
Network Processing of Mobile Agents,
by Mobile Agents, for Mobile Agents

Ichiro Satoh

National Institute of Informatics /
Japan Science and Technology Corporation

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
Tel: +81-3-4212-2546 Fax: +81-3-3556-1916

E-mail: ichiro@nii.ac.jp

Abstract. This paper presents a framework for building network protocols for
migrating mobile agents over a network. The framework allows network proto-
cols for agent migration to be naturally implemented within mobile agents and
to be constructed in a hierarchy as most data transmission protocols are. These
protocols are given as mobile agents and they can transmit other mobile agents
to remote hosts as first-class objects. Since they can be dynamically deployed at
remote hosts by migrating the agents that carry them, these protocols can dynam-
ically and flexibly customize network processing for agent migration according
to the requirements of respective visiting agents and changes in the environments.
A prototype implementation was built on a Java-based mobile agent system, and
several practical protocols for agent migration were designed and implemented.
The framework can make major contributions to mobile agent technology for
telecommunication systems.

1 Introduction

Mobile agent technology is an emerging technology that makes it much easier to de-
sign, implement, and maintain telecommunication systems. The technology can be used
in the development of various network applications. These applications often require
application-specific network processing for migrating their agents over a network. For
example, a typical application of the technology is network management, where an
agent travels to multiple nodes in a network to observe and access the components
locally. The itinerary of such a monitoring agent seriously affects the achievement and
efficiency of its tasks. Moreover, a mobile agent for electronic commerce may have to to
be transformed into an encrypted bit stream before it can transfer itself over a network.
However, existing mobile agent systems assume particular network infrastructures and
cannot dynamically adapt their own network processing to the requirements of visiting
agents and to changes in their environment.

This paper addresses the dynamic customization of network processing for agent
migration, rather than for data transmission. I describe a new framework for dynami-
cally deploying and changing network protocols for agent migration. My framework is
based on two key ideas. The first is to apply active network technology to a network
infrastructure for mobile agents. The second is to construct network protocols for agent
migration within the agents themselves. That is, my mobile agent-based protocols can



transmit mobile agents as first-class objects to their destinations. Also, the protocols
can be dynamically deployed by the migration of the agents that support these pro-
tocols. Therefore, my framework allows network processing for mobile agents to be
adapted to the requirements of visiting agents and to changes in the environment. The
framework can provide a useful testbed for implementing and evaluating different types
of network processing for mobile agents.

In this paper I survey related works (Section 2), describe the design goals of my
framework (Section 3), briefly review my mobile agent system, called MobileSpaces
(Section 4), present several mobile agent-based protocols for agent migration (Section
5), show some real-world examples of the framework, and make some conclusions and
describe research directions for developing new protocols.

2 Background

Many mobile agent systems have been developed over the last few years, for example,
Aglets [10], Telescript [16], and Voyager [11]. To my knowledge, none can dynamically
extend and adapt their network processing for agent migration to the characteristics of
current networks and the requirements of respective visiting agents, although mobile
agents must be used in heterogeneous and dynamic network environments, for example,
in personal mobile communication, wireless networks, and active networks. This is
because their agent migration protocols are statically embedded inside their systems.

A mobile agent, which visits multiple hosts to perform its task, must have an ap-
plication specific itinerary. For example, a mobile agent may roam over more than one
host without making any detours or may have to return to its home host after each hop
instead of proceeding another destination. Also, a network-dependent itinerary is often
needed for a mobile agent to travel to multiple hosts efficiently. However, it is difficult
to determine such an itinerary at the time the agent is designed or instantiated because
the network topology cannot always be known. Also, even if the itinerary of a mobile
agent was optimized for a particular network to travel to multiple hosts efficiently, it
might not be reused in another network. To overcome this problem, ADK [8] separates
the travel itinerary of an agent from its behavior by building a mobile agent from a
set of component categories: navigational components responsible for a travel itinerary
and performer components responsible for executing one or more management tasks on
each node. Aglets [10] introduces the notion of an itinerary pattern, which is similar to
design patterns in software engineering, to shift the responsibility for navigation from
an application-specific agent to a framework library described in [1].

