the agent is designed or instantiated. There-
fore, we introduce two approaches for determining
and managing the itinerary of agents. These ap-
proaches are built on transmitter agents running on
computers and correspond to kinds of application-
specific routing protocols.

Navigator Agent: The first approach offers a
service provider, called a navigator agent, for con-
veying its inner agents over a network. Each navi-
gator agent can be a container of other agents and

can travel with them in accordance with a list of
computers statically or algorithmically determined,
or dynamically based on the agent’s previous com-
putations and the current environment. That is, a
navigator agent can migrate itself to the next place
as a whole with all its inner agents.
We developed a routing mechanism for managing

a routing table consisting of computers to visit. Each
navigator agent can maintain a list of computers to
be visited and can provide methods to add and re-
move elements from this list. Whenever a navigator
agent moves to a new place, the agent accesses a lo-
cal SNMP agent in order to update its own routing
table and then evaluates the table to determine what
the next hop should be. The interaction between a
navigator agent and its inner agents is based on an
event-based communication. Upon arrival at a place,
the navigator propagates certain events to its inner
agents in order to instruct them to do something
during a given time period. After the events have
been processed by all the inner agents, the navigator
continues with its itinerary.

Forwarder Agent: The second approach is
based on a service provider, called a forwarder agent,
for redirecting moving agents to new destinations.
Each forwarder agent is a mobile agent and is de-
signed to stay at computers and automatically trans-
fer its inner agents to specified computers through
appropriate transmitter agents. Consequently, a for-
warder agent can be regarded as a programmable
router for mobile agents.
A forwarder agent offers a mechanism to track the

trails which a moving agent leaves behind. Just be-
fore an agent moves into another agent, the agent
can leave a forwarder agent behind it. The forwarder
inherits the old name of the moving agent and trans-
fers its inner agent to the new location of the moving
agent.3 Therefore, when an agent wants to migrate
to another agent, which was moved to somewhere,

3Each forwarder agent cannot transfer its inner agents to
its original agent when the original agent is moved to other
computers. Instead, it can request an appropriate transmitter
to transfer them to the destination agents.



Navigator Agent

Navigator Agent

Monitor Agent

Monitor Agent

migration

migration
migration

migration

migration

navigation
route navigation route

navigation route

navigation
route

node 1

node 3

node 2

Step 1

Step 2

Figure 3: A navigator agent for traveling among three computers with its inner agents.

it can jump into the forwarder agent in return for
the target agent. Then, the forwarder automatically
transfers it to the target agent.
Several schemes to efficiently locate mobile agents

have been explored in the literature of process/object
migration in distributed operating systems. Our for-
warder agents can easily support these schemes, in-
cluding a smart directory service for finding suitable
agents that can offer required services.

4.2.3 Storage Service

Although the core system can serialize the states of
agents into a bit-stream, the way to store and re-
store such a bit-stream in secondary storage is often
dependent on the underlying system, such as oper-
ating system and hardware. Therefore, we introduce
storage agents which can store their inner agents on
secondary storages in their favorite ways. When an
agent is to be stored onto a disk, the agent migrates
to a storage agent corresponding to the disk. The
storage agent serializes and stores the states and
codes of its visiting agents as a persistent data on
the disk.

4.2.4 Agent Communication

Each agent can offer a meeting place for its inner
agents via its context structure (mentioned later),
and thus initially supports basic types of inter-agent
communication, for example asynchronous message
passing, synchronous method call, and future com-
munication.4 However, we need various inter-agent

4The system does not offer any mechanism to communi-
cate between agents over networks because this is done by the

communications suitable for enriched interactions
among agents; for example, multicast communica-
tion and higher-layer coordination protocols. There-
fore, we have constructed a special agent for me-
diating among agents, like a facilitator of KQML
[6]. The agent is equipped with a simple mechanism
which gives its inner agents some useful services, for
example maintaining a registry of agents, providing
matchmaking between inner agents, and forwarding
messages to appropriate agents.

4.2.5 Remarks

We have implemented a lot of mobile agent-based
subcomponents for supporting various functions for
agents, such as agent termination, agent duplication
, and resource management in addition to the above
functions. The system can be open to evolve and
adapt its functions to the execution environment and
the requirements of visiting agents by migrating and
changing mobile agent-based subcomponents for sup-
porting the functions.

4.3 Mobile Agent Program

Our mobile agents are programmable entities like
other mobile agents. Each agent consists of three
parts: body program, context objects, and inner
agents. Every body program is an instance of a
subclass of abstract class Agent.5 This class de-
fines fundamental callback methods invoked when

migration of a messenger agent.
5Some examples of mobile agent programs are given in the

Appendix.



Agent AAgent B

migration

migration

Agent B

forwarding
Agent B

Agent A
Forwarder Agent

step 1

step 2

Figure 4: A forwarder agent which transfers its inner agents to other forwarder agents

the lifecycle of a mobile agent changes due to cre-
ation, suspension, marshaling, unmarshaling, or de-
struction etc, like the delegation event model in
Aglets [8]. The class also provides a command for
agent migration in an agent hierarchy, written as
go(AgentURL destination) . When an agent per-
forms the command, it migrates itself to the destina-
tion agent specified as the argument of the command.
An inner agent cannot access any methods defined in
its container agent. Instead, each container can be
equipped with a context object which offers service
methods in a subclass of the Context class, like the
AppletContext class of Java’s Applet. These meth-
ods can be indirectly accessed by its inner agents to
get information about and interact with the environ-
ment such as their container, their sibling agents, and
the underlying computer system. Each inner agent
can invoke the public methods defined in the con-
text of its container via several built-in application
programming interfaces.

