
A Location Model for Pervasive Computing Environments

Ichiro Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ichiro@nii.ac.jp

Abstract

This paper presents a world model for location-aware and
user-aware services in ubiquitous computing environments.
It can be dynamically organized like a tree based on ge-
ographical containment, such as user-room-floor-building,
and each node in the tree can be constructed as an exe-
cutable software component. The model is unique to ex-
isting approaches because it can be managed by multiple
computers in an ad-hoc manner and it can provide a uni-
fied view of the locations of not only physical entities and
spaces, including users and objects, but also computing de-
vices and services. A prototype implementation of this ap-
proach was constructed on a Java-based mobile agent sys-
tem. This paper presents the rationale, design, implementa-
tion, and applications of the prototype system.

1 Introduction

Location is an essential part of contextual information,
which has turned out to be useful in many applications, par-
ticularly those for determining position, navigation, routing,
tracking, logistics, and monitoring of pervasive computing
devices. In fact, a variety of location-based services have
been investigated thus far, but most existing services inher-
ently depend on particular sensing systems, such as GPSs
and RFID-tags, and have inherently been designed for their
initial applications.

A solution to this problem would be to provide a lo-
cation model for pervasive computing services. Although
several researchers have explored such models, most exist-
ing models are not available for all pervasive computing,
because these need to be maintained in centralized database
systems, whereas the environments are often managed in
an ad-hoc manner without any database servers. Although
they have been only aimed at maintaining the locations of
people and objects in the physical world, the locations of
computing devices and software that define services are of-
ten required in pervasive computing. Therefore, we need a

general location model that can be used in pervasive com-
puting environments and that can specify logical and phys-
ical entities in a unified manner. This paper focus is on dis-
cussing the construction of such a model, called M-Spaces,
as a programming interface between location-sensors and
application-specific services in pervasive computing envi-
ronments.

In the remainder of this paper, we outline an approach
to building and managing location-based and personalized
information services in pervasive computing environments
(Section 2), the design of our framework (Section 3), and
an implementation of the framework (Section 4). We de-
scribe some experience we have had with several applica-
tions, which we used the framework to develop (Section 5).
We briefly review related work (Section 5), provide a sum-
mary, and discuss some future issues (Section 6).

2 Background

This paper proposes a location model for managing
location-based and personalized services in indoor settings,
e.g., building and houses, rather than outdoor ones.

2.1 Requirements

Pervasive computing environments have several unique re-
quirements as follows:

• Mobility: Not only entities, e.g., physical objects and
people, but also computing devices can be moved from
location to location. Our location model is required
to be able to represent mobile computing devices and
spaces as well as mobile entities. Furthermore, it needs
to be able to model mobile spaces, e.g., cars, which
may contain entities and computing devices.

• Heterogeneity: A pervasive computing environment
consists of heterogeneous computing devices, e.g.,
embedded computers, PDAs, and public terminals.
Location-based and personalized services must be exe-
cuted at computing devices whose capabilities can sat-

isfy the requirements of the services. The model is
required to maintain the capabilities of computing de-
vices as well as their locations.

• Availability: Pervasive computing devices may have
limited memories and processors, so they cannot sup-
port all the services that they need to provide. Software
must be able to be deployed at computing devices only
while they are wanted. The model should be able to
manage the (re)location of service-provider software.

• Absence of centralized databases: Since perva-
sive computing devices are organized in an ad-hoc
and peer-to-peer manner, they cannot always access
database servers to maintain location models. The
model should be available without database servers en-
abling computing devices to be organized without cen-
tralized management servers.

There have been many attempts to construct location mod-
els for pervasive computing environments, e.g., NEXUS
[12, 2], Cooltown [13], RAUM [4] Sentient Comput-
ing [11], EasyLiving [5], and Virtual Counterpart [19].
However, unfortunately most of these have been inher-
ently designed for particular location sensing systems or
application-specific services and need centralized database
servers outside them to maintain their location models.
Therefore, we need to construct a new location model for
pervasive computing environments.

2.2 Design Principles

Existing location models can be classified into two types:
physical-location and symbolic-location [3, 4, 15]. The for-
mer represents the position of people and objects as geomet-
ric information. A few outdoor-applications like moving-
map navigation can easily be constructed on the former.
Most emerging applications, on the other hand, require a
more symbolic notion: place. Generically, place is the
human-readable labeling of positions, e.g., the names of
rooms and buildings. An object contained in a volume is
reported to be in that place. This paper addresses symbolic
location as an event-driven programming model for perva-
sive computing environments. For example, when people
enter a place, services should be provided from their own
portable terminal or their own stationary terminals should
provide personalized services to assist them. Our model
also introduces a containment relationship between spaces,
because physical spaces are often organized in a contain-
ment relationship. For example, each floor is contained
within at most one building and each room is contained
within at most one floor. Our model also has the follow-
ing features:

Virtual counterparts: It introduces the notion of coun-
terparts as digital representations of physical entities or

spaces. An application does not directly interact with phys-
ical objects and places, but with their virtual counterparts.
The model spatially binds the positions of entities and
spaces with the locations of their virtual counterparts and,
when they move in the physical world, it deploys their coun-
terparts at proper locations within it.