Both approaches allow us to design the application-specific itinerary for an agent
independent of the logical behavior of the agent, but the itinerary parts must be stati-
cally and manually embedded in the agent. Consequently, the agent cannot dynamically
change its itinerary and cannot travel beyond its familiar networks.

There have been many attempts to apply mobile agent technology to the develop-
ment of active networks [2, 4] because mobile agents can be considered a special case
in mobile code technology, which is the basis of existing active network technologies.
For example, the Grasshopper system offers an active network platform consisting of
stationary and mobile agents as service entities for telecommunication. In contrast, the



framework presented in this paper applies active network technology to mobile agent
technology.

I described a portable and extensible mobile agent system, MobileSpaces, in my
previous paper [12]. The system serves as the basis for the framework presented in this
paper. It can dynamically adapt its functions and structures to changes in the environ-
ments. Also, I presented an architecture for building adaptive protocols in [14]. While
in the previous papers I did not foucs on any approach to building application-specific
protocols for agent migration, the goal of this paper is to design and implement a lay-
ered architecture for building and deploying configurable protocols for agent migration
and present several protocols for agent migration.

3 Approach

The goal of the framework presented in this paper is to provide a self-configurable
infrastructure for agents migrating over a network. This section outlines the overall
architecture of the framework and describes the basic idea of network protocols based
on the framework.

migration

Agent C Agent D

Agent B

Agent E

Agent A

step 1

step 2

Agent C

Agent A

Agent D

Agent B

Agent E

Fig. 1. Agent hierarchy and inter-agent migration.

3.1 Mobile Agents as First-class Objects

Mobile agents are autonomous programs that can travel between different computers.
In the framework presented in this paper, mobile agents are computational entities like
other mobile agents. When an agent migrates, not only the code of the agent but also
its state can be transferred to the destination. The framework is built on a mobile agent
system, called MobileSpaces, presented in [12]. The system is characterized by two
novel concepts: agent hierarchy and inter-agent migration. The former means that
one mobile agent can be contained within another mobile agent. That is, mobile agents
are organized in a tree structure. The latter means that each mobile agent can migrate
to other mobile agents as a whole, with all its inner agents, as long as the destination
agent accepts it, as shown in Fig. 1. A container agent is responsible for automatically
offering its own services and resources to its inner agents, and it can subordinate its
inner agents. Therefore, an agent can transmit its inner agents to another location as
first-class objects [5], in the sense that mobile agents can be passed to and returned



from other mobile agents as values. As a result, network protocols for agent migration
can be implemented within mobile agents.

3.2 Layered protocols for agent migration.

Most protocols for data transmission are often arranged in a hierarchy of layers. Each
layer presents an interface to the layers above it and extends services provided by the
layer below it. The hierarchical structure of mobile agents enables network protocols
for agent migration to be organized hierarchically. That is, each agent hierarchy con-
sisting of mobile agent-based protocols can be viewed as a protocol stack for agent
migration, as shown in Fig. 2, and agent migration in an agent hierarchy is introduced
as a basic mechanism for accessing services provided by the underlying layer. Mobile
agent-based protocols in the bottom layer correspond to data-link layered protocols.
They are responsible for establishing point-to-point channels for agent migration be-
tween neighboring computers. The middle layer corresponds to routing protocols for
agent migration and provides a mechanism to transmit mobile agents beyond the chan-
nels between directly connected nodes. The framework enables routing protocols for
agent migration to be performed by mobile agents.

