
Linking Physical Worlds to Logical Worlds with Mobile Agents

Ichiro Satoh�

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract

This paper presents a general-purpose infrastructure for
building and managing location-aware applications in
ubiquitous computing settings. The goal of the infrastruc-
ture is to provide people, places, and objects with compu-
tational functionalities to support and annotate them. Us-
ing location-tracking systems the infrastructure can navi-
gate Java-based mobile agents to stationary or mobile com-
puters near the entities and places to which the agents are
attached, even when the locations change. The infrastruc-
ture enables application-specific functionalities to be im-
plemented within mobile agents instead of the infrastruc-
ture itself. It maintains the locations of people and objects,
including computing devices, and allows mobile users to
directly access their personalized services from stationary
computing devices in the environment or from their portable
computing devices. This paper presents the rationale, de-
sign, implementation, and applications for our prototype
infrastructure.

1 Introduction

A goal of ubiquitous computing is to bridge the gap be-
tween the physical world and cyberspace. Recent advances
in perceptual technologies enable computing devices to de-
tect their surroundings. For example, mobile and ubiquitous
computing devices are often equipped with sensors, such
as Global Positioning System (GPS) receivers, Radio Fre-
quency IDentification (RFID) readers, and computer-vision
cameras, in addition to wireless or wired network interfaces.
These sensors have made it possible to detect and track the
presence and location of people, computers, and practically
any other object we want to monitor. Positioning and track-
ing systems are likely to become even more ubiquitous in
the future. Location-awareness is becoming an essential
feature of software applications for ubiquitous and mobile
computing devices.

�E-mail: ichiro@nii.ac.jp

Several researchers have explored such location-aware
services. Existing services can be classified into two ap-
proaches. The first concern is to make the computing de-
vices that move with the user. It often assumes that such
devices are attached to positioning systems, such as GPS
receivers, which enable them to determine their own lo-
cations. For example, in HP’s Cooltown project [8], mo-
bile computing devices such as PDAs and smart phones
are attached to GPSs to provide location-awareness for
web-based applications running on the devices. The sec-
ond approach assumes that a space is equipped with track-
ing systems which establish the location of physical en-
tities, including people and objects, within the space so
that application-specific services can be provided to ap-
propriate computers. A typical example of this is the so-
called follow-me application, which was a study by Cam-
bridge University’s Sentient Computing project [5], to sup-
port ubiquitous and personalized services on computers lo-
cated near users.

The two approaches exist at posed as polar opposites, al-
though their final goals coincide. This paper presents an
infrastructure for integrating the two approaches that is de-
signed to mitigate the disadvantages of one by juxtaposing
these with the advantages of the other. In other words, the
infrastructure does not distinguish between mobile and sta-
tionary computing devices. It can permit tracking sensors
to be moved with the user and dynamically added to and
removed from a space it does this, because it dynamically
creates a world model when detecting the appearance and
movement of sensors and physical entities including peo-
ple, objects, and computing devices. Moreover, it is unique
among other existing location-aware systems in that it uses
mobile agent technology. It enables these agents to be spa-
tially bound to people, places, and objects, which the agents
then support and annotate. By using tracking systems, the
infrastructure dynamically deploys such agents to stationary
and mobile computing devices that are near the entities and
places, even when the locations of the entities change. Us-
ing mobile agents makes the infrastructure independent of
any applications, as application-specific services are imple-
mented within mobile agents instead of the infrastructure.

In the remainder of this paper, we describe our design
goals (Section 2), the design of our approach, called Spa-
tialAgent, and a prototype infrastructure (Section 3). We
present how to bridge the gap between the physical world
and cyberspace (Section 4) and discuss our experience with
several applications, which we developed with the infras-
tructure (Section 5). We briefly review related work (Sec-
tion 6). We also provide a summary and some future issues
(Section 7). Lastly, we describe programming models (Ap-
pendix).

2 Approach

The framework presented in this paper aims to enhance the
capabilities of users, particularly mobile users, things, in-
cluding computing devices and non-electronic objects, and
places, such as rooms, buildings and cities. All these ele-
ments must have suitable computational functionalities that
enable their support and annotation.

2.1 Location-sensing Systems

There have been a variety of location-sensing systems.
They can be classified into two types: tracking and posi-
tioning systems. The former, including RFID, measures the
location of other located objects. The latter, including GPS,
measures its own location. Tracking sensors can be embed-
ded in the environment and positioning sensors can be car-
ried with portable computing devices. There are two differ-
ent ways to locate objects: geometric location and symbolic
location. The former represents the locations of objects by
reporting their relative or absolute coordinates in a frame of
reference. The latter determines the location of objects by
identifying the names of the spatial regions which contain
them.

This framework must provide a unified model for spatial
information to hide the differences between the underlying
location-sensing systems from applications as much as pos-
sible. Spatial information should also be bound within the
requirements of an application that uses it to avoid unneces-
sary exposure of details of the underlying tracking and posi-
tioning systems. Therefore, the model is based on the sym-
bolic location. This is because the framework aims at build-
ing location-aware applications for annotating and support-
ing people, objects, and places and such applications are of-
ten associated with semantic and structural spaces, such as
buildings, rooms, and portions of a room or building, rather
than geometric locations. The current implementation sup-
ports location-sensing systems, in which spatial regions can
be determined within a few square feet, to distinguish be-
tween one or more portions of a room or building. It as-
sumes that the underlying sensing systems can detect not
only the locations of entities and places we want to monitor

but also the locations of computing devices that execute and
migrate mobile agents.

