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Abstract

This thesis formulates temporal aspects of distributed systems through developing a

new process calculus and its two further expressive extensions.

The calculus is defined by extending existing non-timed process calculi. It pro-

vides a simple but powerful framework for describing synchronously communicating

time-dependent processes. It has two new constructions for delayed processing and

timed restriction, in addition to operational constructors found in many non-timed

process calculi: sequential execution, parallel composition, synchronous communica-

tion, message scope restriction, and recursion definition. As a verification method,

we develop several time-sensitive equation theories for processes and study their basic

properties.

The two extensions reinforce the framework with the ability to express temporal

properties of distributed computing. One of the extensions consists of some supple-

mentary language constructors concerning with non-blocking message sending and

process locations. It can model the notion of asynchrony and delay in communica-

tion among remotely located processes. On the basis of it, we give algebraic order

relations which can order two behaviorally equivalent processes with respect to their

relative execution speeds. The relations offer suitable verification and optimization

techniques for asynchronously communicating systems, in particular very-large dis-

tributed systems.

The other extension lets the original calculus embody the expressive capability of

multiple inaccurate clocks. It allows us to analyze the influence of inaccuracy and

difference among physical clocks upon distributed systems. We develop an equivalence

relation which can equate two processes when their behaviors are completely matched

and their timings are different within a given bound. It provides a method to verify

distributed systems with time uncertainties and non-strict time constraints.

We present some comparison with related work and discuss open problems and

further applications of this work.
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Chapter 1

Introduction

Time is an important and interesting issue in science and philosophy, although we do

not have any sense of time. Time in computer science is a matter of major concern for

several reasons. First, every computer is a physical entity, instead of any imaginary

thing like the Turing machine and the lambda calculus. Therefore, computation in

all real computers is never instantaneous and must take an amount of time. One of

the main theme in the history of computer science and computer industry has been

to reduce the execution time of computation as well as to enrich its functionalities.

The birth of distributed computing systems brings us the need of having a more

deeply understanding time issue. A distributed computing system consists of au-

tonomous computers communicating over communication networks with narrow band-

width, high latency, and failure. When a computer sends a message to another, the

other receives it at a later time, instead of the same time. It is even possible that one

gives information to another and the other will not receive it. Therefore, computers

are difficult to know the current status of other computers including time information.

This limitation prevents distributed systems from having any absolute time reference

which is available among all computers.

This does not create any problem only if each computer could always run indepen-

dently. However, computers in distributed systems are often required to cooperate

with each other through message passing and synchronization. When the timings of

message arrival and synchronization are not correct, cooperations among computers

may become inefficient or even fail. Also, in the majority cases, computers have to

know time information from their own physical clocks, which never measure at the

1



CHAPTER 1. INTRODUCTION 2

same rate.1 Differences in the time information of computers may lead the timings

of the cooperations to failure. Thus, it is necessary to analyze the timings of these

cooperations quantitatively in the development of distributed systems.

The existence of communication delay also affects the style of computation in

distributed systems. For efficiency reasons, communication among remote computers

is often realized as an asynchronous form, instead of a synchronous one. This is

because in synchronous communication settings, sender processes must be blocked

for at least the round-trip time of messages, including communication delay.

Time is highly related with fault tolerance in distributed systems. All elements

of distributed systems are not reliable. For example, when some computers may go

down and communication channels may lose messages, other computers may wait for

messages which will never come. Therefore, computers need the ability to detect such

dead-lock situations. However, by means of logical methods, computers are difficult

to detect these situations. Hence, we usually use a special technique by using the

notion of time, called timeout handling. Time is the last resort that computers can

depend on in distributed computing environments, for the sake of their surviving

against various faults and unexpected latencies.

It is very important to remember that distributed systems often cooperate with

their external environments, — called the real world — which include various non-

computational entities such as sensors, actuators, humans, and nature. To cooperate

with the real-world at proper timings, these systems need to know when particular

events occur in the real world. The time of the real-world is real, instead of any logical

step. Distributed systems which interact with the real-world must have the notion of

real-time.

There is a class of computer systems where their computation is subjected to cer-

tain time constraints. Systems in this class need to perform their required responses

at their required timings. Such systems are often called real-time systems or time-

critical systems.2 Some of the systems are distributed. Examples include distributed

1Many methods to synchronize computer clocks to a known degree of accuracy have been studied.
However, these methods need special protocols such as Network Time Protocol[48], but they are not
always available in all distributed systems.

2The term ”real-time system” is often used as different meanings. Therefore, it is difficult to
find any accurate definition to encompass all the characteristics of real time systems. Here we shall
use the term ”real-time system” to indicate the class of systems which need to do their required
responses on time or within specified time limits. Also, if they cannot do, they need to perform their
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systems controlling factory automation, traffic control systems, telephone switches,

robots, medical intensive care units, and numerous others. Since these systems of-

ten control safety-critical devices, their timing failures may result in a fatal loss of

life and finance. Therefore, they must satisfy their certain time constraints which

are required at their specifications. To develop such systems, we need to predicate

the temporal properties of the systems quantitatively and then verify whether the

systems can really satisfy their temporal specifications.

As we discussed previously, time plays a very important role in distributed com-

puting. However, time is often treated as an insignificant or afterthought thing in

most of the existing theories of computation, even theories for distributed computa-

tion. There are several plausible reasons for narrowing the scope of theories such as

to get a better understanding of fundamental concepts or to get tractable theories.

On the other hand, our claim is that, to establish the correct and efficient distributed

systems, the need of strictly reasoning about time is inevitably derived. The aim of

this thesis is to formulate time aspects of distributed computing through developing

new process calculi.