Transmitter Agent

Routing Agent

Mobile Agent A
Mobile Agent B

Transmitter Agent channel 

Computer A Computer B

MobileSpaces Runtime System

network layer

data-link layer

application layer

Transmitter Agent

Routing Agent

Mobile Agent A
Mobile Agent B

 channel 

Computer C

Transmitter Agent

Routing Agent

transimission

MobileSpaces Runtime SystemMobileSpaces Runtime System

transimission

Fig. 2. Architecture of mobile agent-based protocols for agent migration.

4 MobileSpaces: An Extensible Mobile Agent System

This section briefly reviews MobileSpaces, which provides, in addition to mobile agent-
based applications, an infrastructure for building and executing mobile agents for net-
work processing. MobileSpaces is built on a Java virtual machine and mobile agents are
given as Java objects. Its architecture is designed based on a micro-kernel architecture
and consists of two parts: a core system and higher-level components. The former offers
only minimal and common functions, independent of the underlying environment. The
latter is a collection of higher-level components outside the core system that provide
other functions, including agent migration over a network, which may depend on the
surrounding environment.

4.1 Core System

Each core system is made as small as possible for portability. It has only three functions.



Agent Hierarchy Management: Each core system corresponds to the root node of an
agent hierarchy, which is maintained as a tree structure in which each node contains
a mobile agent and its attributes. Agent migration in an agent hierarchy is performed
simply as a transformation of the tree structure of the hierarchy.

Agent Execution Management: Each agent can have more than one active thread under
the control of the core system. The core system maintains the life-cycle state of agents.
When the life-cycle state of an agent is changed, for example, at creation, termination,
or migration, the core system issues certain events to invoke certain methods in the
agent and its containing agents.

Agent Serialization and Security Management: The core system has a function for
marshaling agents into bit streams and unmarshaling them later. The current implemen-
tation of the system uses a Java object serialization package for marshaling the states
of agents, so agents are transmitted based on the notion of weak mobility [6]. The core
system verifies whether a marshaled agent is valid or not to protect the system against
invalid or malicious agents, by means of Java’s security mechanism.

4.2 Mobile Agent Program

Each mobile agent consists of three parts: a body program, context objects, and inner
agents as shown in Fig. 3. The body program is an instance of a subclass of abstract
class Agent. This class defines fundamental callback methods invoked when the life-
cycle of a mobile agent changes due to creation, suspension, marshaling, unmarshaling,
destruction etc., like the delegation event model in Aglets [10]. It also provides a com-
mand for agent migration in an agent hierarchy, written as go(AgentURL desti-
nation). When an agent performs the command, it migrates itself to the destination
agent specified by the argument of the command in the same agent hierarchy. An inner
agent cannot access any methods defined in its container agent, including the core sys-
tem. Instead, each container is equipped with a context object that offers service meth-
ods in a subclass of the Context class, such as the AppletContext class of Java’s
Applet. These methods can be indirectly accessed by the inner agents of a container to
get information about and interact with the environment, including the container, sibling
agents, and the underlying computer system.

5 Mobile Agent-Based Protocols for Agent Migration

Since this framework can treat mobile agents as first-class objects, various types of
network processing for mobile agents can be implemented as special mobile agents,
called service agents, running on the core system of MobileSpaces. These service agents
are hierarchically organized as a protocol stack.

� Each service agent is designed to provide its service to its inner mobile agents.
Therefore, each service agent in a lower layer can be viewed as a service provider
for agents in an upper layer. The movement of an agent to a service agent in a
lower layer in the same agent hierarchy corresponds to the process of applying the
network service of the service agent to the moving agent.



inner agent A

an event from the container agent
or the runtime system

method 3
state

service method 1
service method 2

callback

getService()Se

inner agent B

Mobile Agent

agent
context

agent
program

Fig. 3. Structure of a Hierarchical Mobile Agent.

� Each runtime system permits one service to be provided by one or more service
agents. That is, different network protocols can be supported by different service
agents. Moving agents or upper-layer protocols can dynamically select a suitable
agent for their requirements and migrate their inner agents to the selected agent.