Unified view: The model can maintain the locations and
capabilities of computing as well as those of physical en-
tities and services. It also manages the deployment of
application-specific services according to changes in the
locations of physical entities, spaces, and computing de-
vices. That is, the model does not distinguish between
physical entities, spaces, computing devices, including self-
maintaining computers, or application-specific services.

Sensor-independence: Location-sensing systems can be
classified into two types: tracking and positioning systems.
The former, including RFID tags, measures the location of
other objects. The latter, including GPS, measures its own
location. Since it is almost impossible to support all kinds
of sensors, the model aims at supporting various kinds of
tracking sensors, e.g., RFID-, infrared-, or ultra-sonic tags
and computer vision, as much as possible. As the model can
have a mechanism for managing location-sensors outside
itself, it has been designed independently of sensors. 1

Extensibility: The model can be managed by one or more
computers, which may also offer application-specific ser-
vices. It provides a demand-driven mechanism, which was
inspired by ad-hoc mobile networking technology [17], that
discovers the computing devices and services that are re-
quired. It also enables service-provider software to be dy-
namically deployed at computing devices, but only when
the software is wanted.

Local Interaction: People often want to communicate
with someone in front of them rather than with people in
another room. Services running on a device should be valid
within the bounding region surrounding the device, limiting
their presence in space. An entity, including a person or the
computing device’s surrounding scope can be a medium,
e.g., visual, audio, or hand-manipulation, which enables it
to interact with devices. The model enables each entity to
specify the scope within which it can receive services run-
ning on the device according to the media between the entity
and the device.

3 World Model

This section presents a symbolic model for location-based
and personalized services in pervasive computing environ-
ments.

1The model transforms geometric information about the positions of
objects into corresponding containment relations.

Aura Component (AC)

Proxy Component (PC)

VC (user 1)

VC (room)

VC

(table)

VC

(desktop lamp)

TV

(legacy device)

PC

room

desktop lamp

table
user 1user 2

Virtual Counterpart Component (VC)

PCS

(PC)
PCL

(TV)

VC (room)
PC

TV

correlation

correlation

room

VC (user 2)

range of hand-manipulation

AC

(range of hand-manipulation)

VC (user)

user

correlation

legacy communication

network

Figure 1. Four types of components (VC, PC,
AC, and SC)

3.1 Containment Relationship Model

Our model consists of software elements, called compo-
nents, which are not only digital representations of people,
objects, or spaces in the physical world but also proxies of
the computing devices and services themselves.

• Virtual counterpart: Each component is a virtual
counterpart of a physical entity, place, or computing
device and maintains its target’s attributes.

• Containment relationship: Each component can be
contained within at most one component according to
the containment relationships between entities, places,
and computing devices. It can move between compo-
nents as a whole with all its inner components.

• Movement range: Each component can confine the
range of its movement within a specified component
that nests it and cannot move beyond this range.

Components are organized within an acyclic-tree structure,
like Unix’s file-directory. When a component contains other
components, we call the former component a parent and
the latter components children. When a component carries
another component beyond the latter’s range, the latter re-
mains within the range or terminates. Each component can
explicitly have a substitute or representation of it within its
descendants, like Unix’s symbolic link. The substitute is
still a component but has no attributes. When it receives

components or control messages, it automatically forwards
the visiting components or messages to its original compo-
nent.

3.2 Component

Components can be classified into four types (Figure 1).

• Virtual Component (VC) is a digital representation
of a physical entity or space in the physical world.

• Aura Component (AC) is a virtual or semantic scope
surrounding a physical entity or computing device.

• Proxy Component (PC) bridges the world model and
computing device, and maintains the subtree of the
model or executes services located in the VC.

• Service Component (SC) is a software module that
defines application-specific services associated with
physical entities or places.

Containment relationships between components reflect on
the structural containment relationships among entities,
e.g., people and things, spaces, i.e., rooms and floors, and
computing devices by using location-sensing systems, as
we can see from Figure 2. For example, when a person
moves from the coverage area of one sensor to the cover-
age area of another sensor, the model detects and moves
the VC corresponding to the moving person from the VC
corresponding to the source location and then the VC cor-
responding to the destination location. If the person has a
computing device, the VC corresponding to the person car-
ries the PC corresponding to the device. When one or more
spaces, e.g., the coverage areas of sensors, geographically
may overlap, our model simply treats these spaces as coex-
istent components.2

Virtual Component (VC)

A person, physical object, or place can have more than one
VC and each VC can contain other VCs, ACs, and PCs ac-
cording to spatial containment relationships in the physical
world. Unlike other existing location models, our model
does not distinguish between entities and places in the phys-
ical world; some entities can be viewed as spaces, e.g., cars
and desks, in the sense that they can contain other entities
inside them. It also permits places to be mobile. For ex-
ample, a car carries two people and moves from location
to location with its occupants. The VC for the car contains
two VCs corresponding to the two people and migrates from
the VC corresponding to the source location to the VC cor-
responding to the destination location as a whole with its
inner components.