1.1 Basic Framework

It is hard to design and understand distributed systems because they are complex

and dynamic. In any event, we must design distributed systems that perform as we

intend, and understand existing distributed systems well enough for modification as

needs change. It is very useful to formulate a theoretical model that can simplify

the complexity of distributed systems and postulate a set of rules to predicate the

behaviors of distributed systems. Over the past twenty years, a variety of formalisms

have been developed for the specification and the verification of distributed computing

systems, for example temporal logic [22, 47, 60], dynamic logic [74], automata [46],

state machine [72], Petri nets [63], process calculi [4, 10, 35, 51], and so on. They

have been used as a framework to reason about behavioral properties of distributed

systems such as control flow, computed values, and ordering events.

However, as mentioned previously, the correctness and efficiency of distributed

specified exception handling.
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systems often depend on their temporal properties as well as their behavioral ones.

There is a potential demand for developing a theoretical framework to analyze the

temporal properties of distributed systems as well as their behavioral ones. This

thesis studies a concurrency theory for reasoning about various temporal aspects of

distributed systems through formulating new process calculi.

Here we should explain the reason why our theory is based on a process cal-

culus approach. A process calculus is a mathematical framework which describes

parallel computing around interprocess communications. Besides, the computation

of distributed systems is essentially based on communications among autonomous

processors through exchanging messages. Therefore, a process calculus is considered

as a powerful framework to reason about distributed computing around communica-

tions. We also believe that the theory should provide a description language having

the structure of a programming language, in order to ease the burden of synthesizing

a specification into a fully-realized system. A process calculus approach allows us to

describe systems in a fashion concordant with programming languages as compared

to other approaches such as temporal logic, dynamic logic, and Petri net.

The theory needs to have language constructions to specify temporal properties

found in distributed systems such as execution time, delayed processing, and timeout

handling. However, ordinary process calculi do not have the notion of time and thus

cannot describe these properties quantitatively. Indeed, there have been a few process

calculi which have the notion of time. However, the purposes of existing time extended

calculi are just to describe parallel computing systems instead of distributed systems.

Therefore, they are difficult to model peculiar temporal properties of distributed

systems such as multiple inaccurate clocks and communication delay.

This thesis aims at the establishment of a theoretical framework to specify and

verify temporal aspects of distributed systems including inaccurate clocks and commu-

nication delay, through developing new process calculi and their verification method-

ologies.

1.2 Approach

This section considers possibilities of formalizing distributed computation. Since dis-

tributed computing systems are various and complex, there is no single formalism
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that can accurately characterize all the properties of distributed systems. We will

formalize distributed computing according to the following strategy; we first cate-

gorize distributed systems according to features of distributed systems. Next, we

formulate different formalisms that can exactly include the attributes that affect our

interesting aspects in distributed systems.

A distributed computing system consists of a collection of autonomous processors

linked by communication networks. The primary concern of this thesis is to formulate

temporal aspects of distributed systems around interprocess communications. First

we should categorize communications found in distributed systems. It is useful to

distinguish between asynchronous and synchronous communications.3 The former

consists of two blocking primitives: blocking message send and blocking message re-

ceive. Execution of either of the two primitives is deferred until the both primitives

can take place simultaneously. On the other hand, the latter is characterized by

non-blocking message send and blocking message receive.4 Sender processes can send

messages without synchronizing with anything and continue their next steps.

From a view of time, distributed computing can be classified into two sorts;

whether every process has the same time source or not. The former means that

processes at different computers share the same clock. Also, when processes follow

different but well-synchronized clocks, the processes should be considered to share

the same time source. The latter means that processes follow different clocks.

According to the above criteria: whether communication is synchronous or asyn-

chronous, and whether the time reference of each process is the same or different, we

will formulate three formal models for distributed systems as shown below:

• The first model aims at describing time-dependent systems with synchronous

communication using the same clock. It is formulated by extending an existing

non-timed process calculus with two time-dependent constructors. It also inher-

its all the operational constructors of the original calculus: sequential execution,

parallel composition, synchronous communication, message scope restriction,

3In this thesis we concentrate on modeling only point-to-point communications because other
communications for example multicast/broadcast communications can be considered as enhance-
ments of point-to-point communications.

4Just as send operation can be blocking or non-blocking, so can receive operation. The non-
blocking receive is not common because it is more difficult to be implemented.



CHAPTER 1. INTRODUCTION 6

and recursion definition. It provides a simple but powerful specification lan-

guage for real-time systems in a single processor and small distributed systems.

• The second model is intended to describe a distributed system with asyn-

chronous communication using the same clocks. This system corresponds to

a distributed system where processes are allocated remotely and communi-

cate asynchronously but a clock synchronization mechanism is well supported.

The model has some supplement language constructors concerning with non-

blocking message sending and blocking message receiving, in order to capture

asynchronous message passing. Also, it introduces the notion of process location

to specify latency in interprocess communications.

• The third model is purposed to capture a distributed system with synchronous

communication using different clocks. This system corresponds to a distributed

system where any clock synchronization mechanism is unsupported or ineffi-

cient. The model is characterized by having the ability to express multiple

inaccurate clocks quantitatively, in addition to the expressive power of the first

model.

The first model is defined as a time-extended process calculus and provides a cardinal

basis of the other models studied in this thesis. The second and third models are

formulated by enriching the first model with expressive capabilities of some peculiar

properties of distributed computing systems such as asynchronous communication,

communication delay, and multiple clocks.

