
Dynamic Federation of Partitioned Applications
in Ubiquitous Computing Environments

Ichiro Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: ichiro@nii.ac.jp

Abstract

A framework for the dynamic aggregation of ubiquitous
computers is presented. The framework aggregates appli-
cations from more than one mobile component that can mi-
grate from computer to computer during the execution of
applications. Using location-tracking systems, the frame-
work can spatially bind partitioned applications to users
and other things and dynamically allocate and migrate a
federation of partitioned applications on multiple comput-
ers according to the capabilities and locations of the com-
puters and the positions of users. The framework also pro-
vides inter-component communications and component re-
location semantics so that an application made up compo-
nents can adapt its structure and functionality to changes in
resource availability and the physical environment. A proto-
type implementation of the framework built on a Java-based
mobile agent system and its applications are described.

1. Introduction

An important research issue in ubiquitous computing con-
cerns the progress being made toward developing of an ap-
plication environment that is able to deal with the mobil-
ity and interactions of both users and devices. Rapid ad-
vances in device technologies and falling costs are enabling
a variety of computers to be linked through wired or wire-
less networks in modern offices and homes. Users are sur-
rounded by hundreds of computers from desktop PCs to
small computers embedded in artifacts, and by sensors that
are able to acquire information from the physical world.
However, these computers cannot always support applica-
tions other than those they were not initially designed for
because their computational resources, such as processors,
storage, and input and output devices, are limited as they
were only optimized for their initial purposes. To accom-
plish goals beyond the capabilities of individual computers,
a ubiquitous computing application should not only be able

to be processed by a single computer but also by the inter-
action of a group of computers, called a federation. More-
over, such a group must be configurable in runtime because
the requirements of users may change dynamically. This pa-
per presents a framework that enables ubiquitous computers
to be dynamically federated. The framework facilitates the
construction of a virtual computer as a federation of parti-
tioned applications around different computers. It also en-
ables partitioned applications to be deployed at, and run
on, heterogeneous computers that can provide the computa-
tional resources required by users and their associated con-
text, such as locations and tasks.

In the remainder of this paper, we describe our design
goals (Section 2), the design of our framework, called Hy-
dra, and a prototype implementation (Section 3) and an ap-
plication of the framework (Section 4). We briefly review
related work (Section 5), provide a summary, and discuss
some future issues (Section 6)

2. Architecture Overview

Our framework enables us to construct an application as
a federation of ubiquitous computers connected through a
network for overcoming the limitations of computational re-
sources, such as input and output devices and restricted pro-
cessors, in single ubiquitous computers (Figure 1).

Applications and partitioned applications must not be
bound to ubiquitous computers, which have limited compu-
tational resources, for various applications, but they should
run on computers that can satisfy their requirements. Mo-
bile users may also constantly want to change the comput-
ers with which they interact. That is, applications should be
able to move from computer to computer to follow users.
Therefore, our framework should enable a federation of par-
titioned applications to migrate partially or entirely to suit-
able computers based on changes in users and their associ-
ated contexts, e.g., locations, current tasks, and the number
of people.

Computer 1

with display

Computer 3

with a keyboard

component

for processing

component

for input

component

for output

network

Computer 2

without any keyboard and display

Figure 1. Federation for heterogeneous com-
puters

The framework builds partitioned applications as mo-
bile agent-based software components and enables these to
move to other computers while the application is running.
When an application is made up multiple components, the
movement of one component may affect the others. It there-
fore provides three typical interactions: publish/subscribe
for asynchronous event passing, remote method invoca-
tion, and stream-based communication to coordinate mo-
bile components. It provides mechanisms for keeping these
interactions even when some of the components move to
other locations. Moreover, the deployment of components
is often dependent on their applications. For example, two
components are required to be at the same or nearby com-
puters, when the first is a program that controls the key-
board and the second is a program that displays content on
the screen. The framework therefore enables each compo-
nent to specify explicitly a policy for component migra-
tion, called a hook. The current implementation provides
two types of hooks, as we can see in Figures 2 and 3. The
first means that a component follows another, and the sec-
ond means that a component creates a copy of itself and
makes the copy follow another component. Our framework
can dynamically allocate a federation of partitioned appli-
cations at suitable computers by using these policies.

3. Design and Implementation

Our framework consists of two parts: components and com-
ponent hosts.