2When the model detects such redundancy, it allows one of the two VCs
corresponding to the spaces to contain a component bound to the entity and
the other to contain a substitute for the component.

room 1

room 2
room 3

computer A

floor

computer B person

PDA

VC (floor)

VC (room 1)

VC
(room 2) VC (room 3)

PC

(computer B)

PC (computer A)

VC (person)
PC (PDA)

SC

(service)
SC

(service)

corelation

Figure 2. Rooms on floor in physical world
(left) and their counterpart components in lo-
cation model.

Aura Component (AC)

Several researchers on virtual-reality (VR) have provided
the notion of virtual scope, often called aura, where inter-
actions between two objects in a VR become possible only
when the object scopes collide or overlap [6, 10]. In perva-
sive computing environments, interaction between people
and computing devices should be possible when they are
within a specified scope.

• Each entity or computing device can have more than
one virtual scope, called an aura, surrounding it. The
scope is implemented as a derivation of VC, called AC
(Aura Component).

• An entity can only receive services running on a device
while it is within the device’s aura and the device is
within the entity’s aura.

An AC is a virtual bounding-scope depending on media,
e.g., visual, audio, and hand-manipulation, between the en-
tity and device. Each aura surrounding an entity or com-
puting device is a child of the component corresponding to
the entity or device, although the aura may spatially contain
the entity or device. The model allows each aura to define
its own shape and size. For example, a person may have a
half-meter sphere so that he or she can directly manipulate
devices and a computing device may have an aura of a few-
meters corresponding to the range of visibility on its screen.
Each AC surrounding an entity can deploy (or fetch) soft-

ware to define application-specific services at devices (or
from VCs or PCSs) within it.

aura (range of hand-manipulation) aura (range of visibility)

movement

step 2

step 1

aura (range of hand-manipulation)

aura

(range of visibility)

Figure 3. Auras for range of user’s hand-
manipulation and for range of computer’s vis-
ibility.

VC

PCS VC

SC

forwarding
computer 1 for

executing service module

computer 2 for

managing space model

migration

(a) Proxy Component for Services (PCS)

software

module

VC

PCL VC

VC

communcation

computer 1

computer 2 for

managing space model

service request

black

box

(b) ProxyComponent for Legacy computing device (PCL)

Figure 4. Two types of proxy components

Proxy Component (PC)

VCs and ACs can have software to define the context-
dependent services inside them. However, they may not
have the ability for executing the software inside them, be-
cause all the computing devices that maintain those do not
have unlimited computational resources. Instead, there are
two facilities by which services can be provided. The first is
to deploy such a service at a computing device embedded in
or visiting a space and execute it on the device. The second
is to directly use the service provided by a computing de-
vice within a space. Therefore, the model treats computing
devices as the following two subtypes of PCs to naturally

maintain the location of computing devices and use the de-
vices as service providers.

• PCS (PC for Service provider) is a proxy of a comput-
ing device that can execute services (Figure 4(a)). If
such a device is in a place, its proxy is contained in the
VC corresponding to the space. When a PCS receives
software for defining services, it forwards the software
to the device that it refers to.

• PCL (PC for Legacy device) is a proxy of a computing
device that cannot execute SCs (Figure 4(b)). If such
a device is in a space, its proxy is contained in the VC
corresponding to the space and communicates with the
device through the device’s favorite protocols.

These components are unique to other existing location
models and are useful in naturally maintaining and using
computing devices.

Service Component (SC)

We should reuse existing location-based and personalized
services as much as possible. The model introduces several
typical software components, e.g., Java Beans and Java Ap-
plets as service provider programs. However, such existing
components may not be suitable in our model. Each SC is a
wrapper for software modules to define application specific
services and each specifies the attributes of its services, e.g.,
the requirements that a device must satisfy to execute those
services. The model maintains the locations of services by
using SCs.

VC

PCM VC

VCVC VC VC VC

mountcomputer 1 for

managing space model 1

computer 2 for

managing space model 2

reference

Link Component (LC)

Figure 5. Attachment of location model to an-
other location with LC

4 Prototype Implementation

This section presents a prototype implementation of our lo-
cation model. Although the model itself is independent
of any programming languages, the current implementation
is built on a Java-based mobile agent system, called Mo-
bileSpaces [21].

4.1 Component Management System

The MobileSpaces system enables agents to be organized in
a tree structure and to migrate to other agents, which may be
on different computers, with their inner agents. Therefore,
it can naturally and easily support a component hierarchy
and migrate components between computers. After this, we
will explain how to implement other features of the model
in the current prototype system.