� Since service agents for performing protocols are still mobile, the protocols can be
dynamically deployed at hosts by migrating the agents to the hosts.

Hereafter, I present several basic protocols for agent migration. Since these proto-
cols are given as abstract classes in the Java language, we can easily define further
application-specific protocols by extending these basic protocols.

5.1 Point-To-Point Channels for Agent Migration

Agent migration between neighboring hosts can be provided by mobile agents, called
transmitters. They are responsible for establishing point-to-point channels for agent mi-
gration and can automatically exchange their inner agents through their common com-
munication protocol. After an agent arrives at a transmitter agent from an upper layer,
the arriving agent indicates its final destination. The transmitter suspends the arriving
agent (including its inner agents), then serializes its state and codes. Next, it sends the
serialized agent to a coexisting transmitter agent located at the destination. The trans-
mitter agent at the destination receives the data, reconstructs the agent (including its
inner agents), and migrates it to the destination or specified agents for offering upper-
layer protocols.

5.2 Routing Mechanisms for Agent Migration

Application-specific mobile agents often need to travel to multiple hosts to perform their
tasks. However, it is difficult to determine the itinerary at the time the agent is designed
or instantiated. Therefore, I introduce two approaches to determining and managing the
itinerary of agents. These approaches are based on transmitter agents running on hosts
and correspond to different kinds of application-specific routing protocols.



Forwarder Agent: The first approach provides a function similar to that of an active
node (also called a programmable node) in active network technology. I introduce a ser-
vice provider, called a forwarder agent, for redirecting moving agents to new destina-
tions. Each forwarder agent holds a table describing part of the structure of the network
and can be dynamically deployed at a host. When receiving agents, it can propagate cer-
tain events to its visiting agents instructing them to do something during a given time
period and then redirects the agents to their destinations through point-to-point channels
established among multiple hosts as shown in Fig. 4. Each forwarder agent will repeat
the entire process in the same way until its visiting agents arrive at their destinations.

Step 1

Step 2

node 2Mobile Agent

forwardingforwarding

forwarding

node 1

node 3

node 2

node 1

node 3

Mobile Agent

Forwarder Agentorwarder Agen

Forwarder Agentorwarder Agent

Forwarder Agentorwarder Agent

Forwarder AgentForwarder Agen

Forwarder Agentorwarder Agen

Forwarder Agentorwarder Agent

Forwarder Agentorwarder Agent

Forwarder AgentForwarder Agen

Fig. 4. Routing agents for forwarding the next hosts.

Navigator Agent: The second approach is similar to the notion of an active packet
(also called a programmable capsule) in active network technology. Existing mobile
agents can move from one host to another under their own control, as active packets
can define their own routing. I propose a service provider, called a navigator, to convey
inner agents over a network, as shown in Fig. 5. Each navigator agent is a container
of other agents and travels with them in accordance with a list of hosts statically or
algorithmically determined, or dynamically based on the agent’s previous computations
and the current environment. That is, a navigator agent can migrate itself to the next
place as a whole, with all its inner agents. Upon its arrival at the place, the navigator
propagates certain events to its inner agents. After the events have been processed by
the inner agents, the navigator continues with its itinerary.

5.3 Protocol Distribution

Given a dynamic network infrastructure, a mechanism is needed for propagating mobile
agents that support protocols to where they are needed. The current implementation of



Navigator Agentigator Agent

Navigator AgentNavigator Agen

Monitor Agentg

Monitor AgentA tMonitor AgeMonitor Age

migration

migration

migration

migration

navigation route

navigation route
navigation
route

node 1

node 3

node 2

Step 1

Step 2

Fig. 5. Navigator agent with its inner agents for traveling among hosts.

this framework provides the following three mechanisms: (1) mobile agent-based pro-
tocols autonomously migrate to hosts at which the protocols may be needed and remain
at the hosts in a decentralized manner; (2) mobile agent-based protocols are passively
deployed at hosts that may require them by using forwarder agents prior to using the
protocols as distributors of protocols; and (3) moving agents can carry mobile agent-
based protocols inside themselves and deploy the protocols at hosts that the agents
traverse. These mechanisms can improve performance in the common case of agent
migration, i.e., a sequence of agents that follow the same path and require the same
processing. All the mechanisms are managed by mobile agents, instead of by a runtime
system. As a result, the deployment of transmitter agents must to be performed by other
transmitter agents.

