
A Hierarchical Model of Mobile Agents
and Its Multimedia Applications

Ichiro Satoh

Department of Information Sciences, Ochanomizu University∗/
Japan Science and Technology Corporation
E-mail: ichiro@is.ocha.ac.jp

Abstract

This paper presents a new framework for constructing
networked applications, including multimedia ones. The
framework is based on a hierarchical mobile agent system
for allowing more than one mobile agent to be dynamically
assembled into a single mobile agent. Networked applica-
tions constructed in the framework can be implemented as a
collection of mobile agents and can dynamically change and
evolve their own functions by migrating agents that offer the
functions. To demonstrate how to exploit our framework we
construct extensible multimedia applications based on the
framework.

1 Introduction

Component-based software development technology is be-
ing used [11] as a powerful approach for the development
of distributed systems and multimedia systems. The tech-
nology can combine subcomponents into an application or
a large-scale component. On the other hand, mobile agents
are self-contained entities like software components and can
travel from computer to computer under their own control.
Mobile agent technology has received a rapidly growing at-
tention over the last few years due to its salient properties.

However, existing mobile agent systems lack any mech-
anism for structurally assembling more than one mobile
agent. This is because each mobile agent is basically de-
signed as an isolated entity which always acts and migrates
independently. Although several systems provide the notion
of places and inter-agent communication, they can couple
mobile agentslooselyand thus cannot migrate a group of
mobile agents to another computer as whole. This is a se-
rious limitation in the development of a mobile agent-based
application, which is large in scale and complicated.

In a an earlier paper [9], we proposed the notion of hier-
archical mobile agents and presented a mobile agent system

∗2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610, Japan

whose functions can be dynamically extended and adapted
to its execution environment. However, unfortunately we
did not present that mobile agent-based applications based
on the concept can naturally inherit the extensibility and
adaptability of the system.

Therefore, this paper presents a framework for construct-
ing new dynamically adaptable networked multimedia ap-
plications based on the concept of the agent hierarchy. Our
approach can naturally introduce mobile agents as mobile
software components and can easily construct a large-scale
mobile application as a compound mobile agent, which con-
tains mobile agents supporting its subcomponents. There-
fore, our approach is a powerful framework for the develop-
ment of a distributed application, in particular a large-scale
and adaptable multimedia application.

This paper consists of the following sections. Section
2 surveys related work. In Section 3, we present the ba-
sic ideas of the system presented in this paper. Section 4
presents a mobile agent system calledMobileSpacesand the
current implementation status of the system. In Section 5,
we show some examples of multimedia applications con-
structed in the framework and in Section 6 we give some
concluding remarks.

2 Background

A lot of mobile agent systems have been released over the
last few years. Telescript [14] was the first commercial im-
plementation of the mobile agent paradigm; AgentTcl [4] is
a mobile agent system based on an extended Tcl interpreter
that executes Tcl agents. Like ours, most of these systems
have been implemented in the Java language, for example,
see Aglets [6], Mole [8] and Voyager [7].

To our knowledge, no existing mobile agent systems, in-
cluding mobile object systems, are based on the concept of
agent hierarchy proposed in this paper. Mole introduces the
notion of agent groups in order to encourage coordination
among mobile agents [3]. Mole’s agent groups can consist

1

of agents working together on a common task, but they are
not mobile. Also, Telescript, Odyssey, and MOA introduce
the concept of places in addition to mobile agents. Places
are agents which can contain mobile agents and places in-
side them, but they are not mobile. Our mobile agent sys-
tem, on the other hand, allows one or more mobile agents
to be dynamically organized into a single mobile agent, and
thus we do not have to distinguish between mobile agents
and places. Therefore, a distributed application, in partic-
ular a mobile application, that is large in scale and com-
plex can be easily constructed by combining more than one
agent.

Recently, several researchers have have explored active
networks to dynamically deploy programs for handling net-
work protocols at intermediate and end nodes by using
mobile-code techniques. (for example see [12, 13, 15]).
Most active networks have been designed to dispatch minia-
ture programs to remote hosts when communication meth-
ods need to be changed. They thus cannot deal with net-
worked applications, for example, server programs and
client programs, including user interfaces. There have been
a few works to incorporate mobile agent technology with
the active network technology (for example, see [5]), but
the purpose of these works are to apply mobile agents to
network management and control.

3 Basic Framework

We intend our framework to provide a practical infrastruc-
ture for constructing distributed applications, in particular
networked multimedia applications.