Distributed Model Management

Our model can be maintained in more than one pervasive
computing device. It introduces a component, called Link
Component (LC). Each LC is a proxy for a subtree that its
target computing device maintains and is located in the sub-
tree that another computing device maintains. As a result, it
attaches the former subtree to the latter (Figure 5). When it
receives other components or control messages, it automat-
ically forwards them to the device that it refers to (and vice
versa). Therefore, even when the model consists of subtrees
that multiple computing devices maintain, it can be treated
as a single tree.

OS/Hardware

computer 1 computer 2

Transport Protocol
TCP session

Location
Model

Management

Component
Event

Management

Component
Deployment

Service

Java Virtual Machine

OS/Hardware

Transport Protocol

Component
Deployment

Service

Component
Event

Management

Location
Model

Management

Java Virtual Machine

component

migration

Component G

Component H Component I

Component J

Component K

Component D

Component C Component E Component F

Component A

Component D

Component E Component F

Component B

DEF

serialized components

network

Figure 6. Component migration between com-
puters

Component Deployment Management

Component migration in a tree maintained by a computer
is done merely as a transformation of the tree structure of
the hierarchy (Figure 7). When a component is moved to
other components on different computers, a subtree whose
root corresponds to the component and its descendent com-
ponents are marshalled into a bit-stream with digital sig-
natures for authentication and are transmitted to the des-
tination through a TCP connection.3 After they arrive at
the destination, they can continue with their processing, be-
cause not only their program codes but also their states are

3The current implementation marshals components by using Java ob-
ject serialization and supports the notion of weak migration [14].

transferred to the destination like mobile agents. If compo-
nents have a reachable range for their movements, the sys-
tem disallows them from traveling beyond the range. The
system send events, e.g., changing, entering, and leaving, to
components when they enter or leave other components, or
another component enters or leaves them.

Component A

migration
Component D

Comp-

onent E

Component C

Component F

Component A

step 1 step 2

Component D

Component B

Component E

Component C

Component F

Component A

Component B

Component B

Component EComponent D

Component F

Component C

Component A

Component B Component C

Component E

Component F

migration
Component D

mapping migration

Figure 7. Component containment and migra-
tion

4.2 Location-Sensor Management System

To bridge location-sensors and devices that maintain sub-
trees, the model introduces location-management systems,
called LSMs, outside the component management systems.
Each LSM manages location sensors and exchanges infor-
mation between other LSMs in a peer-to-peer manner. This
is a lightweight system because it can be operated on em-
bedded computers initially designed to manage sensors, or
computers that can maintain the model or execute applica-
tion services. Hereafter, we will assume that entities and
computing devices have been attached with radio-frequency
(RF), infrared, or ultra-sonic tags that can passively or ac-
tively notify their own identifiers to sensors.

Monitoring Location-Sensors

When an LSM detects changes in the position or presence
of a tag in the coverage area of the sensor that it manages,
it tries to resolve the tag (Figure 8). There are two possible
scenarios, either the tag may be attached to an entity, or it
may be attached to a computing device. The LSM detects
VCs or PCs bound to the entity or device in the subtree that
contains the VC or AC bound to the area in a breadth-first-
search (BFS). This is because such new tags often emanate
from one of their neighboring spaces or their surrounding
space. If the LSM cannot discover any VCs or PCs in the
first step, it multicasts a query message with the identifier
of the tag to other LSMs and computing devices that are
maintaining their subtrees. The LSMs or devices that know
where these the VCs or PCs are located send reply messages

to the multicasting LSM. If LSMs manage sensors that can
measure geometric locations, they can define one or more
virtual spaces within the coverage areas of their sensors and
transform the geometric positions of entities within the ar-
eas into qualitative information concerning the presence or
absence of entities in the spaces.

peer-to-peer

communication

LSM System LSM System

reception layer

abstraction layer

reception layger

abstraction layer

fusion layer

communication layer

VC (room)

AC (sensor 1) AC (sensor 2)

PCS (PDA)

VC (person 1) VC (person 2)VC (person 1)

step 1:

search (BFS)

component migration

VC (room)

LC (tree 1) AC (sensor 3)

PCL (TV)

PCS (PDA)

VC (person 2)

reference

step 1:

search (BFS)

component migration

reception layger

abstraction layer

fusion layer

communication layer

step 2:

multicast query message

step 2:

multicast query message

Component Manager Component Manager

tag

user 1

movement movement

AA

user 2

PDA

sensor 1 sensor 2 sensor 3

TV

Figure 8. LSM discovers VCs or PCs bound to
visiting tags

Location-based Deployment of Components

When an LSM detects the presence/absence of an entity or
device in an area, it configures the model that is maintaining
the VC or AC bound to the area.

• If a new tag is bound to an entity, the VC bound to the
entity is deployed at the VC or AC bound to the area
that contains the entity. Also, the LSM sends events
to the area’s VC or AC and informs the entity’s VC
about computing devices within the area. If the VC
or AC has services and the devices can satisfy their
requirements, it deploys the services at the devices.