5.4 Current Status

The framework presented in this paper and its mobile agent-based protocols were im-
plemented on MobileSpaces in the Java language. They can be run on any computer
with a JDK 1.2-compatible Java runtime system. The framework provides several use-
ful libraries for constructing network protocols within mobile agents. Several mobile
agent-based protocols were developed, in addition to the protocols presented in the
next section. They include agents for establishing channels through TCP, HTTP, and
SMTP, forwarder and navigator agents for traveling among multiple hosts according to
their own static routing tables and SNMP agents at each hosts. The current implemen-
tation of this framework was not built for performance. However, in order to compare
two routing protocols, the forwarder agent protocol and the navigator agent protocol,
I measured the per-hop latency in microseconds and the throughput of a single node
in agents per second in a network consisting of eight PCs (Intel Pentium III-600 MHz
with Windows 2000 and JDK 1.3) connected by 100-Mbps Ethernet via a switching
hub. In both cases, I migrated a minimal-size agent that consisted of only common call-
back methods invoked at changes in its life-cycle state by the runtime system. The size
of the moving agent was about 4 Kbytes (zip-compressed). For reference, I measured



the time of migrating the agent in an agent hierarchy and between two hosts. The time
of migrating the agent in an agent hierarchy was 5 ms, including the time of checking
whether the visiting agent was permitted to enter the destination agent. In this experi-
ment, agent migration between neighboring computers was performed by using simple
TCP-based transmitter agents. The per-hop latency of migrating the agent between two
computers was 34 ms per hop and the throughput was 10.8 agents per second. The la-
tency is a sum of marshaling, compression, opening a TCP connection, transmission,
acknowledgment, decompression, and security verification.

The per-hop latency of migrating the agent using a simple forwarder agent running
on the hosts was 38 ms per hop and the throughput was 9.2 agents per second. The
forwarder agent determines the host that its inner agents will visit at the next hop ac-
cording to its own routing table. In contrast, the per-hop latency of migrating the agent
using a simple navigator agent running on the computers was 42 ms per hop and the
throughput was 8.3 agents per second. The navigator agent migrated itself and its inner
agents to the hosts sequentially by incorporating itself into a transmitter agent.

In this preliminary experiment, the forwarder protocol was better than the navigator
protocol, because the latter protocol had to migrate not only the target agent but also
the protocol itself. Also, in both protocols when more than one agent was migrated on a
network, the congestion of each computer was occasionally unbalanced, because these
agent-based protocols are performed asynchronously. All the above results were mea-
sured in a trial without any performance optimization and are thus difficult to evaluate.
However, the overhead of the mobile agent-based protocols in terms of the latency of
each agent migration was reasonable for a high-level prototype of application-specific
protocols for agent migration, rather than for data communication. The throughput of
each agent migration was limited by the security mechanism of the MobileSpaces sys-
tem rather than by the protocols. I believe that the current throughputs are fast enough
for the deployment of mobile agent-based applications.

6 Examples

This section describes three practical examples of this framework to demonstrate how
it can be used.

6.1 Network Management System

A typical application of mobile agents is as a monitoring system for network manage-
ment. A discussion on the suitability of mobile agents in network management can be
found in [3, 9]. A system for locally monitoring equipment located at hosts in more
than one network was constructed. The system consists of a monitor agent and naviga-
tor agents. The monitor agent has no mechanism for its own itinerary and thus is not
dependent on any network. In contrast, each navigator agent is optimized for navigating
in each of the networks and is responsible for periodically traveling among hosts in its
networks. When a monitoring agent is preparing to monitor a network, it enters a nav-
igator agent designed for that network. The navigator then generates an efficient travel
plan to visit certain hosts in the network. Next, it migrates itself and the monitoring



agent to the hosts sequentially. When it arrives at each destination, it dispatches certain
events to its inner agents.