2.2 Application-specific Services

Suitable services should be operated on suitable comput-
ing devices in the sense that the services are both wanted
according to the location of users and their associate con-
texts and the locations and capabilities of the devices can
satisfy the requirements of the services. However, most
ubiquitous and mobile computing devices often have only
limited resources, such as restricted levels of CPU power
and amounts of memory. As a result, even if a device is
at suitable location for a wanted service to be provided, the
device may not be available because of a lack of software or
capabilities, such as input or output facilities, for executing
the software. Various kinds of infrastructure have been used
to construct and manage location-aware services. However,
such infrastructures have mostly focused on a particular ap-
plication, such as user navigation. To solve this limitation,
our framework uses mobile agent technology because the
technology has the following advantages for ubiquitous and
mobile computing settings:1

� Each mobile agent can travel from computer to com-
puter under its own control. When a mobile agent
moves to another computer, both the code and the state
of the agent is transferred to the destination. Each
agent only needs to be present on the device at the
time when the device is required to offer the services
provided by that agent. Therefore, mobile agents can
help to conserve the limited resources of computing
devices. After arriving at its destination, a mobile
agent can continue working without losing the results,
e.g. the content of instance variables in the agent’s pro-
gram, at the source computers.

� Since each mobile agent is a programmable entity,
the framework enables application-specific services,
including the user interface and application logic, to
be implemented within mobile agents. It then sepa-
rates application-specific services from itself. There-
fore, it can be a general infrastructure for a variety of
location-aware services. It also can directly access var-
ious equipment belonging to that device as long as the
security mechanisms of the device permit this.

The infrastructure presented in this paper enables a physical
entity and place to spatially bind with one or more mobile
agent-based services. These services annotate and support
the entities or places in the sense that the services can be

1Some applications can be constructed by means of a mobile code ap-
proach rather than mobile agent approach. However, since the former can
be treated as a subset of the latter, our framework should support a more
general approach, i.e., mobile agent.

2

Location Informaton Server A Location Information Server B

directory

database
directory

database

profile

handler

profile

handler

event handlerevent handler

sensor
manager

sensor

manager
sensor

manager

peer-to-peer

communication

agent

migration

locating sensor locating sensor locating sensor

agent

host
agent host agent host

desklamp-

bound agent

user-bound agent

Agent Runtime Agent Runtime Agent Runtime

cell 3cell 1 cell 2

user migration

agent

host

Figure 1. Architecture of infrastructure.

dynamically deployed at stationary and mobile computing
devices that are near or within the locations of the entities
and places. Therefore, the services can easily be customized
to be person- and location-dependent. They can directly
interact with their users, whereas other existing approaches,
e.g. remote procedure calls and web-based interaction can
be seriously affected by network latency between the client-
side and service side computers.

3 Design and Implementation

This framework provides the middleware infrastructure for
managing location-sensing systems and deploying mobile
agents at suitable computing devices according to the lo-
cations of users and objects, including computing devices.
It consists of three parts: (1) location information servers,
called LISs, (2) mobile agents, and (3) agent hosts, as we
can see in Figure 1. The first part manages more than
one location-sensor and recommends destinations to mo-
bile agents. The second offers application-specific services,
which are attached to physical entities and places. The
third consists of computing devices that can execute mobile
agent-based applications.

3.1 Location Information Servers

Each LIS manages more than one sensor to detect the loca-
tions of entities and agent hosts and provide mobile agents
with up-to-date information on destinations. Its sensors
detect the movement of the physical entities or places the
agents are bound to. Figure 2 shows the basic structure of a
LIS. However, since not only physical entities but also agent
hosts and sensors may be movable, it is almost impossible
to maintain a geographical model of the whole system. To
solve this problem, the infrastructure provides a demand-
driven mechanism to discover the agents and agent hosts

required by mobile ad-hoc network approaches. LISs are
individually connected to other servers with a peer-to-peer
connection to exchange information though TCP sessions.
They can also send control-information through multicast
communications.2

Location Information Server

Profile

Handler

Event

Hanlder

Reception Layer

Abstraction Layer

Reception Layer

Abstraction Layer

Fusion Layer

Directory

Database
Network

Manager

RFID-tag Reader GPS Receiver

Figure 2. Location information server

Management of Location Sensors:

Each LIS manages more than one sensor and agent hosts,
and maintains up-to-date information on the identities of
those that are within the zone of coverage by means of its
sensors. To hide the differences between the underlying
location-sensors, each LIS provides an abstract three-layer
stack. This can be mapped to a number of architectures to
provide the acquisition function as in the acquisition stack
[11].

� The Reception layer is responsible for extracting the
data from the sensors, as sensors generally tend to be
proprietary or vendor-specific. For example, some sen-
sors can be retrieved at any time through synchronous

2The current implementation relies on multicast communications be-
cause the LISs that detect the presence of the same located-object are lo-
cated within a localized space smaller than the reachable domain of the
multicast packets

3

queries and other sensors can issue results continu-
ously or periodically. The layer polls sensors or re-
ceives events issued from sensors.

� The Abstraction layer receives low-level data about the
locations of entities from sensors and then transforms
the data in a symbolic model. For example, the cur-
rent implementation maps geometric locations mea-
sured by sensors, e.g., GPS and wireless and cellular
network, into specified regions, e.g., one or more por-
tions of a room or building. When an RFID reader
detects the presence of a tagged entity, the location of
the entity is represented as the identifier of the reader.
We call each sensor’s coverage and each region a cell,
as location models studied by several other researchers
[10].

� The Fusion layer correlates the sightings belonging to
the same located-object from different sensors. This
infrastructure allows sensors to be mobile and through-
out a space. When one or more cells overlap geograph-
ically, an entity may be in multiple cells at the same
time and each of the LISs that manage the cells sends
update information to agents bound to the entity.

The above layers are implemented as a collection of mobile
agents as configurable middleware for sensor networks [25].
They can be dynamically changed according to the specifi-
cations of sensors and the requirements of applications.

Mechanism for Agent Discovery:

Each LIS is responsible for discovering the mobile agents
bound to entities within its cells. It maintains a database
in which it stores information about each of the agent hosts
and each of the mobile agents attached to an entity or place.
When an LIS detects a new entity, the LIS multicasts a
query containing the name of the new entity, i.e. the iden-
tity of the tag attached to the entity, and its own network
address to all the agent hosts in its current sub-network. It
then waits for reply messages from the agent hosts. There
are two possible cases: the tag may be attached to an agent
host or it may be attached to a person, place, or thing other
than an agent host.