3.1. Component

Automatically partitioning existing standalone applications
across multiple computers is almost impossible. Instead,
this framework relies on the concept of component-based
application construction. That is, an application is loosely
composed of software components, which may run on dif-
ferent computers. However, we have not assumed any ap-

follow
hook

step 2

step 3

follow
hook

step 1

follow
hook

component
migration

component
migration

computercomputer

A

computercomputer

A

A

B

B

B

Figure 2. Follow policy in two components.

step 2

step 3

dispatch
hook

step 1

dispatch
hook

computercomputer

A

computercomputer

A

A

B

B'

B

dispatch
hook

component
migration

component duplication and
migration

B

original clone

Figure 3. Dispatch policy in two components.

plication models in our framework unlike those in existing
related work.

Each component in the current implementation of the
framework is a collection of Java objects in the standard
JAR file format and can migrate from computer to com-
puter and duplicate itself by using mobile agent technol-
ogy.1 Each is also equipped with its own identifier and the
identifier of the federation that it belongs to, and it specifies
the computational capability that its destination hosts must
offer in composite capability/preference profiles (CC/PP)
form to describe the capabilities of component hosts and

1 JavaBeans can easily be translated into components in the framework.

the requirements of components. The framework provides
each component with built-in APIs to verify whether or not
its destinations satisfy its requirement.2 The APIs transform
profiles into their corresponding LISP-like expressions and
then evaluate them.

Each component can provide references to the other
components of the application federation that it be-
longs to. Each reference allows a component to interact
with the component that it specifies, even when the pro-
ceeding and following components are at different com-
puters or when they move to other computers. The cur-
rent implementation of the referencing provides three types
of mobility-transparent interactions: publish/subscribe-
based remote event passing, remote method invocation,
and stream communication between computers. More-
over, each reference defines two migration policies for
two components, follow hook and dispatch hook, as fol-
lows:

• When a component declares a follow hook for an-
other component, if the following component moves,
the hook instructs the proceeding one to migrate to the
destination or to a proper host.

• When a component declares a dispatch hook for an-
other component, if the following component moves,
the hook instructs a copy of the proceeding one to mi-
grate to the destination or a proper host.

where the above proper hosts correspond to computers
whose capabilities can satisfy the requirements of the mi-
grated component and that may be spatially near from the
original destination when location sensing systems can lo-
cate computers. In the second hook, the original and clone
components run independently. Our relocation constraint is
similar to the dynamic layout of distributed applications
in the FarGo system [3], but the latter aims to allow one
or more components to control another, whereas the for-
mer aims to allow one component to describe its own mi-
gration, because our framework treats components as au-
tonomous entities that travel under their control from com-
puter to computer.3

3.2. Component Host

Each component host is a computer, and it provides a run-
time system for executing and migrating components to
other hosts. Each host establishes at most one TCP connec-
tion with each of its neighboring hosts and exchanges con-

2 For space reasons, detailed information is left to other papers [5].
3 This difference is important, because FarGo policies may conflict if

two components can declare different relocation policies for one sin-
gle component, whereas our framework is free from any conflicts be-
cause each component can only declare a policy for its own relocation
instead of other components.

trol messages, components, and inter-component communi-
cations with these through the connection.

Component Runtime Service Each runtime system is
built on the Java virtual machine, which conceals the dif-
ferences between the platform architecture of source and
destination hosts, such as the operating system and hard-
ware. Each runtime system governs all the components
inside it and maintains the life-cycle state of each compo-
nent. When the life-cycle state of a component changes,
e.g., when it is created, terminates, or migrates to an-
other host, the runtime system issues specific events to the
component. This is because the component may have to ac-
quire various resources or release them, such as files,
windows, or sockets, that it had previously captured.

Component Migration Service Each component host can
exchange components with another through a TCP chan-
nel with mobile agent technology. When a component is
transferred over a network, a component host on the send-
ing side marshals the code of the component and its state
into a bit-stream and then transfers it to the destination. An-
other component host on the receiving side receives and un-
marshals the bit-stream. The current implementation uses
the standard JAR file format for passing components that
can support digital signatures, allowing for authentication.
It also uses Java’s object serialization package for marshal-
ing components. The package can save the content of in-
stance variables in a component program but does not sup-
port the capturing of stack frames of threads. Instead, when
a component is marshaled and unmarshaled, the component
host propagates certain events to its components to instruct
them to stop their active threads, and then it automatically
stops and marshals them after a given period of time.