The framework has to be designed to dynamically deploy
programs for handling protocols at each per communication
session and each multimedia content. Also, a multimedia
application is often given as a large-scale and complex pro-
gram. Therefore, the framework can combine subcompo-
nents into an application. A networked application is often
expected to be used in various networks, and thus it should
be constructed independently of its underlying hardware,
communication network, and operating system and can be
extendable and adaptable to its execution environments.

Our mobile agents are computational entities like other
mobile agents. Once they are invoked, they will au-
tonomously decide which locations they will visit and what
instructions they will perform. When an agent migrates, not
only the code of the agent but also its state can be trans-
ferred to the destination. To solve the above requirements
in the construction of networked multimedia applications,
our mobile agent model introduces the following concepts:

Agent Hierarchy: Each mobile agent can nest other mo-
bile agents inside itself and has to be contained by one
agent. Mobile agents are organized in a tree structure.

Inter-agent Migration: Each mobile agent can migrate
between mobile agents as a whole with all its inner
agents. That is, if a migrating agent includes other
agents inside itself, all its inner agents have to be
moved by causing the movement of the agent.

Figure 1 shows an example of an inter-agent migration in an
agent hierarchy. When an agent contains other agents, we
call the former agentparentand the latter agentschildren.
We call all the agents which are nested by an agent, the
descendentagents of the agent, and in reverse we call all
the agents which are nesting an agent, theancestralagents
of the agent. The hierarchy enables us to combine one or
more mobile agents as a mobile agent, like in component-
based software development technology [11]. It helps us to
construct a mobile agent application that is large in scale
and complicated.

Moreover, it is often argued that the advantage of agent
migration lies in the reduction of communication costs in
distributed computing settings. Although this argument is
understandable, our framework can make use of agent mi-
gration as a meta mechanism for changing and evolving an
application consisting of one or more mobile agents. Such
an application can extend and change itself by migrating
and replacing these agents. That is, each parent agent gives
its own services and resources to its children. Therefore,
when a mobile agent wants different services, the agent can
acquire those services by migrating to the agent providing
those services. Moreover, our mobile agent system itself is
based on the framework. Therefore, we can easily add a
new function to a system by migrating an agent offering the
function to the system while the system is running. The sys-
tem is extensible in the sense that it can dynamically change
and adapt itself to its environment and the requirements of
its executing mobile agents.

4 The MobileSpaces Mobile Agent
System

This section presents a mobile agent system namedMo-
bileSpaces. The system can execute and migrate mobile
agents that are incorporated with the framework presented
in the previous section. Moreover, the architecture of the
system is characterized in being based on the framework.

It is built on the Java virtual machine and mobile agents
are given as Java objects [2]. The structure of the system
is similar to a micro-kernel architecture as shown in sev-
eral operating systems. That is, it consists of two parts: a
core system and subcomponents as shown in Figure 2. The
former offers only minimal and common functions indepen-
dent of the underlying environment. The latter is introduced
as a collection of subcomponents outside the core system
and provides the other functions. Each subcomponent is

migrationstep 1

step 2

Agent A Agent B

Agent C

Agent D
Agent E

Agent A Agent B

Agent C

Agent D
Agent E

Figure 1: Agent Hierarchy and Inter-agent Migration

implemented as mobile agents so that these subcomponents
can be dynamically added to and removed from the system
by migrating and replacing the corresponding agents.

4.1 The Runtime System

Hereafter, we describe some of the features in which our
mobile agent system is unique among other existing systems
below:

Agent Hierarchy Management

Each agent hierarchy is given as a tree structure in which
each node contains a mobile agent and its attributes. Agent
migration in an agent hierarchy is performed as just a trans-
formation of the tree structure of the hierarchy. Since each
agent hierarchy is basically maintained inside a computer,
when an agent is moved in the same agent hierarchy, it and
its descendent agents can still be running. The runtime sys-
tem alters the tree structure to migrate agents in the agent
hierarchy, and can be abstracted as a stationary agent at the
root node of the tree structure. Consequently, agents can be
viewed as the only constituent of our mobile agent system.

Agent migration in an agent hierarchy can be protected by
a security manager. A destination agent can judge whether
it accepts a new visitor or not beforehand, whereas a visit-
ing agent can know the available methods provided by the
destination agent by using the class introspector mechanism
of JDK 1.1.

Agent Execution Management

The runtime system can control all the agents in its agent
hierarchy. Each agent has direct control of its descendent
agents. That is, an agent can instruct its descendent agents
to move to other agents, serialize and destroy them. More-
over, each agent can directly invoke all the public methods
of its descendent agents.1

1The current implementation of MobileSpaces permits a parent agent
to obtain references to the Java objects corresponding to its descendants.