� In the first case the newly arrived agent host will send
its network address and device profile to the LIS. The
profile describes the capabilities of the agent host, e.g.
its input devices and screen size. After receiving this
reply, the LIS stores the profile in its database and for-
wards it to all agent hosts within the cell.

� In the second case agent hosts with agents tied to the
tag will send their network addresses and the require-
ments of acceptable agents to the LIS. The require-
ments for each agent specify the capabilities of the
agent hosts that can be visited and used.

The LIS then stores the requirements of the agents in its
database and moves the agents to appropriate agent hosts
in the way discussed below. If the LIS does not have any
reply messages from the agent hosts, it multicasts a query
message to other LISs. When the absence of an entity, or an
RFID tag attached with the entity, is detected in a cell, each
LIS multicasts a message with the identifier of the entity
and the identifier of the cell to all agent hosts in its current
sub-network. Figure 3 shows a sequence for migrating an
agent to a proper host when an LIS detects the presence of
a new RFID tag.

step 3:

query message

about tag's ID

step 1:

movement of

agent host

tag

cell

sensor

tag

Location Server A

directory

database

profile

handler

sensor-

abstraction

layer

Location Server B

directory

database

profile

handler

sensor-

abstraction

layer

agent

host
agent

host

step 3:

query message

about tag's ID step 2:

tag

detection

agent

host

step 6:

query message about

tag's ID

step 7:

reply message

step 5:

query

message

about

tag's ID

step 4:

host

profile

step 8:

host profile

step 9:

agent migration

step 5:

query

message

about

tag's ID

Figure 3. Agent discovery and deployment

Agent Navigation

We will explain how agents navigate to appropriate agent
hosts. When an LIS detects the movement of an entity,
e.g. a person or object, that is being tracked by a sensor
or an RFID tag attached to the entity in a cell, it searches
its database for agent hosts that are present in the current
cell of the entity or RFID tag. It also selects candidate des-
tinations from the set of agent hosts within the cell, accord-
ing to the respective capabilities. The infrastructure offers
an XML-based language based on CC/PP (composite capa-
bility/preference profiles) [28]. The language describes the
capabilities of agent hosts and the requirements of mobile
agents using a CC/PP notation. For example, a description
contains information on the following properties of a com-
puting device: the vendor and model class of the device
(i.e, PC, PDA, or phone), its screen size, number of col-
ors, CPU, memory, input devices, secondary storage, and
the presence/absence of loudspeakers. The infrastructure
allows each agent to specify the preferable capabilities of
agent hosts that it may visit, as well as the minimal capa-
bilities using a CC/PP-based notation. Each LIS is able to
determine whether or not the device profile of each agent
host satisfies the requirements of an agent by symbolically
matching and quantitatively comparing properties.

4

The LIS then unicasts a navigation message to each of
the agents bound to the entities or places. The message
specifies the profiles of the agent hosts present in the cell
and satisfies the requirements of the agent. Since mobile
agents can travel through a network under their own con-
trol, LISs cannot always know the current location of the
mobile agents. When LISs detect changes in the physical
world, they notify each agent of the network address and
the capabilities of more than one candidate destination that
the agent should visit. However, they never send the agent
to the destination, because mobile agents should be treated
as autonomous entities. Each agent then selects one host
from the list of candidates recommended by the LIS and mi-
grates to that host. Moreover, when the capabilities of such
a destination do not satisfy the requirements of an agent, the
agent itself should decide whether or not to migrate itself to
the destination and adapt itself to the limited capabilities
according to its own configuration policy.

3.2 Mobile Agent

The infrastructure encapsulates application-specific ser-
vices into mobile agents so that it is independent of any ap-
plications and can support multiple services. As mentioned
in the appendix, each mobile agent is a collection of Java
objects and is equipped with the identifier of a locatable en-
tity or the identifier of an RFID tag to which the agent is
attached. The agent is a self-contained program and is able
to communicate with other agents. An agent attached to a
user always internally maintains that user’s personal infor-
mation and carries all its internal information to other hosts.
A mobile agent may also have one or more graphical user
interfaces for interaction with its users. When such an agent
moves to other hosts, it can easily adjust its windows to the
screen of the new host by using the compound document
framework for the MobileSpaces system that was presented
in our previous paper [19].

3.3 Agent Host

Each agent host must be located by the location-sensors.
For example, an agent host may be equipped with an RFID
tag. It has two forms of functionality: one for advertising its
capabilities and another for executing and migrating mobile
agents. The current implementation assumes that LISs and
agent hosts can be directly connected through a wired LAN
such as Ethernet, or a wireless LAN, such as IEEE802.11b.
When a host receives a query message with the identifier of
a newly arrived tag from an LIS, it replies with one of the
following three responses: (i) if the identifier in the message
is identical to the identifier of the tag to which it is attached,
it returns profile information on its capabilities; (ii) if one of
the agents running on it is tied to the tag, it returns its net-

work address and the agent requirements; and (iii) if neither
of the above cases applies, it ignores the message.

The current implementation of this infrastructure is
based on a Java-based mobile agent system called Mo-
bileSpaces [18].3 Each MobileSpaces runtime system is
built on the Java virtual machine, which conceals differ-
ences between the platform architecture of the source and
destination hosts, such as the operating system and hard-
ware. Each of the runtime systems moves agents to other
agent hosts over a TCP/IP connection. The runtime system
governs all the agents inside it and maintains the life-cycle
state of each. When the life-cycle state of an agent changes,
for example when it is created, terminates, or migrates to
another host, the runtime system issues specific events to
the agent. This is because the agent may have to acquire or
release various resources, such as files, windows, or sock-
ets, which it had previously captured. When notification of
the presence or absence of a tag is received from an LIS, the
runtime system dispatches specific events to the agents that
are tied to that tag and run inside it.

4 Four Linkages Physical Worlds to Logical
Worlds

The framework does not have to distinguish between mobile
and stationary computing devices and between mobile and
stationary location-sensing systems. Therefore, it can sup-
port the following four types of linkages between a phys-
ical entity, such as a person or object, or place, and more
than one mobile agent. Figure 4 illustrates the four linkages
when entities and agent hosts are attached to RFID tags.