From the above criteria, there might be a possibility to formalize a distributed

system with asynchronous communication with different clocks. The second and third

models are extended calculi of the first one but the both extensions are independent

and never interferes with each other. Therefore, we can easily combine the second

and the third models and then establish a framework to describe such a distributed

system by combining them. Such a framework might be expressive but complex. For

concentrating on formalizing temporal aspects in distributed systems, we avoid to

treat such a combination in this thesis.
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1.3 About This Thesis

This thesis is organized as follows: Chapter 2 defines an elementary process calculus

for time-dependent systems where processes communicate synchronously and follow

the same clock. The calculus is called RtCCS (Real-time Calculus of Communicat-

ing Systems) and is formulated based on an existing untimed process calculus, CCS

[51]. RtCCS has a minimal but expressive set of constructors for describing real-

time systems and provides a basis of developing further formalisms for distributed

systems studied in the following chapters. Also, we present the definition of three

time-sensitive equivalence relations: timed strong equivalence, timed observation e-

quivalence, and timed observation congruence. We study some basic properties of the

relations. We present some examples to demonstrate the utilities of the calculus and

the relations.

Chapter 3 defines another process calculus by extending the calculus developed

in Chapter 2 with the ability to express distributed systems where processes commu-

nicate asynchronously and follow the same clock. The calculus is called RtCCSA. It

allows us to analyze the temporal and behavioral properties of asynchronous inter-

actions among remotely located processes. On the basis of the time-sensitive equiva-

lences studied in Chapter 2, we also define an equivalence relation and order relations.

The equivalence can equate two processes according to the results of asynchronous

interactions with testing processes residing at remote locations. The order relation-

s order between two behaviorally equivalent processes according to their execution

speeds. We study basic properties of these relations.

Chapter 4 proposes a process calculus that is intended to capture a distributed

system where processes communicate synchronously and follow different clocks. This

calculus is an extension of the calculus presented in Chapter 2 with expressive capa-

bilities of multiple inaccurate clocks. It is called RtCCSL. Furthermore, we define

a pseudo time-sensitive equivalence. It can equate two behaviorally equivalent pro-

cesses when their timings are different within a given bound. We investigate basic

properties of the relation. Some examples are shown to demonstrate its usefulness.

In Chapter 5, we compare the results presented in this thesis with some related

work on formal methods for distributed computing and real-time computing. Finally,

in Chapter 6 we summarize the achievements of this thesis and give some directions



CHAPTER 1. INTRODUCTION 8

on our future work.



Chapter 2

A Time Extended Process

Calculus

This chapter defines an elementary process calculus for time-dependent computing

systems where communication is synchronous and all processes follow the same clock.1

The calculus is a minimal extension of an existing non-timed process calculus with

quantitatively expressive capabilities for temporal aspects of concurrent computing

systems. The underlying motivation of the calculus is to establish a theoretical ba-

sis for further expressive extensions developed in the following chapters. Also, this

chapter formulates several equivalence relations as a verification technique for time-

dependent systems.

2.1 Introductory Remarks

There is a large class of distributed computing systems which have certain time con-

straints which must be satisfied. The correctness of systems in this class depends

not only on the logical results of computation, but also on the time at which the

results are produced. In order to construct correct programs for these systems, it is

necessary to analyze the temporal properties of the systems in advance. However,

the construction and debugging of programs for such systems are far more complex

and difficult than those of ordinary concurrent programs. Also, even when verifying

1This chapter is a modified version of articles that have been published earlier in [64, 65].

9



CHAPTER 2. A TIME EXTENDED PROCESS CALCULUS 10

ordinary distributed computing systems, it is important to analyze their temporal

properties. Hence, we need the support of a formal method for reasoning about the

temporal properties of distributed computing systems as well as their functionally

behavioral properties.

This chapter is to formulate an elementary process calculus for specifying time-

dependent systems where communication is synchronous and every process shares the

same clock. The calculus is defined based on an existing process calculus, CCS [51].2

This is because CCS is a simple but powerful framework to describe non-deterministic

and concurrent systems. However, since CCS lacks the notion of time, we extend CCS

with temporal expressive capabilities. The newly proposed calculus is called RtCCS

(Real-time Calculus of Communicating Systems).

2.2 Basic Framework

This calculus is an extension of CCS with the notion of time. We explain our basic

ideas in the calculus below.

Time Values

We assume that time is interval between events instead of any absolute time, and is

dense instead of discrete time.3 Time values are denoted as positive real numbers.

The Passage of Time

Time passes in all processes at the same speed. Also, all processes follow the same

clock, or different but well synchronized clocks. The advance of time is modeled as

a special transition which is labeled by a quantity of time to indicate the amount of

the advance, for example E
〈t〉

−−→ E ′. It means that process E become E ′ after t real

time.

Action Atomicity

To preserve the pleasant properties of the original calculus, all communication and

2Our extensions are essentially independent of CCS itself and thus can easily be applied into
other process calculi.

3We will present another calculus based on discrete time in Chapter 4.
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internal actions are assumed to be instantaneous. Instead, we introduce special lan-

guage constructions to express the execution time of behaviors as shown below.

Time-Dependent Behaviors

We introduce two new prefix operators whose contents are dependent on the passage

of time, called delay operator and time restriction operator.

delay operator: This is to suspend a process for a specified period, written as 〈t〉,

where t is the amount of the suspension. For instance, 〈t〉.E means a process

which is idle for t real-time and then behaves like E.

time restriction operator: This is to restrict the execution of a process, written

as prefix [t], where t is the deadline time. For example, [t].E behaves like process

E if E can execute an internal or communication action within t time, whereas

[t].E terminates if E does not perform any action within t time.

Non Unnecessarily Idling

We assume that when an internal or communication action is enabled, processes must

perform the action without imposing unnecessary idling. This assumption lets us

measure the minimum cost in synchronization among parallel processes, and enables

the calculus to preserve the observation properties of CCS.