In contrast, each agent has no direct control over its an-
cestral agents. Instead, each agent can have a collection
of service methods which can be accessed by its children,
instead of its descendant. A child agent can invoke the ser-
vice methods provided by its parent under the control of the
parent. In addition, each agent can access the service meth-
ods provided by its ancestral stationary agents, including the
base agent.

We imposed the restriction that a mobile agent may not
access any services supported by ancestral agents other than
their parent and stationary agents. This restriction is key
idea for allowing successful migration to occur. If it were
not imposed, then migrating an agent could mean that the
descendants of that agent might suddenly find they could no
longer access services upon which they relied.

Each agent can have one or more activities which are im-
plemented by using the Java thread library. Furthermore,
the runtime system maintains the life-cycle of agents: ini-
tialization, execution, suspension, and termination. When
the life-cycle state of an agent is changed, the runtime sys-
tem issues certain events to the agent and its descendent
agents. The system can impose specified time constraints
on all method invocations between agents in order to avoid
to be blocked forever.

Agent Migration Over Network

When an agent is transferred over network, it has to be
marshaled into a bit-stream and then unmarshaled from it
later. Agent migration between different computers is of-
fered by subcomponents, called Transmitter agents, instead
of the runtime system itself, because the system is made as
small as possible for the sake of portability and offers only
the minimal facilities independent of the execution environ-
ments and agent migration over network is dependent on
its underling network. Transmitter agents are allocated on
hosts. Each transmitter agent can exchange its inner agents
with each other through its favorite communication protocol
(as shown in Figure 3). When a mobile agent is preparing
for a trip, the agent migrates itself into an appropriate trans-
mitter agent.

The transmitter suspends the moving agent (including its
nesting agents) and then serializes its state, classes, and des-
tination address into a proper form for its communication
protocol. Next, it transfers the serialized agent to a trans-
mitter agent on the destination side. The transmitter agent
receives the data and then reconstructs an agent (including
its nesting agents) according to the data.

Each runtime system can be equipped with more than
one transmitter agent in order to exchange agents through
various communication protocols and networks. We have
already implemented several transmitter agents which can
transport their inner agents via several communication pro-
tocols such as TCP, UDP, and SMTP.

4.2 Mobile Agents

Every agent is an instance of a subclass of the base class
for mobile agents, calledAgent . The class consists of fun-
damental methods used to control the mobility and the life
cycles of a mobile agent.

Child Agent A

an event from the base
agent or an ancestor

event handler (listener)

method 1
method 2
method 3

state

service method 1

service method 2

callback

state

getService()

Child Agent B

Agent

agent
context

agent
program

Figure 2: MobileSpaces Mobile Agent

1: public class Agent {
2: // methods for registering listener
3: // objects to hook certain events
4: void addDefaultListener(
5: DefaultEventListener listener){...}
6: void removeDefaultListener(
7: DefaultEventListener listener){...}
8:
9: AgentURL getURL(){ ... }

10: Enumeration getChildren(){ ... }
11:
12: void getService(Message msg) throws
13: NoSuchMethodException ... { ...}
14: void dispatchEvent(AgentEvent evt)
15: throws NoSuchEventException {...}
16: void go(AgentURL dst) throws
17: NoSuchAgentException ... { ...}

18:
19: }

Thego(AgentURL dst) method migrates itself and and
its descendents to the destination agent specified asdst .
An agent can call methods given in the context of its par-
ent agent by calling thegetService() method. The
dispatchEvent(AgentEvent evt) method propa-
gates an event specified as its argument to its When an agent
is transferred or destroyed, our system does not automat-
ically release all the resources, such as file, window, and
socket, which are captured by the agent. Before or after
the state of an agent changes, the system and its ances-
tral agents can propagate certain events to the agent, like
event delegation event model in Aglets [6]. Therefore, each
agent can have one or more listener objects in order to hook
these events. We show a listener interface which defines
fundamental methods invoked when agents are created, de-
stroyed, serialized, and migrated to another agent and when
visiting agents enter to and leave from them.