� Figure 4 (a) shows that a moving entity carries an
RFID-tagged agent host and a space contains a place-
bound RFID tag and an RFID reader. When the reader
detects the presence of the RFID tag that is bound to
the agent host, the LIS instructs the agents attached to
the tagged place to migrate to the visiting agent host to
offer location-dependent services of the place.

� Figure 4 (b) shows that an RFID-tagged agent host and
an RFID reader have been allocated. When an RFID-
tagged moving entity enters the coverage area of the
reader, the LIS instructs the agents attached to the en-
tity to migrate to the agent host within the same cover-
age area to offer the entity-dependent services for the
entity.

� Figure 4 (c) shows that a moving entity carries a reader
and agent host and a space contains a place-bound
RFID tag. When the entity moves near the tag and the

3The infrastructure itself is independent of the MobileSpaces mobile
agent system and can thus work with other Java-based mobile agent sys-
tems.

5

stationary

sensor

Step 1

a tagged entity

movement

Step 2

cell

(b) moving tagged entity and stationary sensor

tag
tag

agent

host

agent

host

agent

host

tag

agent

host

agent

host

(c) moving tagged entity with sensor

mobile

sensor

agent

host

Step 1 agent host

with sensor

movement
tag

agent migration

to visiting host

Step 2

cell

cell

tag

agent

host

agent

host

place-

bound

tag

place-bound

tag

mobile

sensor

mobile

sensor

entity and sensor

movement

tag

cell

cell

(d) moving entity with sensor and stationary host

tag

agent

host

agent

host

agent

host

Step 1

Step 2

mobile

sensor

Step 1

Step 2

(a) moving agent host and stationary sensor

stationary

sensor

agent

host

host movement

tag

agent migration

to visiting host

cell

cell

stationary

sensor

agent

host
tag

cell

agent

host

agent migration

to host near

moving entity

agent migration to host

near entity

Figure 4. Four linkages between physical and logical worlds

reader detects the presence of the tag within its cover-
age area, the LIS instructs the agents attached to the
tagged place to migrate to the visiting agent host to of-
fer the location-dependent services of the place.

� Figure 4 (d) shows that an entity carries an RFID
reader and a space contains a place-bound RFID tag
and an RFID-tagged agent host. When the entity
moves and the reader detects the presence of an agent
host’s tag within its coverage area, the LIS instructs
the agents attached to the moving entity to migrate to
the agent host within the same coverage area to offer
services dependent on the entity.

Note that the above linkages are independent of the underly-
ing locating systems. Therefore, they are available in vari-
ous source of location information, e.g., GPS, local wire-
less networks, and cellular networks. Existing location-
aware systems can only support each of the above linkages,
whereas our infrastructure does not have to distinguish be-
tween them and can synthesize them seamlessly. For ex-
ample, the linkage shown in Figure 4 (a) supports person
tracking display approach in the EasyLiving project [1],
the linkage shown in Figure 4 (b) supports Follow-me ap-
plications approach in the Sentient Computing project [5]
and the linkage shown in Figure 4 (c) supports services on
location-aware portable devices studied in the Cooltown [8]

and NEXUS [6] projects.

4.1 Current Status

The infrastructure presented in this paper was imple-
mented using Sun’s Java Developer Kit version 1.1 or later
versions, including Personal Java. The remainder of this
section discusses some features of the current implementa-
tion.

4.2 Management of Locating Systems

The current implementation of our infrastructure supports
five commercial RFID system: RF Code’s Spider system,
Alien Technology’s 915MHz RFID-tag system, Philips I-
Code system, and Hitachi’s mu-chip system. The first sys-
tem provides active RF-tags. Each tag has a unique iden-
tifier that periodically emits an RF-beacon (every second)
that conveys an identifier via a 305 MHz-radio pulse. The
system allows us to explicitly control the omnidirectional
range of each RF reader to read tags within a range of 1
to 20 meters. It can generate enter or leave events when it
detects the presence or absence of tags in the range of an
RFID reader. The system’s readers can have their own bat-
teries, so that they can be portable. The second system pro-
vides passive RFID-tags and its readers periodically scan

6

for present tags within a range of 3 meters by sending a
short 915 MHz-RF pulse and waiting for answers. The third
system provides passive RFID-tags based on a 13.56 MHz-
RF pulse and can scan for present tags within a range of 30
centimeters. The fourth system provides passive 2.45 GHz-
RFID tags and can scan the presence of tags within a range
of 20 centimeters. The infrastructure converts the result-
ing list of present tags to enter and leave event notifications
by calculating the differences between consecutive scan re-
sults. Although there are many differences between the four
RFID systems, the infrastructure abstracts these differences
away. The current implementation also supports a commer-
cial GPS receiver system. The infrastructure maps geomet-
ric locations measured by a GPS into specified regions.

Performance Evaluation:

Although the current implementation of the infrastructure
was not built for performance, we measured the cost of mi-
grating a 3 KB agent (zip-compressed) from a source to the
destination host that was recommended by the LIS. This
experiment was conducted with two LISs and two agent
hosts, each of which was running on one of four comput-
ers (Pentium III-1GHz with Windows 2000 and JDK 1.4).
These were directly connected via an IEEE802.11b wire-
less network. The latency of an agent’s migration to the
destination after the LIS had detected the presence of the
agent’s tag was 380 msec, and the cost of agent migration
between two hosts over a TCP connection was 48 msec.
The latency includes the cost of the following processes:
UDP-multicasting of the tags’ identifiers from the LIS to
the source host, TCP-transmission of the agent’s require-
ments from the source host to the LIS, TCP-transmission of
a candidate destination from the LIS to the source host, mar-
shaling of the agent, migration of an agent from the source
host to the destination host, unmarshaling of the agent, and
security verification. We believe that this latency is accept-
able for a location-aware system for people walking.