2.3 The Language and its Semantics

The syntax of the elementary calculus is coincide with all the construction of CCS

except for two new time-dependent operators, called delay operator and time restric-

tion operator. The semantics of the calculus can computationally encompass that of

CCS and embody the notion of time.

Notation

We first define the notations of time values. Time is assumed to be dense in the

calculus developed in this chapter.
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Definition 2.3.1 Let R+0 denote the set of the positive reals. We call R+0 real

time domain. ut

We assume that the domain has the following binary operators: + (addition), =

(equal), and < (total order), where these operators are the same as the usual mathe-

matical operators. Next, we define symbols to present the events of processes.

Definition 2.3.2

• Let A be a infinite set of names denoting communication actions. Its elements

are denoted as a,b,. . .

• Let A be a infinite set of co-names. Its elements are denoted as a,b,. . . where a

is the complementary action of a, and a is equal to a.

• Let Λ ≡ A ∪ A be a set of communication action names. Elements of the set

are written as λ, λ′, . . ..

• Let τ denote an internal action.

• Let Γ be the set of actions corresponding the amount of the passage of time.

Elements of the set are denoted as 〈t1〉, 〈t2〉, . . ., where t1, t2, . . . ∈ R+0.

• Let Act ≡ Λ ∪ {τ} be the set of operational actions. Its elements are denoted

as α,β,. . .. ut

τ -action represents all handshake communications and is considered to be unobserv-

able from outside environments.

Syntax

The syntax of the calculus is identical with that of CCS except for two time-dependent

operators.

Definition 2.3.3 The set E of RtCCS expressions ranged over by E, E1, E2, . . . is

defined recursively by the following abstract syntax:

E ::= 0 | X | α.E | E1 + E2 | E1|E2 | recX : E

| E[f ] | E \ L | 〈t〉.E | [t].E
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where t is an element of R+0 and f is a relabeling function f : Act → Act and L is a

subset of Λ. We assume that X is always guarded.4 We often denote E1 + · · · + En

as
∑

i∈{0,...,n} Ei. ut

We define relabeling function f : Act → Act .

Definition 2.3.4 We define a relabeling function to be any function f : Act → Act

which respects complements:

f(λ) = f(λ) f(τ) = τ

where λ is an element of Λ and τ is an internal action. ut

Remarks The informal meaning of each process constructor is as follows:

• Terminate Process, 0. This process is a stopped process which can perform no

internal nor communication action.

• Action Prefix, α.E. This is a process to perform action α and then behaves like

E, where α is an input, output, or internal action.

• External Choice, E1 + E2. This represents a process which may behave as either

E1 or E2.

• Parallel Composition, E1 |E2. This represents that process E1 and E2 may run

in parallel.

• Action Relabeling, E[f ]. This process behaves like E but with the actions in E

relabeled by function f .

• Action Restriction, E \ L. This process behaves like E but it is prohibited to

communicate with external processes at actions in L ∪ L̄.

• Recursion, recX : E. This expression binds free occurrences of X in E.

• Delay, 〈t〉.E. This represents a process which is suspended for t real time and

then behaves like E.

4X is called guarded in E if each occurrence of X is only within some subexpressions α.E′ in E
where α is not an empty element; c.f. unguarded expressions, e.g. recX : X or recX : X + E.
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• Time Restriction, [t].E. This represents a process such that it behaves like E if

E can execute an internal or communication action within t real time, whereas

it behaves like a terminate process if E does not perform any action within t

real time.

Definition 2.3.5 An occurrence of variable X in an expression E ∈ E is bound

if it occurs in a subexpression of form recX : F . Otherwise it is free. E is an

open expression if it contains a free occurrence of a variable, and a closed expression

otherwise. ut

Operational Semantics

The operational semantics of the calculus is defined in terms of a labeled transition

system [59]. It consists of two kinds of transition rules. One of them defines the

semantics of functional behaviors of processes, called behavioral transition, written as
α

−−→ (−−→ ⊆ E ×Act ×E) and the another defines the passage of time on processes,

called temporal transition, written as
〈t〉

−−→ (−−→ ⊆ E × Γ × E).

Definition 2.3.6 RtCCS is a labeled transition system 〈 E , Act ∪ Γ , {
µ

−−→ ⊆
E × E | µ ∈ Act ∪ Γ } 〉. The transition relation −−→ is defined by two kinds of

structural induction rules given in Figure 1 and 2. ut

In giving the rules, we adopt the convention that the transition below the horizontal

line may be inferred from the transitions above the line.

For simplicity, we often use a more readable form A
def
= P , instead of recX : E,

where A is an element of the set of process constants.

Definition 2.3.7 The labeled transition relation
µ

−−→ is reformulated by the same

rules as
µ

−−→ presented in Definition 2.3.6 where µ ∈ Act ∪Γ and the following rules:

P
α

−−→ P ′

A
α

−−→ P ′
(A

def
= P )

P
〈t〉

−−→ P ′

A
〈t〉

−−→ P ′
(A

def
= P ) ut
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−
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−−→ E ′

1 |E ′
2

E
α

−−→ E ′

E[f ]
f(α)

−−→ E ′[f ]