1: interface DefaultEventListener
2: extends AgentEventListener {
3: // invoked after creation at url
4: void create(AgentURL url);
5: // invoked before termination
6: void destroy();
7: // invoked before serialization
8: void serialize();
9: // invoked after deserialization

10: void deserialize();
11: // invoked after accepted a child
12: void add(AgentURL child);
13: // invoked before removed a child
14: void remove(AgentURL child);
15: // invoked after arrived at the destination
16: void arrive(AgentURL dst);
17: // invoked before moving to the destination
18: void leave(Agent dst);
19:
20:}

4.3 Implementation and Performance

The MobileSpaces mobile agent system has been imple-
mented in the Java language (JDK1.1 or later version). The
core system is constructed independently of the underlying
system and can run on any computer with a 1.1-compatible
Java runtime. We have tried to keep the implementation
within the framework as much as possible.2

To evaluate the cost of agent migration, we examined a
basic experiment of agent migration in two cases: agent mi-
gration in an agent hierarchy and agent migration between
different computers. The former experiment is performed
in a prototype implementation of the runtime system. In the
latter experiment, agent migration is supported by transmit-
ter agents allocated on two computers.

2An implementation of the mobile agent system, including its examples
is available fromhttp://islab.is.ocha.ac.jp/ .

Table 1: The cost of agent migrations (msec)

time
agent migration in an agent hierarchy 5
agent migration between two computers 35

These results have been measured with two computers
(Pentium II-450MHz with 128MB memory with MS-
Windows98 and JDK 1.1.8) connected via 10BASE-T Eth-
ernet. The first result includes the cost to check whether the
visiting agent is permitted to enter the destination agent or
not. The second result is the sum of the marshaling, com-
pression, opening TCP connection, transmission, uncom-
pression, and unmarshaling. The size of the moving agent
is about 10KB.

5 Examples

This section presents two examples in order to demonstrate
the utility of our framework in the construction of net-
worked multimedia applications.

5.1 A mobile agent-based E-mail System

One of the most important examples is applications based
on the concept of compound documents like OpenDoc de-
veloped by Apple Computer and IBM [1]. Our agent hier-
archy allows compound documents given as mobile agents
to be dynamically composed into a compound document,
while traditional mobile agents are isolated programs and
thus cannot support any compound documents.

We have constructed an electronic mail system where
each letter is a mobile agent incorporated with the frame-
work presented in this paper. Therefore, each letter can con-
tain more than one mobile agent-based component: some
text, graphics, and animations on the document of the letter
as shown in Figure 3 and 4. Users can edit these inner com-
ponents written in arbitrary data formats, because they are
mobile agents and thus can include programs to edit their
own contents. For example, to edit the text, simply click
on it, and its editor program is invoked. The letter agent
can autonomously deliver itself and its inner components to
the destination. The receiver can read all the contents of
the arriving letter, because the letter is a mobile agent that
contains its components to view the contents.

5.2 A Video-On-Demand System

We try to develop a dynamically adaptable video-on-
demand system based on the mobile agent system presented
in this paper. A typical video-on-demand system consists of

Text Editor
Component
(Child Mobile Agent)

Image Viewer
Component
(Child Mobile Agent)

Letter Component
(Parent Mobile Agent)

Figure 3: Window of the Compound Letter Agent

Letter Component
(Parent Mobile Agent)

image

viewer
text

editor
layout manager

mail transfer

Text Editor
Component

(Child Mobile Agent)

Image Viewer
Component

(Child Mobile Agent)

migration

Figure 4: Structure of the Compound Letter Agent

a server and its clients. The former is given as a file-sharing
server for allowing multimedia contents to be stored and
transmitted and the latter receives the transmitted multime-
dia contents from the server and supports user interfaces to
show us them.

The transmission of multimedia contents should be per-
formed through protocols appropriate to the multimedia
contents. Therefore, we need a mechanism to automatically
and dynamically change only the way of transmitting mul-
timedia contents, without changing the other facilities, in-
cluding user interfaces.

Our video-on-demand system consists of a server agent
and client agents that are built on the MobileSpaces run-
time system. The server agent is given as a stationary con-
tainer of child mobile agents, calledsenderagents, which
can send multimedia contents through the protocols appro-
priate to the contents. Also, agent migration is introduced
as a basic mechanism for obtaining and changing functions
of the server agent. That is, when a video server is required
to make use of a new protocol, it can extend the protocol to
itself by migrating the agents, which offer the protocol.

Like the server agent, each client agent is a mobile agent
that supports user interfaces which are preferred by its user
and can be equipped with more than one agent, calledre-
ceiveragents, which can receive multimedia contents from
networks. Before transmitting multimedia contents, these
receiver agents arrive at the client agent and then pass their
received multimedia contents to the client agent through
a common interface between client agents and receiver
agents. Therefore, the client agent can dynamically extend

and change protocols for receiving multimedia contents and
keep its other facilities including user interfaces.