Each agent is associated with a resource limit that
functions as a generalized Time-To-Live field. This
limit is carried with the agent and decremented by
nodes as resources are consumed when the agent ar-
rives at a new place. Nodes can discard agents when
their limit reaches zero. In order to restrict total re-
source bounds, when one agent creates another inside
the network, the resources allocated to each created
agent must be strictly less than those of the creating
agent.

5 Current Status

Our mobile agent system has been implemented in
the Java language (JDK1.1 or later version). The
core system is constructed independently of the un-
derlying system and can run on any computer with a
1.1-compatible Java runtime. We have tried to keep
the implementation within the framework as much

as possible.6. The current system provides graphical
user interfaces for operating mobile agents with the
MobileSpaces system as shown in Figure 5. These in-
terfaces allows us to load and migrate mobile agents
via fully drag-and-drop operations.

Figure 5: The control window of the MobileSpaces
system

Even though our implementation was not built for
performance, we have conducted a basic experiment
on agent migration. The cost of an agent migration
in an agent hierarchy was measured to be 5 ms, in-
cluding the cost to check whether the visiting agent
is permitted to enter the destination agent or not.
The cost of agent migration supported by transmit-
ter agents allocated on two computers was measured
to be 30 ms. A transmitter agent can communicate
with another by using an application-level protocol
for agent transmission whose mechanism is modeled
on that of the HTTP protocol over TCP/IP commu-
nication. On the sender side, a transmitter agent
serializes and transfers the codes and state of an
agent (including its inner agents) to the transmit-
ter on the receiver side and waits for an acknowledg-
ment message. The second result is the sum of the
marshaling, compression, opening TCP connection,
transmission, acknowledgment, decompression, secu-
rity and consistency verifications, and unmarshaling.

6An implementation of the mobile agent system, including
its examples is available from http://islab.is.ocha.ac.jp/.



The moving agent is a simple navigator agent and
consists of basic callback methods and contains two
child agents. Its data size is about 3 Kbytes (zip-
compressed).
Moreover, we have already implemented various

applications of the MobileSpaces system in [13]. One
of them is a compound document framework like
OpenDoc [1] and Taligent [10]. Since our framework
introduces software components as mobile agents,
components, including documents, are active and
mobile. In a previous paper [12], we constructed a
formalization for hierarchical mobile agents in the
MobileSpaces system.

6 Conclusion

This paper presented an adaptive mobile agent sys-
tem which consists of subcomponents implemented
as mobile agents. The system introduces agent mi-
gration as a meta mechanism for changing its func-
tions, while it is running. That is, the system can
dynamically change and evolve its functions by mi-
grating agents that offer the functions. Mobile agent-
based applications running on the system can enjoy
the extensibility and adaptability of the system.
Finally, we would like to point out some further

issues. Agents need a way of finding suitable agents
which can offer their required service. We are im-
plementing a directory service mechanism. Security
is essential in mobile agent computing, but our cur-
rent implementation still does not provide any rea-
sonable level of security to make it safe to use mobile
agent applications in the real world. Many security
features are left open for our future work, such as
authentication, and authorization of agents.

References

[1] Apple Computer Inc., OpenDoc: White Paper, Apple
Computer Inc., 1994.

[2] K. Arnold and J. Gosling, The Java Programming Lan-
guage, Addison-Wesley, 1998.

[3] G. Blaier, G. Coulson, P. Robin, and M. Papathomas,
An Architecture for Next Generation Middleware, Pro-
ceedings of Middleware’2000, pp.191-206, Springer, 1998.

[4] B. N. Bershad, et al, Extensibility, Safety and Perfor-
mance in the SPIN Operating System, Proceedings of
Symposium on Operating Systems Principles, 1995.

[5] D. R. Engler, M. F. Kaashoek, and J. O. Toole, Exoker-
nel: An Operating System Architecture for Application-
level Resource Management, Proceedings of Symposium
on Operating Systems Principles, 1995.

[6] T. Finin, Y. Labrou, and J. Mayfield, KQML as An
Agent Communication Language, Software Agents, MIT
Press, 1997.

[7] D. P. Friedman, M. Wand, and C. T. Haynes, Essentials
of Programming Languages, MIT Press, 1992.

[8] B. D. Lange and M. Oshima, Programming and Deploy-
ing Java Mobile Agents with Aglets, Addison-Wesley,
1998.

[9] ObjectSpace Inc, ObjectSpace Voyager Technical
Overview, ObjectSpace, Inc. 1997.

[10] M. Potel and S. Cotter, Inside Taligent Technology,
Addison-Wesley, 1995.

[11] I. Satoh, MobileSpaces: A Framework for Building Adap-
tive Distributed Applications Using a Hierarchical Mo-
bile Agent System, Proceedings of International Confer-
ence on Distributed Computing Systems (ICDCS’2000),
pp.161–168, IEEE Computer Society, April, 2000.

[12] I. Satoh, A Formalism for Hierarchical Mobile Agents,
Proceedings of Symposium on Software Engineering for
Parallel and Distributed Systems (PDSE’2000), pp.165–
172, IEEE Computer Society, June, 2000.

[13] I. Satoh, MobiDoc: A Framework for Building Mobile
Compound Documents from Hierarchical Mobile Agents,
to appear in Proceedings of Symposium on Agent Sys-
tems and Applications / Symposium on Mobile Agents
(ASA/MA’2000), LNCS, Springer, 2000.

[14] M. Strasser and J. Baumann, and F. Hole, Mole: A Java
Based Mobile Agent System, Proceedings of ECOOP
Workshop on Mobile Objects, 1996.

[15] J. E. White, Telescript Technology: Mobile Agents, Gen-
eral Magic, 1995.

[16] Y. Yokote, The Apertos Reflective Operating System:
The Concept and its Implementation, Proceedings of
OOPSLA’92, pp. 414–434, 1992.