E
α

−−→ E ′, α /∈ L ∪ L

E \ L
α

−−→ E ′ \ L

E{recX : E/X}
α

−−→ E ′

recX : E
α

−−→ E ′

E
α

−−→ E ′

[t].E
α

−−→ E ′
(t > 0) E

α
−−→ E ′

〈0〉.E
α

−−→ E ′

Figure 1: Inference Rules for Behavioral Transition

−
0

〈t〉
−−→ 0

−
λ.E

〈t〉
−−→ λ.E

E1

〈t〉
−−→ E ′

1, E2

〈t〉
−−→ E ′

2

E1 + E2

〈t〉
−−→ E ′

1 + E ′
2

E1

〈t〉
−−→ E ′

1, E2

〈t〉
−−→ E ′

2

E1 |E2

〈t〉
−−→ E ′

1 |E ′
2

(E1 |E2 6
τ

−−→)

E
〈t〉

−−→ E ′

E[f ]
〈t〉

−−→ E ′[f ]

E
〈t〉

−−→ E ′

E \ L
〈t〉

−−→ E ′ \ L

E{recX : E/X}
〈t〉

−−→ E ′

recX : E
〈t〉

−−→ E ′

E
〈t〉

−−→ E ′

〈0〉.E
〈t〉

−−→ E ′

−
〈t + t′〉.E

〈t〉
−−→ 〈t′〉.E

(t + t′ > 0)

−
[0].E

〈t〉
−−→ [0].E

E
〈t〉

−−→ E ′

[t + t′].E
〈t〉

−−→ [t′].E′
(t + t′ > 0)

Figure 2: Inference Rules for Temporal Transition
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Remark In [64, 65] we proposed an early version of the calculus presented in this

chapter. We show a relationship between the early version and the present one. The

early version is characterized by introducing a special binary operator, 〈 , 〉t called

timeout operator. For instance, 〈E1, E2〉t behaves as process E1 if E1 can execute an

internal or communication action within t units of time, whereas 〈E1, E2〉t behaves

as process E2 if E1 does not perform any action within t units of time. The operator

can be encoded into RtCCS ’s operators as follows:

〈E1, E2〉t ≡ [t].E1 + 〈t〉.E2

where ≡ is a syntactic equation over expressions. On the contrary, we can encode

new time-dependent operators [t] and 〈t〉 studied in this thesis into expressions in the

calculus presented in [64, 65] by using the timeout operator as follows: 〈t〉.E ≡ 〈0, E〉t
and [t].E ≡ 〈E, 0〉t.

Basic Properties of Timed Semantics

We present some basic properties of the semantics of the calculus.

Proposition 2.3.8 Maximal Progress

P
τ

−−→ P ′ then, there is not some P ′′, P
〈t〉

−−→ P ′′ where t > 0. ut

Proof. The proof is by transition induction on P
τ

−−→ P ′. We consider the transition

rules applied in the last step of the inference. There are four cases: (i) Let P ≡ τ.P ′

Then, by induction there are no t and P ′′ such that P
〈t〉

−−→P ′′, because there is not

any 〈t〉-transition for τ.P ′. (ii) Let P ≡ P1 + P2. We assume P1 + P2

τ
−−→P ′ is

inferred from P1

τ
−−→P ′. By induction, there are no t and P ′′ such that P1

〈t〉
−−→P ′′.

Hence, P1 + P2

〈t〉
−−→P ′ cannot be inferred. The case that P1 + P2

τ
−−→P ′ is inferred

from P2

τ
−−→P ′ is symmetrical. (iii) Let P ≡ P1|P2 and P1|P2

τ
−−→P ′. To infer

P1|P2

〈t〉
−−→P ′, we have P1|P2 6

τ
−−→P ′. (iv) Let P ≡ P ′ \L, P ≡ P ′[f ], P ≡ recX : E,

P ≡ 〈0〉.P ′, and P ≡ [t].P ′ (t > 0). The result follows by induction. ut

If a process has an executable communication or an internal action, it must perform

the action immediately without imposing unnecessary idling.



CHAPTER 2. A TIME EXTENDED PROCESS CALCULUS 17

Proposition 2.3.9 Time Determinacy

P
〈t〉

−−→ P ′ and P
〈t〉

−−→ P ′′ then, P ′ and P ′ are syntactically identical. ut

Proof. The proof is by transition induction on P
〈t〉

−−→ P1 and P
〈t〉

−−→ P2. There

are five cases: (i) Let P ≡ 0, P ≡ α.P ′. Then, it is trivial. (ii) Let P ≡ P1 + P2,

P1

〈t〉
−−→P ′

1, and P2

〈t〉
−−→P ′

2. Then, P ′ and P ′′ are required to be P ′
1 + P ′

2. (iii) Let

P ≡ P1|P2. It is similar to the case of summation. (iv) Let P ≡ 〈ṫ〉.Ṗ , P
〈t−ṫ〉
−−→P1,

and P
〈t−ṫ〉
−−→P2. By induction, we have P1 ≡ P2. (v) Let P ≡ P ′ \ L, P ≡ P ′[f ],

P ≡ recX : E, and P ≡ [ṫ].Ṗ . By inductive hypothesis of P , we get the result. ut

A process may reach different states non-deterministically after performing a com-

munication action or an internal one. On the other hand, time is deterministic in the

sense that the passage of time does not interfere with any non-determinism.

Proposition 2.3.10 Time Continuity

P
〈t1+t2〉
−−→ P ′ then, for some Ṗ , P

〈t1〉
−−→ Ṗ and Ṗ

〈t2〉
−−→ P ′. ut

Proof. The result can directly be proved by transition induction on P
〈t〉

−−→ P ′. ut

If a process proceeds from one instant to the other, it must reach all the intermediate

instants between them.