A program for receiving multimedia contents is deployed
at a client agent as follows:

(1) The server agent loads two child mobile agent, called
senderagent andreceiveragent, for implementing a
protocol for receiving multimedia contents. The for-
mer includes a program for sending the multimedia
contents and the latter for receiving them.

(2) The client agent sets the parameters of the child agents
for a communication session through the protocol.

(3) The client agent migrates the receiver mobile agent to
the client agent between which the communication ses-
sion will be established.

(4) After arriving at the client agent, the receiver notifies
the sender agent its arrival and then receives the multi-
media contents from the sender agent.

This framework can also facilitate short-lived protocols be-
cause mobile agents have explicitly survival periods. They
are automatically destroyed and discarded from the client
nodes when their survival periods elapse.

In our current implementation of the video-on-demand
system, our server agent is given as a container of server
agents and client agents. Each sender agent is given as a
HTTP server for dispatching various files, including video
contents encoded in MPEG-1 and QuickTime. On the other
hand, each receiver agent is a mobile agent, which can re-
ceive MPEG-1 files in a manner of HTTP and then a viewer
agent embedded in the client agent views the files by means
of Sun’s Java Media Framework.

6 Conclusion

We presented a new mobile agent system which can support
the two concepts,agent hierarchyandinter-agent migration
presented in Section 2. The implementation of our system
has paid as much attention to keep obeying the two concepts
as possible. The system allows more than one mobile agent
to be dynamically assembled into a single mobile agent.
Furthermore, our system is characterized in its extensibil-
ity and adaptability, and mobile agent-based applications
running on the system can naturally inherit these features.
This advantage is especially useful in the construction of
networked multimedia applications running on the system,
because functions of multimedia applications must often be
changed according to the multimedia contents which the ap-
plications process.

Finally, we would like to point out further issues. Se-
curity is essential in mobile agent computing. The current

implementation of the system relies on the JDK 1.1 secu-
rity manager and provides a simple mechanism for authen-
tication of agents. However, many security features are left
open for the next release. Moreover, we formalized a pro-
cess calculus for reasoning about our hierarchical mobile
agents [10]. We are interested in specifying and verifying
multimedia applications of the system by using the calcu-
lus.

References
[1] Apple Computer Inc., OpenDoc: White Paper, Apple Com-

puter Inc., 1994.

[2] K. Arnold and J. Gosling, The Java Programming Language,
Addison-Wesley, 1996.

[3] J. Baumann and N. Radounklis, Agent Groups in Mobile
Agent Systems, Proceedings of Conference on Distributed
Applications and Interoperable Systems, 1997.

[4] R. S. Gray, Agent Tcl: A Transportable Agent System,
CIKM Workshop on Intelligent Information Agents, 1995.

[5] A. Karmouch, Mobile Software Agents for Telecommunica-
tions, IEEE Communication Magazine, vol. 36 no. 7, 1998.

[6] B. D. Lange and M. Oshima, Programming and Deploying
Java Mobile Agents with Aglets, Addison-Wesley, 1998.

[7] ObjectSpace Inc, ObjectSpace Voyager Technical Overview,
ObjectSpace, Inc. 1997.

[8] M. Strasser and J. Baumann, and F. Hole, Mole: A Java
Based Mobile Agent System, Proceedings of ECOOP Work-
shop on Mobile Objects, 1996.

[9] I. Satoh, MobileSpaces: A Framework for Building Adaptive
Distributed Applications using a Hierarchical Mobile Agent
System, to appear in proceedings of IEEE International Con-
ference on Distributed Computing Systems (ICDCS’2000),
IEEE Press, 2000.

[10] I. Satoh, A Formalism for Hierarchical Mobile Agents, to
appear in proceedings of Symposium on Software Engineer-
ing for Parallel and Distributed Systems (PDSE’2000), IEEE
Press, June, 2000.

[11] C.Szyperski, Component Software, Addison-Wesley, 1998.

[12] D. L. Tennenhouse et al., A Survey of Active Network
Research, IEEE Communication Magazine, vol. 35, no. 1,
1997.

[13] D. J. Wetherall, J. V. Guttag, and D. L.Tennenhouse, ANTS:
A Toolkit for Building and Dynamically Deploying Network
Protocols, in Proceedings of International Conference on
Open Architectures and Network Programming, April 1998.

[14] J. E. White, Telescript Technology: Mobile Agents, General
Magic, 1995.

[15] Y. Yemini, and S. da Silva, Towards Programmable Networks
in Proceedings of FIP/IEEE International Workshop on Dis-
tributed Systems, October, 1996.