• If a new tag is bound to a computing device, the PCS
or PCL bound to the device is deployed at the VC or
AC bound to the area that contains the device. The
LSM sends events to the PCS or PCL and informs the
area’s VC or AC about the device’s capabilities. If the
VC or AC has services and the device can satisfy the
requirements for these, it deploys them at the PCS.

4.3 Component

In the current implementation, all components are defined
as a subclass of abstract class Component, which had

some built-in methods that were used to control its mobility
and life-cycle.

class Component extends MobileAgent {
void setIdentity(String name) { ... }
void add(Component comp) throws NoSuchComponent { .. }
void remove(Component comp) throws ... { .. }
ComponentInfo getParentComponent() { ... }
ComponentInfo[] getChildren() { ... }
....

}

By invoking setIdentity, a component can assign the
symbolic name of the physical entity or space that it repre-
sents. When a component invokes the add (or remove)
method, it contains the component specified as comp inside
it (or extracts the component specified as comp from itself).

Virtual Component (VC) Each VC is defined as a sub-
class of abstract class VirtualComponent and is bound
to at least one entity or space in the physical world. By
invoking setAttribute, each VC can explicitly record
attributes about its entity or space, e.g., owner, position,
shape, and size. A VC can have SCs for defining services
and it also allows them to access the service methods pro-
vided by the components contained within it by invoking
the getAncestorServices method with a keyword to
obtain a list of suitable SCs.

class VirtualComponent extends Component {
void setAttribute(String attr, String val) { ... }
void registryService(SerivceProvider sp,

VirtualComponent aura) { ... }
ServiceInfo[] getAncestorServices(String name,

Method meth) { ... }
Object execService(ServiceInfo si, Message msg)

throws NoSuchServiceException { ... }
....

}

Aura Component (AC) ACs are implemented as deriva-
tions of VCs and inherit the features of the Virtual-
Component class. As VCs, they can carry services and
deploy these at computing devices. For example, moving
users may also want to constantly change the computers
with which they interacts. That is, their services should be
dynamically deployed by computers near them to assist or
support them. The user’s aura has a bounding scope and
contains such services. When a user moves to another room,
his or her VC migrates to a VC corresponding to a room
with services. The VC deploys the services at appropri-
ate computing devices whose computational resources can
satisfy their requirements (within the scope of the aura) to
execute these services on the devices. The model allows
each computing device to specify its capabilities in CC/PP
(composite capability/preference profile) form [28].

Proxy Component (PC) PCSs and PCLs are key ele-
ments in the model. Each PCS is a representation of a com-

puting device that can execute SCs. When it receives a soft-
ware module, a PCS automatically forwards its visiting SCs
to its target device through an HTTP-based communication
protocol. If the device supports Java’s object serialization
mechanism, the device’s PCS can forward both the classes
and state of the SCs to the device. Otherwise, the PCS can
also extract Java classes from the modules and deploy only
the classes at the device. Each PCS allows other compo-
nents to fetch modules and access the methods of the SCs
that are forwarded to each PCS’s target device as if they
were in it. Each PCL is located at a VC bound to a space
that contains its target device and establishes communica-
tion with its target device through the device’s favorite pro-
tocol, e.g., serial communication and infrared signals. Note
that a computing device can have one or more PCs, which
may be.

Service Component (SC) SCs are defined as subclasses
of the Component class. The model enables SCs to spec-
ify preferable and minimal capabilities for computing de-
vices that they may visit in CC/PP form, e.g,, device types
(Desktop PC, Notebook PC, or PDA), screens, and input
devices. It permit Java Beans or Applets, which are widely
used, to be wrapped by special SCs to be treated as children
of VCs, ACs, and PCs.

4.4 Current Status

A prototype implementation of this model was built with
Sun’s J2SE version 1.4.4 It uses the MobileSpace mo-
bile agent system to provide mobile components and sup-
ports three commercial locating systems: Elpas’s system
(infrared tag sensing system), RF Code’s Spider (active RF-
tag system), and Alien Technology’s UHF-RFID tag (pas-
sive RF-tag system).

Although the current implementation was not built for
performance, we measured the cost of migrating a 4-Kbyte
component (zip-compressed) from the source to the desti-
nation recommended by an LSM over a network. The la-
tency of component migration to the destination after the
LSM had detected the presence of the component’s tag was
390 msec and the cost of component migration between two
hosts over a TCP connection was 41 msec. This experiment
was done with two computing devices that maintain com-
ponent tree, and source and destination computing devices,
each of which was running on one of six computers (Pen-
tium M-1.6GHz with Windows XP and J2SE ver. 5) con-
nected through a Fast Ethernet network. We believe that this
latency is acceptable for a location-aware system used in a
room or building.

4The functionalities of the framework except for subscribe/publish-
based remote event passing can be implemented on Java Developer Kit
version 1.1 or later versions, including Personal Java.

5 Experience

We have had experience with this model in developing and
operating several typical applications for location-based and
personalized services. Since some of these have been pre-
sented in previous papers [22, 23] independent of the model,
this section addresses the use and advantages of the model.