Migration-transparent Coordination Service The frame-
work also provides three interactions: publish/subscribe for
asynchronous event passing, remote method invocation, and
stream-based communication. Each runtime system offers a
remote method invocation (RMI) mechanism through TCP
connection, which is independent of Java’s RMI because
Java’s RMI lacks any reference updating mechanism in mi-
grating components. It also maintains a database that stores
pairs of identifiers for its connecting components and the
network addresses of the current component host.

Relocation Policy Management Service Each component
host periodically advertises its address around the other
component hosts by means of UDP multicasting, and then
these hosts return their addresses and capabilities, which are
written in CC/PP forms, to the host through a TCP channel.4

Next, we show how to relocate components. (1) When ar-
riving at a component host, each component automatically

4 We assume components that an application consists of initially are de-
ployed at hosts within a localized space smaller than the domain of a
sub-network for multicasting packets.

registers its policy with the host. (2) The host then sends a
query message to neighboring hosts that it knows have dis-
covered the component that in the policy or the proxy of
the related component the visiting component is related to.
(3-a) If a host has a component specified in the policy, it re-
turns information about itself and neighboring hosts that it
knows, e.g., network addresses and capabilities, within its
current networked or spatial domain to the source host of the
message. (3-b) If a host has the proxy of a component speci-
fied in the policy, it forwards the query message to the desti-
nation of the component. (4) When the specified component
migrates to another location, the destination host sends in-
formation about itself and neighboring hosts that it knows to
the host that sent the query message about the component.
(5) Each component, or its clone, selects one host from the
candidate destinations recommended by component hosts
and migrates to the selected host because this framework
treats every component as an autonomous entity. Moreover,
when the capabilities of a candidate destination do not sat-
isfy all the requirements of the component, the component
itself should decide on the basis of its own configuration
policy whether or not it will migrate itself to the destina-
tion and adapt itself to the destination’s capabilities.

3.3. Component Programming

Each component was implemented as a collection of Java
objects. Also, each component needed to be an instance of a
subclass of the MobileComponent class. Here, we while
explain some programming interfaces that characterized the
framework.

class MobileComponent extends MobileAgent
implements Serializable {
void go(URL url)

throws NoSuchHostException { ... }
setPolicy(ComponnetProfile cref,

MigrationPolicy mpolicy) { ... }
ComponentHost[] getDestinationHosts(

Domain dm) { ... }
void setComponentProfile(

ComponentProfile cpf) { ... }
boolean isConformableHost(

CCPPHostProfile hp) { ... }
ComponentProfile getComponentProfile(

ComponentRef ref) { ... }
....

}

Let us briefly explain some methods defined in the above
class.

• A component executes the go(URL url) method to
move to the destination host specified as the url by
its runtime system.

• Each component can declare its own migration policy
by invoking the setPolicy() method of the Com-
ponent class while it is running as follows:

setPolicy(cref,
new MigrationPolicy(Policy.FOLLOW));

setPolicy(cref,
new MigrationPolicy(Policy.DISPATCH));

The framework is open to the introduction of new
policies as long as they are subclasses of Migra-
tionPolicy for defining the migration policy.

• The getComponentHosts() returns a list of the
component hosts that satisfy the requirement and are
within a given domain specified as an instance of the
class Domain, which can defines a spatial scope and
network domain.

• Each component can specify a requirement that its des-
tination hosts must satisfy by invoking the setCom-
ponentProfile() and can easily decide whether
or not the capabilities of the component hosts speci-
fied as an instance of the CCPPHostProfile class
satisfy its requirements by invoking the isCon-
formableHost()method.

4. Initial Experience

This section outlines a typical mobile application devel-
oped with the framework. The application is a mobile ed-
itor and is composed of three partitioned components. The
first, called application logic, manages and stores text data
and should be executed on a host equipped with a powerful
processor and a lot of memory. The second, called a viewer,
displays text data on the screen of its current host and should
be deployed at hosts equipped with large screens. The third
is called a controller and forwards texts from the keyboard
of its current host to the first component. They have the fol-
lowing relocation policies. The application logic and con-
trol components have follow hook policies for the viewer
component to deploy themselves at the current host of the
viewer component or nearby hosts. As we can see from Fig-
ure 4, we assume that the three components are initially
stored in two hosts.