6.2 Locating Mobile Agents

When an agent wants to interact with another agent, it must know the current location
of the target agent. Therefore, a mechanism for tracking a moving agent is needed.
An extension of the forwarder agent approach presented in the previous section offers
such a mechanism, as shown in Fig. 6. Just before an agent moves into another agent,
it creates and leaves a forwarder agent behind. The forwarder agent inherits the name
of the moving agent and transfers its visiting agent to the new location of the moving
agent. Therefore, when an agent wants to migrate to another agent that has moved else-
where, it can migrate into the forwarder agent instead of the target agent. The forwarder
agent then automatically transfers it to the current location of the target agent. Sev-
eral schemes for effectively locating mobile agents have been explored in the field of
process/object migration in distributed operating systems. Forwarder agents can easily
support most of these schemes because they are programmable entities and can flexibly
negotiate with each other through their own protocols.

Agent AAgent B
migration

Agent B

forwarding
Agent B

Agent A
Forwarder Agent

step 1

step 2

Computer A Computer B

Computer A Computer B

Fig. 6. Locating agents to locate moving agents.

6.3 Agent Migration in Mobile Computing

Mobile agent technology has the potential to mask disconnections in some cases. This
is because once a mobile agent is completely transferred to a new location, the agent can
continue its execution at the new location, even when the new location is disconnected
from the source location. However, the technology cannot often solve network failures
in the process of agent migration. That is, agents can be migrated from the source to
the destination when all the links from the source to the destination are established
at the same time. However, mobile computers do not have a permanent connection to
a network and are often disconnected for long periods of time. When a mobile agent
on a mobile computer wants to move to another mobile computer through a local-area
network, both computers must be connected to the network at the same time.

To overcome this problem, relay agents are constructed by extending the forwarder
agent approach to the notion of store-and-forward migration, as shown in Fig. 7. This
notion is similar to the process of transmitting electronic mail by using SMTP. When



an agent requests a relay agent on the source host to migrate to its destination, the relay
agent makes an effort to transmit the moving agent to the destination through transmitter
agents. If the destination is not reachable, the relay agent automatically stores the mov-
ing agent in its queue and then periodically tries to transmit the waiting agent to either
the destination or a reachable intermediate host as close to the destination as possible.
The relay agent to which the moving agent is transferred will repeat the process in the
same way until the agent arrives at the destination. When the next host on the route to
the destination is disconnected, the moving agent is stored in its current place until the
host is reconnected. When a mobile computer is attached to a network, its relay agent
multicasts a message to relay agents on other connected computers. After receiving a
reply message from the relay agents at the destinations of agents stored in its queue, the
relay agent tries to transfer those agents to their destinations.

forwardingstep 1

step 2

DisconnectionComputer A Computer B

Relay AgentRelay Agent

Relay Agent

Relay AgentRelay Agent

Mobile Agent
Stored Mobile Agent

Computer C
(Mobile Compouter)

Mobile Agent

Computer A Computer B

Relay AgentRelay Agent Relay AgentRelay Agent

Relay Agent
Stored Mobile Agent forwarding

Computer C
(Mobile Computer)

Reconnection

network

network

Fig. 7. Relay agent for tolerant network disconnection.