Security and Privacy

Security is essential in mobile agent computing. The in-
frastructure can be built on many Java-based mobile agent
systems with the Java virtual machine. Therefore, it can di-
rectly use the security mechanism of the underlying mobile
agent system. This can explicitly restrict agents to only ac-
cess specified resources in order to protect hosts from ma-
licious agents. To protect against the arrival of malicious
agents from agent hosts, the MobileSpaces system supports
a Kerberos-based authentication mechanism for agent mi-
gration [24]. It authenticates users without exposing their
passwords on the network, and generates secret encryption
keys that can selectively be shared by mutually suspicious
parties.

The infrastructure only maintains per-user profile infor-
mation within those agents that are bound to the user. It
promotes the movement of such agents to appropriate hosts
near the user in response to user movement. Since agents
carry the profile information of their users within them, they
must protect such private information while they are mov-
ing over a network.4 The MobileSpaces system can trans-
form agents into an encrypted form before migrating them
over a network and decrypt them after they arrive at the des-
tination. Moreover, since each mobile agent is just a pro-
grammable entity, it can explicitly encrypt particular inner
fields except for its secret keys and migrate itself with the
fields and its own cryptographic procedure.

5 Applications

This section presents several typical location-based ser-
vices developed using this infrastructure. Note that all
the services presented in this section can coexist at the
same time since the infrastructure itself is independent of
any application-specific services and each service is imple-
mented within mobile agents.

5.1 Location-aware Universal Remote Controller

The first system corresponds to Figure 4 (a). It allows us
to use a PDA to remotely control nearby lights. In this
system place-bound controller agents, which can commu-
nicate with X10-base servers to switch lights on or off, are
attached to places with room lights. The PDA and desktop
lamp are attached with Spider RFID tags. Each user has an
RFID-tagged PDA, which supports the agent host with Win-
dowsCE and a wireless LAN interface. When a user with
a PDA visits the cell that contains an RFID-tagged desk-
top lamp, the infrastructure moves a controller agent to the
agent host of the visiting PDA. The agent, now running on
the PDA, displays a graphical user interface to control the
lamp. When the user leaves that location, the agent auto-
matically closes its user interface and returns to its home
host.

5.2 Personalized Services in Anywhere

The second system corresponds to Figure 4 (b). It tracks
the current location of a user by using an Alien Technol-
ogy’s 915 MHz-RFID system and allow themselves to ac-
cess the user’s applications at the nearest computer as they
move around within the building. We present two follow-
me agents. The first agent provides a desktop teleporting
system, like a follow-me application [5]. Unlike previous

4The infrastructure itself cannot protect agents from malicious hosts, as
this problem is beyond the scope of this paper.

7

RFID-tag

attached to

desklamp

RFID readerPDA (Agent Host)

Desklamp

X10 Appliance

Module

Controller

Agent

Figure 5. Controlling desk lamp from PDA

studies of such applications, our infrastructure cannot only
migrate the user interfaces of applications but also the ap-
plications themselves to appropriate computers in the cell
that contains the tag of the user. In our previous paper [19]
we developed a mobile window manager, which is a mobile
agent that can carry its desktop applications as a whole to
another computer and control the size, position, and overlap
of the windows of the applications. Using the infrastructure
presented in this paper, the window manager and desktop
applications can be automatically moved to and then exe-
cuted on the computer that is in the current cell of the user
and has the resources required by the applications. Figure
6 shows the migration of desktop applications between two
agent hosts.

The second agent is a user assistant agent that follows its
user and maintains profile information about the user inside
itself, so that the user can always assist the agent in a per-
sonalized manner anywhere. Suppose that a user has a 915
MHz-RFID tag and is moving in front of a restaurant that
offers an RFID reader and agent host with a touch-screen.
When the tagged user enters the coverage area of the reader,
the infrastructure enables the assistant agents to be automat-
ically moved to the agent host near the user’s current loca-
tion. After arriving at the host, the agent accesses a database
provided in the restaurant to get a menu from the restaurant.
5 It then selects appropriate meal candidates from the menu
according to the user’s profile information, such as favorite
foods and recent experiences. Next, it displays only the list
of the selected meals on the screen of its current agent host
in a personalized manner. Figure 7 shows that a user’s as-
sistant agent runs on the agent host of the restaurant and
seamlessly embeds the list of pictures, names, and prices
of the selected meal candidates with buttons for ordering
them into its graphical user interface. Since a mobile agent

5The current implementation of the database maintains some informa-
tion about each available food, such as name and price, as an XML-based
entry.

RFID tag for user
RFID tag

for terminal
RFID tag

for terminal

RFID

reader
RFID

reader

RFID

for user

RFID tag

for terminal

RFID tag for terminal

RFID

reader

RFID

reader

step 1

agent migration

step 2

movement

agent

host 1

agent

host 1

agent

host 2

agent

host 2

movement

Figure 6. Follow-me desktop applications be-
tween two computers

is a program entity, we can easily define a more intelligent
assistant agent.

5.3 Location-based Services on Mobile Comput-
ing Devices

The third system corresponds to Figure 4 (c). It provides
a user navigation system that assists visitors in a build-
ing. Several researchers have reported on other similar sys-
tems [2, 6]. In our system tags are distributed to several
places within the building, such as its ceilings, floors, and
walls. Each visitor carries a wireless-LAN enabled tablet
PC, which is equipped with a GPS receiver to measure its
own position or an RFID reader to detect tags, and includes
an LIS and an agent host. The system initially deploys
place-bound agents to invisible computers within the build-
ing. When the GPS receiver finds itself in a specified place
or the RFID reader detects the presence of the tag bound to
the place, the LIS running on the visitor’s tablet PC detects
the place-bound agent that is bound to the place. It then in-
structs the agent to migrate to its agent host and provide the
agent’s location-dependent services at the host. The system
enables more than one agent tied to a place to move to the
table PC; the agent then returns to its home computer and

8

Touch-screen

RFID antenna

915MHz RFID

for user

915MHz RFID

reader

Figure 7. Screenshot of follow-me user assis-
tant agent selecting user’s favorite foods from
database

other agents, which are tied to another place, moves to the
tablet PC. Figure 8 shows a place-bound agent to display a
map of its surrounding area on the screen of a tablet PC.