5.1 Location-based Navigation Systems

The first example is a user navigation-system application
running on portable computing devices, e.g., PDAs, tablet-
PCs, and notebook PCs. The initial result on the system
were presented in a previous paper [23]. There has been
many research or commercial systems for similar types of
navigation, e.g., CyberGuide [1] and NEXUS [12]. Most
of these have assumed that portable computing devices are
equipped with GPSs and are used outdoors. Our system
is aimed at use in a building. As a PDA enters rooms, it
displays a map with its current position. We assumed that
each room in the building would have a coverage of more
than one RF-tag reader managed by an LSM, the room is
bound to a VC that had a service module for location-based
navigation, and each PDA could execute service modules
and be attached to an RF-tag. When a PDA enters a room,
the RF-tag reader for the room detects the presence of the
tag and the LSM tries to discover the component bound to
the PDA through the procedure presented in the previous
section. After it has information about the component, i.e.,
a PCS bound to a PDA, it informs the VC corresponding to
the room about the capabilities of the visiting PDA. The VC
then deploys a copy of its service module at the PCS and the
PCS forwards the module to the PDA to which it refers, to
display a map of the room. When the PDA leaves the room,
the model issues events to the PCS and VC and instructs the
PCS to return to the VC. Figure 9 outlines the architecture
for the system and shows the screen of a service module
running on a visiting PDA displaying a map on the PDA’s
screen.

RFID Reader

PDA with RF-tag

computer

location-dependent map
viewer SC

Figure 9. RF-tag-based location-aware map-
viewer service.

5.2 Follow-Me Applications

Follow-me services are a typical application in pervasive
computing environments. For example, Cambridge Univer-
sity’s Sentient Computing project [11] enabled applications
to provide a location-aware platform using infrared-based
or ultrasonic-based locating systems in a building.5 While
users are moving around, the platform can track their move-
ments so that the graphical user interfaces of their applica-
tions can follow them and be displayed on the screens of
computers near them through the VNC system [18]. The
model presented in this paper, on the other hand, enables
the movement of users to be naturally represented indepen-
dent of location sensing systems. Unlike previous studies
on applications, it can also migrate applications themselves
to computers that are near moving users.

The model binds a user with a VC and two computers
with PCSs that contain two ACs surrounding both of them,
where each AC defines the range of visibility as a one-meter
sphere surrounding its target computer. As we can see from
Figure 10, when a user comes near a computer, the model
deploys the user’s VC at the computer’s AC. The VC then
finds the PCS that refers to the computer via the AC. The
user’s VC deploys applications stored in the user’s AC at
the PCS so that the applications can execute on the com-
puter. When the user moves to another computer, the model
removes the user’s VC from the AC and the VC fetches
its applications from the previous computer via the PCS.
It then allows the user’s VC to contain the PCS that refers
to the computer at the destination. The current implementa-
tion uses an active RF-tag system (RF-Code Spider system).
Since the system can change the coverage of its readers, we
can control the scopes of the two ACs.

5.3 Personal Server

The third example is similar to the second, but it was in-
spired by the personal server proposed by Want [27]. By us-
ing this model, we could easily implement interactions be-
tween personal servers and stationary computers, i.e., wall-
mounted smart displays and public terminals. A user car-
ried a handheld file-sharing server that had no integral user
interface, but had a processor, and secondary storage, and
a wireless LAN network interface and was tied to an ac-
tive RF-tag. When he or her approached a stationary com-
puter, his or her personalized services were dynamically de-
ployed at smart TVs. The user had a VC as a digital rep-
resentation of him or her in the model and this contained a
PCL bound to a personal server that supported a file-sharing
server for maintaining images and the SC that defined an

5Although the project does not report their world model, their systems
seem to model the position of people and things through lower-level results
obtained from their underlying location sensing systems.

SC

VC (room)

PCS (right PC)

computer 1

migration

PCS (left PC)

movement

component migration

computer 1

computer 1

computer 2

computer 2

left

RFID-

reader

right

RFID-

reader

left

RFID-

reader

right

RFID-

reader

step 1

step 2

AC
(left RFID

reader)

AC
(left RFID

reader)
forwarding

SC

SC

computer 2

SC

VC
(user)

SC

VC (room)

PCS (right PC)

computer 1

migration

PCS (left PC)

AC
(left RFID

reader)

AC
(left RFID

reader)

SC

SC

computer 2

SC

VC
(user)

forwarding

Figure 10. Follow-me desktop applications
between two computers.

image viewer. A smart TV had a PCS that referred to itself
and has an AC for specifying the range of visibility between
the user and the TV. When he or she moved to the TV with
his/her personal server, the model deployed the PCL bound
to the server at the AC surrounding the TV. The PCL then
communicated with the TV’s PCS so that he or she viewed
stored stored in the server on the screen of the TV (Fig-
ure 11). We developed a mechanism that enabled personal
servers and embedded computer [16] to communicate the
PCL could gathers image data from the server and then dis-
play the image data through this mechanism.

personal

server

smart TV

smart TV

personal server

TV's visible range

AC

(TV's visible

range)

PCS (TV)

VC

(user)

PCL

(personal server)

SC

(image

viewer)

Figure 11. Smart TV executes PCL to access
image data from personal server to display
GUI on screen of TV.