2.4 Time-Sensitive Equivalence Relations

There have been many equivalence relations for verifying (non-timed) communicating

processes. For example, trace equivalence identifying processes with the same behav-

ioral language, for example see [11], failure equivalence identifying processes with the

same set of failures (impossible actions) after a trace, for example see [35, 29], and

bisimulation equivalence identifying processes which can simulate to each other, for

example [58, 51]. These non time-sensitive equivalence relations provide powerful

methods to verify untimed concurrent systems. In order to complete the calculus, we

will formulate time-sensitive equivalence relations by extending untimed bisimulation.



CHAPTER 2. A TIME EXTENDED PROCESS CALCULUS 18

Timed Strong Equivalence

Since the operational semantics of the calculus is given in terms of a labeled transi-

tion system, the notion of bisimulation can directly be introduced into the calculus.

We present a time-sensitive equivalence relation over process expressions. It is an

extension of CCS’s strong bisimulation with the notion of time.

Definition 2.4.1 A binary relation R ⊆ P×P is a strong bisimulation if (P1, P2) ∈
R implies, for all µ ∈ Act ∪ Γ ,

(i) ∀P ′
1: P1

µ
−−→ P ′

1 then ∃P ′
2: P2

µ
−−→ P ′

2 and (P ′
1, P

′
2) ∈ R.

(ii) ∀P ′
2: P2

µ
−−→ P ′

2 then ∃P ′
1: P1

µ
−−→ P ′

1 and (P ′
1, P

′
2) ∈ R.

P1 and P2 are strongly equivalent, written P1 ∼T P2, if there exists a strong bisimu-

lation R such that (P1, P2) ∈ R. ut

Intuitively, if P1 and P2 are strongly equivalent, they cannot be distinguished from

one another in their behaviors and timings.

Note that the above definition is equal to that of CCS’s strong bisimulation (∼)

except that µ ∈ Act ∪ Γ appears in place of µ ∈ Act .

Proposition 2.4.2 (1) ∼T is symmetric, reflexive, and transitive. (2) ∼T is the

largest strong bisimulation. ut

Proof. Definition 2.4.1 almost directly tells us this. ut

We show a set of laws which are sound with respect to the strong equivalence

below.

Proposition 2.4.3

(1) P1 + P2 ∼T P2 + P1

(2) P1 + (P2 + P3) ∼T (P1 + P2) + P3

(3) P + P ∼T P

(4) P + 0 ∼T P ut
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Proof. We shall only prove (1); the others are just as easy. Let P1 + P2

µ
−−→Q1. We

will prove only the case of µ = 〈t〉. We need to show that R is a strong bisimulation,

where R = { (P1 + P2, P2 + P1) | ∀P1, P2 ∈ P } ∪ Id . So let P1 + P2

〈t〉
−−→Q1. It is

enough to find Q2 such that P2 + P1

〈t〉
−−→Q2 and (Q1, Q2) ∈ R (with a symmetric

argument). P1

〈t〉
−−→P ′

1 and P2

〈t〉
−−→P ′

2 are required from Definition 2.3.6. Hence, we

know P1 +P2

〈t〉
−−→P ′

1 +P ′
2 and P2 +P1

〈t〉
−−→P ′

2 +P ′
1 and clearly (P ′

1 +P ′
2, P

′
2 +P ′

1) ∈ R.

By a symmetric argument, we complete the proof. ut

Proposition 2.4.4

(1) P1 |P2 ∼T P2 |P1

(2) P1 | (P2 |P3) ∼T (P1 |P2) |P3

(3) P |0 ∼T P

(4) P \ L ∼T P if L(P ) ∩ (L ∪ L) = ∅
(5) (P1 + P2) \ L ∼T P1 \ L + P2 \ L

(6) (P1 |P2) \ L ∼T P1 \ L |P2 \ L if L(P1) ∩ (P2) ∩ (L ∪ L) = ∅
(7) (α.P )[f ] ∼T f(α).P [f ]

(8) (P1 + P2)[f ] ∼T P1[f ] + P2[f ]

(9) (P1 |P2)[f ] ∼T P1[f ] |P2[f ] ut

Proof. We shall only prove (1); the other cases are just as easy. It is enough to

show that R = { (P1|P2, P1|P2) | ∀P1, P2 ∈ P } ∪ Id is a strong bisimulation. So

let P1|P2

µ
−−→Q1; it is enough to find Q2 such that P2|P1

µ
−−→Q2 and (Q1, Q2) ∈ R

(with a symmetric argument). There are two main cases.

Case 1 µ ∈ Act .

Subcase 1.1 P1

µ
−−→P ′

1 and Q1 ≡ P ′
1|P2. Then, we have P2|P1

µ
−−→Q2 ≡ P2|P ′

1

and clearly (Q1, Q2) ∈ R
Subcase 1.2 P2

µ
−−→P ′

2 and Q1 ≡ P1|P ′
2. Similar.

Subcase 1.3 µ = τ , P1

λ
−−→P ′

1, and P2

λ
−−→P ′

2. Then, P2|P1

τ
−−→Q2 ≡ P ′

2|P ′
1

and clearly (Q1, Q2) ∈ R

Case 2 µ = 〈t〉. Then P1|P2

〈t〉
−−→Q1 must be inferred from Definition 2.3.6. Q1 ≡

P ′
1|P ′

2 where P1

〈t〉
−−→P ′

1 and P2

〈t〉
−−→P ′

2. Hence we have P2|P1

〈t〉
−−→Q2 ≡ P ′

2|P ′
1

and clearly (Q1, Q2) ∈ R.
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This proves the first part of Definition 2.4.1. The second part follows by a symmetric

argument and we have then shown that R is a strong bisimulation. ut

Proposition 2.4.5

(1) 〈t〉.(P1 + P2) ∼T 〈t〉.P1 + 〈t〉.P2

(2) 〈t〉.(P1|P2) ∼T 〈t〉.P1|〈t〉.P2

(3) 〈t1 + t2〉.P ∼T 〈t1〉.〈t2〉.P

(4) [t].(P1 + P2) ∼T [t].P1 + [t].P2

(5) [t1 + t2].P ∼T [t1].P + [t1 + t2].P

(6) 〈t1〉.[t2].P ∼T [t1 + t2].〈t1〉.P

(7) [t1].[t2].P ∼T




[t1].P where t1 ≤ t2

[t2].P otherwise
ut

Proof. (1) Let 〈t〉.(P1+P2)
µ

−−→Q1. We need to show that R is a strong bisimulation

where R = { (〈t〉.(P1 + P2), 〈t〉.P1 + 〈t〉.P2) | ∀P1, P2 ∈ R} ∪ Id . It is enough to find