The system can track the movement of the user in a
physical space through an RFID-tag technology and in-
troduces a component, called a user-counterpart, that can
automatically move to hosts near the current location of
the user, even while the user is moving. That is, a user-
counterpart is always at a host near the user. Because the
viewer component had a follow hook policy to move the
user-counterpart component, it moves to the host that has
the user-counterpart or nearby hosts. When a user moves
to another location, the components could be dynamically
allocated at suitable hosts without losing any coordination
between them as we show in Figure 4. Although the cur-
rent implementation was not built for performance, we mea-
sured the group migration of the four components. The la-
tency of migrating the three components was 240 msec af-
ter migrating the counterpart component, where the cost of

component migration between two hosts over a TCP con-
nection was 40 msec.5

computer A

(with keyboad

and screen)

computer B (with high-performance

processor and memory)

computer B (with high-performance

processor and memory)

computer A

(with screen)

computer A

(with keyboad)

network

step 3

component

migration

step 4

component

migration

step 4

component migration

application

logic component

viewer

component

viewer

componnet

application

logic component

controller

component

controller

component

step 1

user movement

step 1

user movement

user
counter-part
component

user
counter-part
component

RFID-tracking

system

RFID-tracking

system

step 2

component migration

RFID-tag

RFID-tag

RFID-tag

Figure 4. Initial allocation of components for
editor-application.

5. Related Work

A research trend in pervasive computing is to aggregate
computational resources attached to different computers.
Several projects for the aggregation of computers in per-
vasive computing settings have been explored. For exam-
ple, EasyLiving [1] provides middleware for dynamically
aggregating networked-enabled input/output devices, such
as keyboards and mice, even when they are used with to
different computers. BEACH [6] is middleware for con-
structing collaborative applications through shared or dis-
tributed devices. Both approaches cannot dynamically de-
ploy components around different computers. Aura [2] is
an infrastructure for binding tasks associated with users
and migrating applications from computer to computer as
users move about. It focuses on providing contextual ser-
vices for users rather than integrating multiple computers
to support function and performance unattainable through
a single computer. Gaia [4] is an infrastructure for allow-
ing applications to be partitioned between different com-
puters and moving from computer to computer under its
centralized server instead of the applications themselves.
Most existing approaches, including BEACH and Gaia, as-
sume that applications are inherently designed based on
the model-view-control (MVC) approach, but many mod-
ern applications are constructed based on more complex ap-

5 This experiment was done with five component hosts (Pentium III-1.2
GHz with Windows XP and JDK 1.4) connected through a Fast Ether-
net network.

plication models, e.g., design patterns, rather than the tradi-
tional MVC model. Moreover, these existing systems as-
sume that centralized systems for managing computers ex-
ist so that they cannot support the requirement of each in-
dividual application. They are also not always scalable in
a widespread building-wide or city-wide system. To solve
these problems, the framework introduces the notion of re-
location constraint, called the hook policy. This notion en-
ables a federation of components to be organized among
heterogeneous computers in a self-organized manner.

6. Concluding Remarks

A novel framework for dynamically aggregating distributed
applications in ubiquitous computing environments was dis-
cussed. It is used to build an application from mobile agent-
based components, which can explicitly have policies for
their own deployment. It also supports most typical inter-
actions between partitioned applications on different com-
puters. It enables a federation of components to be dynam-
ically structured in a self-organized manner and to move
among heterogeneous computers that can provide the com-
putational resources required by the components. We de-
signed and implemented a prototype system for the frame-
work and demonstrated its effectiveness in several practical
applications.

References

[1] B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer,
EasyLiving: Technologies for Intelligent Environments, Pro-
ceedings of International Symposium on Handheld and
Ubiquitous Computing (HUC’00), pp. 12-27, September,
2000.

[2] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste,
Project Aura: Towards Distraction-Free Pervasive Comput-
ing, IEEE Pervasive Computing, vol. 1, pp. 22-31, 2002.

[3] O. Holder, I. Ben-Shaul, and H. Gazit, System Support for
Dynamic Layout of Distributed Applications, Proceedings of
International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Society, 1999.

[4] M. Román, C. K. Hess, R. Cerqueira, A. Ranganat, R. H.
Campbell, and K. Nahrstedt, Gaia: A Middleware Infrastruc-
ture to Enable Active Spaces, IEEE Pervasive Computing,
vol. 1, pp. 74-82, 2002.

[5] I. Satoh, Physical Mobility and Logical Mobility in Ubiq-
uitous Computing Environments, Proceedings of 6th Inter-
national Conference on Mobile Agents (MA’2002), LNCS,
vol. 2535, pp. 186-202, Springer, October 2002.

[6] P. Tandler Software Infrastructure for Ubiquitous Computing
Environments: Supporting Synchronous Collaboration with
Heterogeneous Devices, Proceedings of UbiComp’2001,
LNCS, vol. 2201, pp. 96-115, Springer, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