6 Related Work

There has been a great deal of research and commercial
location-based information services, e.g., GUIDE [7] Con-
text Toolkit [20], and commercial GIS software. Most
existing services, e.g., map viewer and tourist navigation,
have been designed to run on portable computing devices

equipped with GPSs and have been dependent on their ini-
tial application-specific services. They lack any general
world model or are inherently based on geometric infor-
mation measured from GPSs. Of these, NEXUS [12, 2]
and Cooltown [13] can transform geometric information
measured from GPSs into references in a symbolic world
model so that they can determine the positions of objects
by identifying the spatial regions that contain these objects.
However, they do not support tracking sensors, which can
measure the location of other objects, e.g., RFID. Sentient
Computing [11] and EasyLiving [5] were aimed at building
smart rooms and supported ultra-sonic or computer-vision-
based tracking sensors instead of positioning sensors. They
do not support other locating systems.

ParcTab [26], Leonhard’s zone model [15], Aura [9], and
RAUM [4] offer symbolic models as a set of names or ref-
erences to places, independent of sensing systems. Like
our model, they can represent containment relationships be-
tween entities and places. ParcTab and Leonhard’s zone
model were aimed at representing the location of people
and physical objects. The RAUM model can represent the
location of pervasive computing devices like ours. How-
ever, these existing models cannot manage the location and
deployment of services and assume that their location mod-
els are maintained in a centralized database server. Virtual
Counterpart [19] supports RFID systems and provides ob-
jects attached to RFID-tags with Jini-based services. Since
it enables objects attached to RFID-tags to have their coun-
terparts, it is similar to our model. However, it only supports
physical entities other than computing devices and places,
whereas our model cannot distinguish between physical en-
tities, places, or software-based services.

The model presented in this paper was initially inspired
by our previous work, called SpatialAgents, which is an
infrastructure that enables services to be dynamically de-
ployed at computing devices that are near people and ob-
jects [23]. The previous framework unfortunately lacked
any location model and could not represent any structural
relationships between physical spaces, e.g., containment re-
lationships between rooms and buildings. We also pre-
sented a framework for dynamically deploying software
components [24], but it was aimed at the self-organization
of distributed systems and lacked any location model. One
goal with the model presented in this paper was to provide a
general-purpose location model for the previous two frame-
works.

7 Conclusion

We presented a location model for developing and man-
aging context-aware services, e.g., those that are location-
aware and personalized, in pervasive computing environ-
ments. Like other existing related models, it can be dynam-

ically organized like a tree based on geographical contain-
ment and each node in the tree can be constructed as an
executable software component. It is unique to other mod-
els, because it can provide a unified view of the locations
of not only physical entities including users, objects, and
spaces but also of computing devices and service-provider
software. It was designed to provide context-aware services
for physical entities rather than model the locations of phys-
ical entities and places. We also designed and implemented
a prototype system based on the model and demonstrated its
effectiveness in several practical applications.

Finally, we would like to identify further issues that need
to be resolved in the future. We need to develop more appli-
cations with the model. Since the prototype implementation
presented in this paper is constructed on Java but the model
itself is independent of the language, we are therefore in-
terested in developing it with other languages. We plan to
design more elegant and flexible APIs for the model by in-
corporating existing spatial database technologies. We are
interesting in designing a query language for mobile enti-
ties and spaces by extending the Ambient calculus [8]. We
also plan to apply the model to software testing for location-
based mobile computing [22, 25].

References

[1] G.D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and
M. Pinkerton, “Cyberguide: A Mobile Context-Aware Tour Guide”.
ACM Wireless Networks Vol. 3, pp.421–433. 1997.

[2] M. Bauer, C. Becker, and K. Rothermel, Location Mmodels from
the Perspective of Context-Aware Applications and Mobile Ad Hoc
Networks, Personal and Ubiquitous Computing, vol. 6, Issue 5-6, pp.
322-328, Springer, 2002.

[3] C. Becker, Context-Aware Computing, Tutorial Text in IEEE Interna-
tional Conference on Mobile Data Management, (MDM’2004), Ja-
nuray 2004.

[4] M. Beigl, T. Zimmer, C. Decker, A Location Model for Communicat-
ing and Processing of Context, Personal and Ubiquitous Computing,
vol. 6 Issue 5-6, pp. 341-357, Springer, 2002.

[5] B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer, EasyLiv-
ing: Technologies for Intelligent Environments, Proceedings of In-
ternational Symposium on Handheld and Ubiquitous Computing, pp.
12-27, 2000.

[6] C. Carlsson, and O. Hagmnd, DIVE: A platform for multi-user vir-
tual environments Computer and Graphics. vol. 17, no. 6, pp. 663-
669, 1993.