Q2 such that 〈t〉.P1 + 〈t〉.P2

〈ṫ〉
−−→Q2 and (Q1, Q2) ∈ R. We will prove only the case of

µ = 〈ṫ〉. There are two cases to infer 〈t〉.(P1 + P2)
〈ṫ〉

−−→Q1.

Case 1 t ≥ ṫ. Then, from Definition 2.3.6, 〈t〉.(P1 + P2)
〈ṫ〉

−−→ Q1 ≡ 〈t − ṫ〉. (P1 + P2).

〈t〉.P1 +〈t〉.P2

〈ṫ〉
−−→ Q2≡ 〈t − ṫ〉. P1+ 〈t − ṫ〉. P2 is required. Hence, we have

(Q1, Q2) ∈ R.

Case 2 t < ṫ, P1

〈ṫ−t〉
−−→P ′

1, and P2

〈ṫ−t〉
−−→P ′

2. Then 〈t〉.(P1 + P2)
〈ṫ〉

−−→.P ′
1 + P ′

2. Also we

have 〈t〉.P1 + 〈t〉.P2

〈ṫ〉
−−→P ′

1 + P ′
2 and clearly (Q1, Q2) ∈ R.

By a symmetric argument, we complete the proof.

(2) Let 〈t〉.(P1|P2)
µ

−−→Q1. We need to show that R is a strong bisimulation where

R = { (〈t〉.(P1|P2), 〈t〉.P1|〈t〉.P2) | ∀P1, P2 ∈ R} ∪ Id . It is enough to find Q2 such that

〈t〉.P1|〈t〉.P2

〈ṫ〉
−−→Q2 and (Q1, Q2) ∈ R. We will prove only the case of µ = 〈ṫ〉. There

are two cases to infer 〈t〉.(P1|P2)
〈ṫ〉

−−→Q1.

Case 1 t ≥ ṫ. Then 〈t〉.(P1|P2)
〈ṫ〉

−−→ Q1 ≡ 〈t − ṫ〉. (P1|P2). 〈t〉.P1 |〈t〉.P2

〈ṫ〉
−−→ Q2≡

〈t − ṫ〉. P1| 〈t − ṫ〉. P2 is required from Definition 2.3.6. Hence, we have (Q1, Q2) ∈
R.
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Case 2 t < ṫ, P1

〈ṫ−t〉
−−→P ′

1, and P2

〈ṫ−t〉
−−→P ′

2. Then 〈t〉.(P1|P2)
〈ṫ〉

−−→.P ′
1|P ′

2. Also we have

〈t〉.P1|〈t〉.P2

〈ṫ〉
−−→P ′

1|P ′
2 and clearly (Q1, Q2) ∈ R.

By a symmetric argument, we complete the proof.

(3) Let 〈t1 + t2〉.P
µ

−−→Q1. We will prove only the case of µ = 〈t〉. We need to

show that R is a strong bisimulation where R = { (〈t1 + t2〉.P, 〈t1〉.〈t2〉.P ) | ∀P1, P2 ∈
R}∪Id . It is enough to find Q2 such that 〈t1〉.〈t2〉.P

〈t〉
−−→Q2 and (Q1, Q2) ∈ R. There

are three cases.

Case 1 t < t1. Then 〈t1 + t2〉.P
〈t〉

−−→Q1 ≡ 〈t1 + t2 − t〉.P . We have 〈t1〉.〈t2〉.P
〈t〉

−−→
Q2 ≡〈t1 − t〉.〈t2〉.P and clearly (Q1, Q2) ∈ R.

Case 2 t1 ≤ t ≤ t1 + t2. Then 〈t1 + t2〉.P
〈t〉

−−→ Q1 ≡ 〈t1 + t2 − t〉.P . We have

〈t1〉.〈t2〉.P
〈t〉

−−→Q2 ≡ 〈t2 − (t − t1)〉.P and clearly (Q1, Q2) ∈ R.

Case 3 t1+t2 < t and P
〈t−t1−t2〉
−−→ P ′ Then 〈t1 + t2〉.P

〈t〉
−−→ Q1 ≡ P ′. We have 〈t1〉.〈t2〉.P

〈t〉
−−→ Q2 ≡ P ′ and clearly (P ′, P ′) is a strong bisimulation.

The case of µ = α is trivial. By a symmetric argument, we complete the proof.

(4) Let [t].(P1 + P2)
µ

−−→Q1. We consider only the case of µ = 〈ṫ〉. We need to show

that R is a strong bisimulation where R = { ([t].(P1 + P2), [t].P1 + [t].P2) | ∀P1, P2 ∈

P } ∪ Id . It is enough to find Q2 such that [t].P1 + [t].P2

〈ṫ〉
−−→Q2 and (Q1, Q2) ∈ R.

We have two cases to [t].(P1 + P2)
µ

−−→Q1.