RFID reader

Tablet PC

(Agent Host)
Place-bound Agent
(Map Viewer)

RFID-tag

IEEE

802.11b

Figure 8. (A) location of RF-tags in floor (B)
and screen-shot of map-viewer agent running
on table PC

5.4 Integrating Handheld Computers with Sta-
tionary User Interface Devices

The fourth system corresponds to Figure 4 (d). As the per-
sonal server proposed by Want [27], it provides a handheld
file-sharing server that has no integral user interface but
does include secondary storage, a wireless LAN network,
and a small 13.56 MHz-RFID reader. RFID tags are lo-
cated near stationary agent hosts with touch-screens. When
a user carries the handheld server near a tagged host, the
RFID reader acquires the presence of the tag attached with
the host and then the LIS running on the handheld server
migrates the agent that is bound to the user to the host.
The agent then establishes a TCP connection to the server

through a wireless LAN network. Next it gathers data from
the server and then displays the data on the screen of the
current host. Figure 9 shows that an image viewer agent
bound to a user accesses image files from the handheld file
server and then display the files on the screen of the agent
host near the user’s current location.

handheld

file server

agent host with

large screen

Figure 9. Agent host with large-screen and
handheld file server

6 Related Work

This section discusses several systems that have influ-
enced various aspects of this framework, which seamlessly
integrates two different approaches, i.e. ubiquitous and mo-
bile computing.

We compared our approach with several projects that
support mobile users in a ubiquitous computing environ-
ment. Research on smart spaces and intelligent environ-
ments has become popular at many universities and cor-
porate research facilities. Cambridge University’s Sentient
Computing project [5] provides a platform for location-
aware applications using infrared-based or ultrasonic-based
locating systems in a building. Using the VNC system [15]
the platform can track the movement of tagged entities, such
as individuals and things, so that the graphical user inter-
faces of the user’s applications follow them while they are
moving around. Although the platform provides similar
functionality to of our approach, its management is central-
ized and thus it is difficult to dynamically reconfigure the
platform when sensors are added to or removed from the
environment. Since the applications must be executed in re-
mote servers, the platform may have non-negligible interac-
tive latency between the servers and the hosts that the user
accesses locally. Our approach, however, enables a user’s
application, including user interfaces, to be dynamically de-
ployed and directly run on computers close to the user so
that it can minimize temporal and spatial distances in in-

9

teractions between him/her and the applications. Recently,
the project provided a CORBA-based middleware system
called LocARE [13]. The middleware can move CORBA
objects to hosts according to the location of tagged objects,
However CORBA objects are not always suitable for imple-
mentation on user interface components.

Microsoft’s EasyLiving project [1] provides context-
aware spaces, with a particular focus on the home and of-
fice. It uses mounted sensors, such as stereo cameras, on
the room’s walls and tracks the locations and identities of
people in the room. The system can dynamically aggregate
network-enabled input/output devices, such as keyboards
and mice, even when they belong to different computers
in the space. However, its management is centralized and
it does not dynamically migrate software to computers ac-
cording to the position of users. Both the projects assume
that locating sensors have initially been allocated in the
room, and it is difficult to dynamically configure the plat-
form when sensors are added to or removed from the en-
vironment. Our approach, however, permits sensors to be
mobile and scattered throughout the space.

MIT’s Project Oxygen Alliance has tried to introduce in-
telligent spaces that are as abundant and accessible to use
as oxygen into people’s lives by incorporating several per-
ceptual devices, including location systems. It has pro-
vided agent-based infrastructures to construct and manage
location-aware services in such spaces [12]. The goal of
these infrastructures has been to offer suitable services at
suitable locations within the space based on contextual in-
formation within the environment and information emanat-
ing from users. However, they have not been able to dy-
namically deploy service-provider services at suitable com-
puters in the space, as we have done.

There have also been several studies on enhancing
context-awareness in mobile computing. HP’s Cooltown [8]
is an infrastructure that supports context-aware services on
portable computing devices. It is capable of automatically
providing bridges between people, places, and things in the
physical world with the web resources that are used to store
information about them. The bridges that it forms allow
users to access resources stored on the web via a browser
using standard HTTP communication. Although user fa-
miliarity with web browsers is an advantage in this system,
all the services available in the Cooltown system are con-
strained by the limitations of web browsers and HTTP. Our
approach, however, is not limited by a web-based approach
and can dynamically change mobile agent-based applica-
tions, including viewer programs, for location-sensitive in-
formation based on the locations and requirements of users.

The NEXUS system [6], developed by Stuttgart Univer-
sity, offers a generic platform that supports location-aware
applications for mobile users. Like the Cooltown system,
users require a PDA or tablet-PC, which is equipped with

GPS-based positioning sensors and wireless communica-
tion. Applications that run on such devices (e.g. user-
navigation) maintain a spatial model of the current vicinity
of users and gather spatial data from remote servers. Un-
like our approach, however, neither Cooltown nor NEXUS
can support mobile users through stationary computers dis-
tributed in a smart environment.

Several research projects have introduced software mo-
bility as a technology for enabling ubiquitous computers to
support various services, which they may have not been ini-
tially designed for. The Aura project [3] of CMU and the
Gaia project [16] of the University of Illinois at Urbana-
Champaign provide infrastructures for binding tasks asso-
ciated with users, and migrating applications from com-
puter to computer as users move about, like our approach
does. Although they share several common design goals
with our framework, they focus on the development of con-
textual services for users rather than the location-aware de-
ployment of services. Kangas [7] developed a location-
aware augmented-reality system that enables the migration
of virtual objects to mobile computers, but only when the
computer was in a particular space, in a similar way to our
framework. However, the system is not designed to move
such virtual objects to ubiquitous computing devices. The
one.world project [4] by the University of Washington pro-
vides a middleware infrastructure for ubiquitous comput-
ing, but does not provide any location-aware mechanisms
for deploying services at computing devices. It assumes a
distributed shared memory and builds applications based on
the principle of separating data and functionality in applica-
tions, where our approach always treats applications as a
set of data and functionality to be deployed at various de-
vices that is not initially designed for executing the applica-
tion. Hive [14] is a distributed agent middleware for build-
ing decentralized applications. It can deploy agents at de-
vices in ubiquitous computing environments and organize
the devices as groups of agents. Although it can provide
contextual information for agents, it does not support any
mechanism for monitoring sensors and deploying agents ac-
cording to changes in the environment, unlike ours.