[7] K. Cheverst, N. Davis, K. Mitchell, and A. Friday, Experiences of
Developing and Deploying a Context-Aware Tourist Guide: The
GUIDE Project, Proceedings of Conference on Mobile Computing
and Networking (MOBICOM’2000), pp. 20-31, ACM Press, 2000.

[8] L. Cardelli and A. D. Gordon, Mobile Ambients, Foundations of
Software Science and Computational Structures, LNCS, Vol. 1378,
pp. 140-155, Springer, 1998.

[9] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, ” Project
Aura: Towards Distraction-Free Pervasive Computing, IEEE Perva-
sive Computing, vol. 1, pp. 22-31, 2002.

[10] C. Greenhalgh and S. Benford, MASSIVE: A Collaborative Virtual
Environment for Teleconferencing ACM Transactions on Computer-
Human Interaction, vol 2, no. 3, September 1995.

[11] A. Harter, A. Hopper, P. Steggeles, A. Ward, and P. Webster, The
Anatomy of a Context-Aware Application, Proceedings of Confer-
ence on Mobile Computing and Networking (MOBICOM’99), pp.
59-68, ACM Press, 1999.

[12] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm,
Next Century Challenges: Nexus - An Open Global Infrastructure for
Spatial-Aware Applications, Proceedings of Conference on Mobile
Computing and Networking (MOBICOM’99), pp. 249-255, ACM
Press, 1999).

[13] T. Kindberg, et al, People, Places, Things: Web Presence for the Real
World, Technical Report HPL-2000-16, Internet and Mobile Systems
Laboratory, HP Laboratories, 2000.

[14] B. D. Lange and M. Oshima, Programming and Deploying Java Mo-
bile Agents with Aglets, Addison-Wesley, 1998.

[15] U. Leonhardt, and J. Magee, Towards a General Location Service for
Mobile Environments, Proceedings of IEEE Workshop on Services
in Distributed and Networked Environments, pp. 43-50, IEEE Com-
puter Society, 1996.

[16] T. Nakajima and I. Satoh, Personal Home Server: Enabling Person-
alized and Seamless Ubiquitous Computing Environments, Proceed-
ings of 2nd International Conference on Pervasive Computing and
Communications (PerCom’2004), pp.341-345, IEEE Computer So-
ciety, March 2004.

[17] C. E. Perkins, “Ad Hoc Networking”, Addistion Wesley, 2001.

[18] T. Richardson, Q, Stafford-Fraser, K. Wood, A. Hopper, Virtual Net-
work Computing, IEEE Internet Computing, Vol. 2, No. 1, 1998.

[19] K. Romer, T. Schoch, F. Mattern, and T. Dubendorfer, Smart Identi-
fication Frameworks for Ubiquitous Computing Applications, IEEE
International Conference on Pervasive Computing and Communi-
cations (PerCom’03), pp.253-262, IEEE Computer Society, March
2003.

[20] D. Salber, A. K. Dey, and G. D. Abowd, The Context Toolkit: Aid-
ing the Development of Context-Enabled Applications, Proceedings
of Computer-Human Interaction (CHI’99), pp.15-20, ACM Press,
1999.

[21] I. Satoh, MobileSpaces: A Framework for Building Adaptive Dis-
tributed Applications Using a Hierarchical Mobile Agent System,
Proceedings of International Conference on Distributed Computing
Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April
2000.

[22] I. Satoh, A Testing Framework for Mobile Computing Software,
IEEE Transactions on Software Engineering, vol. 29, no. 12,
pp.1112-1121, December 2003.

[23] I. Satoh, Linking Phyical Worlds to Logical Worlds with Mobile
Agents, Proceedings of International Conference on Mobile Data
Management (MDM’2004), IEEE Computer Society, January 2004.

[24] I. Satoh, Dynamic Federation of Partitioned Applications in Ubiq-
uitous Computing Environments, Proceedings of 2nd International
Conference on Pervasive Computing and Communications (Per-
Com’2004), pp.356-360, IEEE Computer Society, March 2004.

[25] I. Satoh, Software Testing for Wireless Mobile Computing, IEEE
Wireless Communications, vol. 11, no. 10, pp.58-64, October 2004.

[26] R. Want, B. Schilit, A. Norman, R. Gold, D. Goldberg, K. Petersen, J.
Ellis, and M. Weiser, An Overview of the Parctab Ubiquitous Com-
puting Experiment, IEEE Personal Communications, Vol 2. No.6,
pp28-43, December 1995.

[27] R. Want, The Personal Server - Changing the Way We Think about
Ubiquitous Computing, Proceedings of 4th International Conference
on Ubiquitous Computing (Ubicomp 2002), LNCS 2498, pp. 194-
209, Springer, September 2002.

[28] World Wide Web Consortium (W3C), Composite Capabil-
ity/Preference Profiles (CC/PP), http://www.w3.org/ TR/NOTE-
CCPP, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