7 Conclusion

This paper described a framework for building a self-configurable infrastructure for
agent migration. This framework provides a layered architecture for network protocols
for migrating agents and allows these protocols to be naturally implemented within mo-
bile agents. Therefore, network processing for mobile agents can be dynamically added
to and removed from remote hosts by migrating corresponding agents according to the
requirements of respective visiting agents and changes in the network environment.
I developed several mobile agent-based protocols, for example, point-to-point chan-
nels among neighboring hosts, and application-specific routing protocols for migrating
agents among multiple nodes. A prototype implementation of the framework built on a
Java-based mobile agent system called MobileSpaces was carried out. The framework
can greatly simplify the development of active network technology [15]. This is be-
cause mobile agents are introduced as the only constituent of this framework and thus
algorithms and protocols for active networks can be constructed and reused through a
single programmable abstraction for composition and refinement of mobile agents.

Finally, I would like to mention some future research directions. The performance
of the current implementation is not yet satisfactory and thus further measurements and



optimization are needed. I intend to focus on developing other protocols in addition to
the examples presented in this paper. Also, my protocols are not always dependent on
my framework and thus should be applied to other active network infrastructures.

References

1. Y. Aridor, and D.B. Lange, “Agent Design Patterns: Elements of Agent Application Design”,
in Proc. Second International Conference on Autonomous Agents (Agents ’98), ACM Press,
pp. 108-115. 1998.

2. C. Bäumer, and T. Magedanz, “The Grasshopper Mobile Agent Platform Enabling Short-
Term Active Broadband Intelligent Network Implementation”, in Proc. Working Conference
on Active Networks, pp.109–116, LNCS Vol.1653, Springer, 1999.

3. A. Bieszczad, B. Pagurek, and T. White, “Mobile Agents for Network Management”, IEEE
Communications Surveys, Vol. 1, No. 1, Fourth Quarter 1998.

4. I. Busse, S. Covaci, and A. Leichsenring, Autonomy and Decentralization in Active Net-
works: A Case Study for Mobile Agents, Proceedings of Working Conference on Active
Networks, pp.165–179, LNCS, Vol.1653, Springer, 1999.

5. D. P. Friedman, M. Wand, and C. T. Haynes, “Essentials of Programming Languages”, MIT
Press, 1992.

6. A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobility”, IEEE Transactions
on Software Engineering, 24(5), 1998.

7. R. S. Gray, “Agent Tcl: A Transportable Agent System”, CIKM Workshop on Intelligent
Information Agents, 1995.

8. T. Gschwind, M. Feridun, and S. Pleisch, “ADK: Building Mobile Agents for Network and
System Management from Reusable Components”, in Proc. Symposium on Agent Systems
and Applications / Symposium on Mobile Agents (ASA/MA’99), pp.13-21, IEEE Computer
Society, 1999.

9. A. Karmouch, “Mobile Software Agents for Telecommunications”, IEEE Communication
Magazine, vol. 36 no. 7, 1998.

10. B. D. Lange and M. Oshima, “Programming and Deploying Java Mobile Agents with
Aglets”, Addison-Wesley, 1998.

11. ObjectSpace Inc, “ObjectSpace Voyager Technical Overview”, ObjectSpace, Inc. 1997.
12. I. Satoh, “MobileSpaces: A Framework for Building Adaptive Distributed Applications Us-

ing a Hierarchical Mobile Agent System”, in Proc. International Conference on Distributed
Computing Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April, 2000.

13. I. Satoh, “MobiDoc: A Framework for Building Mobile Compound Documents from Hier-
archical Mobile Agents”, in Proc. Symposium on Agent Systems and Applications / Sympo-
sium on Mobile Agents (ASA/MA’2000), LNCS Vol.1882, pp.113-125, Springer, 2000.

14. I. Satoh, “Adaptive Protocols for Agent Migration”, in Proc. International Conference on
Distributed Computing Systems (ICDCS’2001), IEEE Computer Society, pp.711-714, 2001.

15. D. L. Tennenhouse et al., “A Survey of Active Network Research”, IEEE Communication
Magazine, vol. 35, no. 1, 1997.

16. J. E. White, “Telescript Technology: Mobile Agents”, General Magic, 1995.