Several researchers have explored location-sensitive
servers like our LIS. Their location models can be classified
into two types: spatial models based on concrete geograph-
ical coordinates of objects and spatial models based on ge-
ographical containment between objects. For example, the
EasyLiving project provides a geometric model based on
the former approach, so it accurately represents the physi-
cal relationships between entities in the world. Leonhardt
[10] developed a location-tree model based on the latter
approach and used location-aware directory servers. Our
framework is based on a symbolic location model similar to
the geographical containment model. However, it is unique
in having the ability to dynamically manage spatial mod-

10

els. That is, it provides a demand-driven mechanism that
discovers the locations of agent hosts and agents because it
permits all its elements, such as hosts and sensors, to both
be mobile in and to be dynamically added to or removed
from a space. In previous papers [21, 22], we presented an
early prototype of the present framework. This approach
does not support the mobility of sensors and agent hosts so
that the four linkages described in the second section of this
paper were not available in the the previous framework un-
like the framework presented in this paper.

7 Conclusion

We presented a middleware infrastructure for managing
location-sensing systems and dynamically deploying ser-
vices at suitable computing devices. Using location-
tracking systems the infrastructure provides entities, e.g.
people and objects, and places, with mobile agents to sup-
port and annotate them and migrate agents to stationary
or mobile computers near the locations of the entities and
places to which the agents are attached. It is a general
framework in the sense that it is independent of any higher-
level applications and location-sensing systems and sup-
ports a variety of spatial linkages between the physical mo-
bility of people and things and the logical mobility of ser-
vices. Furthermore, we designed and implemented a pro-
totype system of the infrastructure and demonstrated its ef-
fectiveness in several practical applications.

Finally, we would like to point out further issues to be
resolved. Since the framework presented in this paper is
general-purpose, in future work we need to apply it to spe-
cific applications as well as the three applications presented
in this paper. The location model of the framework was de-
signed for operating real location-sensing systems in ubiq-
uitous computing environments. We plan to design a more
elegant and flexible world model for representing the loca-
tions of people, things, and places in the real world by incor-
porating existing spatial database technologies. We have de-
veloped an approach to testing context-aware applications
on mobile computers [20, 23]. We are interested in devel-
oping a methodology that would test applications based on
the framework.

References

[1] B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer: EasyLiv-
ing: Technologies for Intelligent Environments, Proceedings of In-
ternational Symposium on Handheld and Ubiquitous Computing, pp.
12-27, 2000.

[2] K. Cheverst, N. Davis, K. Mitchell, and A. Friday: Experiences
of Developing and Deploying a Context-Aware Tourist Guide: The
GUIDE Project, Proceedings of Conference on Mobile Computing
and Networking (MOBICOM’2000), pp. 20-31, ACM Press, 2000.

[3] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, ” Project
Aura: Towards Distraction-Free Pervasive Computing, IEEE Perva-
sive Computing, vol. 1, pp. 22-31, 2002.

[4] R. Grimm, el. al.: Systems Directions for Pervasive Computing,
Proceedings of 8th Workshop on Hot Topics in Operating Systems,
pp.147-151, May 2001.

[5] A. Harter, A. Hopper, P. Steggeles, A. Ward, and P. Webster: The
Anatomy of a Context-Aware Application, Proceedings of Confer-
ence on Mobile Computing and Networking (MOBICOM’99), pp.
59-68, ACM Press, 1999.

[6] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm:
Next Century Challenges: Nexus - An Open Global Infrastructure for
Spatial-Aware Applications, Proceedings of Conference on Mobile
Computing and Networking (MOBICOM’99), pp. 249-255, ACM
Press, 1999).

[7] K. Kangas and J. Roning: Using Code Mobility to Create Ubiqui-
tous and Active Augmented Reality in Mobile Computing, Proceed-
ings of Conference on Mobile Computing and Networking (MOBI-
COM’99), pp. 48-58, ACM Press, 1999.

[8] T. Kindberg, et al: People, Places, Things: Web Presence for the Real
World, Technical Report HPL-2000-16, Internet and Mobile Systems
Laboratory, HP Laboratories, 2000.

[9] B. D. Lange and M. Oshima: Programming and Deploying Java Mo-
bile Agents with Aglets, Addison-Wesley, 1998.

[10] U. Leonhardt and J. Magee: Towards a General Location Service for
Mobile Environments, Proceedings of IEEE Workshop on Services
in Distributed and Networked Environments, pp. 43-50, IEEE Com-
puter Society, 1996.

[11] U. Leonhardt and J. Magee: Multi-Sensor Location Tracking, Pro-
ceedings of Conference on Mobile Computing and Networking (MO-
BICOM’98), pp.203-214, ACM Press, 1998.

[12] J. Lin, R. Laddaga, and H. Naito: Personal Location Agent for
Communicating Entities (PLACE) Proceedings of Mobile HCI’02,
LNCS, Vol. 2411, pp. 45-59, Springer, 2002.

[13] D. Lopez de Ipina and S. Lo: LocALE: a Location-Aware Lifecycle
Environment for Ubiquitous Computing, Proceedings of Conference
on Information Networking (ICOIN-15), IEEE Computer Society,
2001.

[14] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes: Hive: Dis-
tributed agents for networking things, Proceedings of Symposium
on Agent Systems and Applications / Symposium on Mobile Agents
(ASA/MA’99), IEEE Computer Society, 2000.

[15] T. Richardson, Q, Stafford-Fraser, K. Wood, A. Hopper: Virtual Net-
work Computing, IEEE Internet Computing, Vol. 2, No. 1, 1998.

[16] M. Román, C. K. Hess, R. Cerqueira, A. Ranganat R. H. Campbell,
K. Nahrstedt K, Gaia: A Middleware Infrastructure to Enable Active
Spaces, IEEE Pervasive Computing, vol. 1, pp.74-82, 2002.

[17] K. Romer and T. Schoch: Infrastructure Concepts for Tag-Based
Ubiquitous Computing Applications Workshop on Concepts and
Models for Ubiquitous Computing, Ubicomp 2002, September 2002.

[18] I. Satoh: MobileSpaces: A Framework for Building Adaptive
Distributed Applications Using a Hierarchical Mobile Agent Sys-
tem, Proceedings of Conference on Distributed Computing Systems
(ICDCS’2000), pp. 161-168, IEEE Computer Society, 2000.

[19] I. Satoh: MobiDoc: A Framework for Building Mobile Compound
Documents from Hierarchical Mobile Agents, Proceedings of Sym-
posium on Agent Systems and Applications / Symposium on Mobile
Agents (ASA/MA’2000), LNCS, Vol. 1882, pp. 113-125, Springer,
2000.

[20] I. Satoh: Flying Emulator: Rapid Building and Testing of Networked
Applications for Mobile Computers, Proceedings of Conference on
Mobile Agents (MA’01), LNCS, Vol. 2240, pp. 103-118, Springer,
2001.

11

[21] I. Satoh: Physical Mobility and Logical Mobility in Ubiquitous Com-
puting Environments, Proceedings of Conference on Mobile Agents
(MA’02), LNCS, Vol. 2535, pp. 186-202, Springer, 2002.

[22] I. Satoh: Location-based Services in Ubiquitous Computing Envi-
ronments, to appear in Proceedings of International Conference on
Service Oriented Computing (ICSOC’2004), LNCS, Springer, De-
cember 2003.

[23] I. Satoh: A Testing Framework for Mobile Computing Software, to
appear in IEEE Transactions on Software Engineering, (Accepted)
vol.29, 2003.

[24] I. Satoh: Configurable Network Processing for Mobile Agents on
the Internet, Cluster Computing, (Accepted) vol. 7, no.1, Kluwer,
January 2004.

[25] T. Umezawa I. Satoh, and Y. Anzai, A Mobile Agent-based Frame-
work for Configurable Sensor Networks. Proceedings of Interna-
tional Workshop on Mobile Agents for Telecommunication Applica-
tions (MATA’2002), Lecture Notes in Computer Science, Springer,
Vol. 2521, pp. 128-140, 2002.

[26] R. Want, A. Hopper, A. Falcao, and J. Gibbons: The Active
Badge Location System, ACM Transactions on Information Systems,
vol.10, no.1, pp. 91-102 ACM Press, 1992.

[27] R. Want: The Personal Server - Changing the Way We Think about
Ubiquitous Computing, Proceedings of 4th International Conference
on Ubiquitous Computing (Ubicomp 2002), LNCS 2498, pp. 194-
209, Springer, September 2002.

[28] World Wide Web Consortium (W3C): Composite Capabil-
ity/Preference Profiles (CC/PP), http://www.w3.org/TR/NOTE-
CCPP, 1999.

Appendix: Mobile Agent Programs

This section explains the programming interface for our mo-
bile agents. Every agent program must be an instance of a
subclass of the abstract class TaggedAgent as follows:

class TaggedAgent extends Agent
implements Serializable {
void go(URL url) throws

NoSuchHostException { ... }
void duplicate() throws

IllegalAccessException { ... }
void destroy() { ... }
void setTagIdentifier(TagIdentifier tid) { ... }
void setAgentProfile(AgentProfile apf) { ... }
URL getCurrentHost() { ... }
boolean isConformableHost(HostProfile hpf) {...}
CellProfile getCellProfile(CellIdentifier cid)

throws NoSuchCellException { ... }
....

}

Let us explain some of the methods defined in the
TaggedAgent class. An agent executes the go(URL
url) method to move to the destination host specified
as the url by its runtime system. The duplicate()
method creates a copy of the agent, including its code and
instance variables. The setTagIdentifier method
ties the agent to the identity of the tag specified as tid.
Each agent can specify a requirement that its destination
hosts must satisfy by invoking the setAgentProfile()
method, with the requirement specified as apf. The class
has a service method named isConformableHost(),

which the agent uses to decide whether or not the capabili-
ties of the agent hosts specified as an instance of the Host-
Profile class satisfy the requirements of the agent. Also,
the getCellProfile() method allows an agent to in-
vestigate the measurable range and types of RFID readers
specified as cid.6

Each agent can have more than one listener object that
implements a specific listener interface to hook certain
events issued before or after changes in its life-cycle state
or the movements of its tag.

interface TaggedAgentListener
extends AgentEventListener {
// invoked after creation at url
void agentCreated(URL url);
// invoked before termination
void agentDestroying();
// invoked before migrating to dst
void agentDispatching(URL dst);
// invoked after arrived at dst
void agentArrived(URL dst);
// invoked after the tag arrived at another cell
void tagArrived(HostProfile[] apfs,

CellIdentifier cid);
// invoked after the tag left from the
// current cell
void tagLeft(CellIdentifier cid);
// invoked after an agent host arrived
// at the current cell
void hostArrived(AgentProfile apfs,

CellIdentifier cid);
....

}

The above interface specifies the fundamental methods that
are invoked by the runtime system when agents are created,
destroyed, or migrated to another agent host. If a tagged
entity or place is detected for the first time, the agent asso-
ciated with that object or place has to be instantiated and
then its agentCreated() method is invoked. Also, the
tagArrived() callback method is invoked after the tag
to which the agent is bound has entered another cell, to
obtain the device profiles of agent hosts that are present
in the new cell. The tagLeft() method is invoked af-
ter the tag is no longer in a cell for a specified period of
time. The agentDispatching() method is invoked
before the agent migrates to another host and the agen-
tArrived() method is invoked after the agent arrives at
the destination.

6The identifier of each RFID reader can be represented as a string so
that the framework can easily manage various RFID systems even when
the identifiers of readers in these systems differ.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