Case 1 t ≥ ṫ, P1

〈ṫ〉
−−→P ′

1, and P2

〈ṫ〉
−−→P ′

2. Then, from Definition 2.3.6, [t].(P1 +

P2)
〈ṫ〉

−−→ Q1 ≡ [t − ṫ]. (P1 + P2). [t].P1 +[t].P2

〈ṫ〉
−−→ Q2 ≡ [t − ṫ]. P1+[t − ṫ].P2 is

required. Hence, we have (Q1, Q2) ∈ R.

Case 2 t < ṫ, P1

〈ṫ〉
−−→P ′

1, and P2

〈ṫ〉
−−→P ′

2. Then [t].(P1 + P2)
〈ṫ〉

−−→ Q1≡P ′
1 + P ′

2. Also

we have [t].P1 + [t].P2

〈ṫ〉
−−→ Q1 ≡ P ′

1 + P ′
2 and clearly (Q1, Q2) ∈ R.

By a symmetric argument, we complete the proof.
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(5) Let [t1 + t2].P
µ

−−→Q1. We will prove only the case of µ = 〈t〉. We need to show

that R is a strong bisimulation where R = { ([t1 + t2].P, [t1].P + [t1 + t2].P ) | ∀P1, P2 ∈
P }∪Id . It is enough to find Q2 such that [t1].P+[t1 + t2].P

〈t〉
−−→Q2 and (Q1, Q2) ∈ R.

There are two cases.

Case 1 t ≤ t1 and P
〈t〉

−−→P ′. Then [t1 + t2].P
〈t〉

−−→Q1 ≡ [t1 + t2 − t].P . We have

[t1].P + [t1 + t2].P
〈t〉

−−→Q2 ≡ [t1 − t].P+ [t1 + t2 − t].P and clearly (Q1, Q2) ∈ R.

Case 2 t > t1 and P
〈t〉

−−→P ′. Then [t1 + t2].P
〈t〉

−−→Q1 ≡ [t1 + t2 − t].P . We have

[t1].P + [t1 + t2].P
〈t〉

−−→Q2 ≡ [t1 + t2 − t].P and clearly (Q1, Q2) is a strong bisim-

ulation.

By a symmetric argument, we complete the proof.

(6) Let 〈t1〉.[t2].P
µ

−−→Q1. We will prove only the case of µ = 〈t〉. We need to show

that R is a strong bisimulation where R = { (〈t1〉.[t2].P, [t1 + t2].〈t1〉.P ) | ∀P1, P2 ∈
P } ∪ Id . It is enough to find Q2 such that [t1 + t2].〈t1〉.P

〈t〉
−−→Q2 and (Q1, Q2) ∈ R.

There are three cases.

Case 1 t < t1. Then 〈t1〉.[t2].P
〈t〉

−−→Q1 ≡ 〈t1 − t〉.[t2].P . We have [t1 + t2].〈t1〉.P
〈t〉

−−→
Q2 ≡ [t1 + t2 − t].〈t1 − t〉.P and clearly (Q1, Q2) ∈ R.

Case 2 t1 ≤ t and P
〈t−t1〉
−−→P ′. Then 〈t1〉.[t2].P

〈t〉
−−→Q1 ≡ [t2 − (t − t1)].P ′. We have

[t1 + t2].〈t1〉.P
〈t〉

−−→Q2 ≡ [t1 + t2 − t].P ′ and clearly (Q1, Q2) ∈ R.

By a symmetric argument, we complete the proof.

(7) Let [t1].[t2].P
µ

−−→Q1. We will prove only the case of µ = 〈t〉 and t1 ≥ t2. We

need to show that R is a strong bisimulation where R = { ([t1].[t2].P, [t2].P ) | ∀P1, P2 ∈
P } ∪ Id . It is enough to find Q2 such that [t2].P

〈t〉
−−→Q2 and (Q1, Q2) ∈ R. There

are three cases.

Case 1 t < t2. Then [t1].[t2].P
〈t〉

−−→Q1 ≡ 〈t1 − t〉.[t2 − t].P . We have [t2].P
〈t〉

−−→Q2 ≡
[t2 − t].P and clearly (Q1, Q2) ∈ R.

Case 2 t2 ≤ t and P
〈t〉

−−→P ′. Then [t1].[t2].P
〈t〉

−−→Q1 ≡ [t1].[0].P . We have [t2].P
〈t〉

−−→Q2 ≡ [0].P and clearly (Q1, Q2) ∈ R.
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By a symmetric argument, we complete the proof. ut

Proposition 2.4.6

(1) 〈0〉.P ∼T P

(2) [0].P ∼T 0 ut

Proof. From Definition 2.3.6 and 2.4.1, we directly get these results. ut

Hereafter, we assume that 〈0〉.P is syntactically equal to P and [0].P to 0.

Proposition 2.4.7 Let P1 ∼T P2. Then we have the following properties:

(1) α.P1 ∼T α.P2

(2) P1 + P ∼T P2 + P

(3) P1|P ∼T P2|P
(4) P1 \ L ∼T P2 \ L

(5) P1[f ] ∼T P2[f ]

(6) 〈t〉.P1 ∼T 〈t〉.P2

(7) [t].P1 ∼T [t].P2 ut

Proof. We prove only (6) and (7) and can proof the other operations in the same way.

First we consider (6). It is enough to show that R = {(〈t〉.P1, 〈t〉.P2) |P1 ∼T P2 } ∪ Id

is a strong bisimulation. Let 〈t〉.P1

µ
−−→Q1. We treat the case of µ = 〈t〉. Then,

〈t〉.P1

〈t′〉
−−→Q1. There are two cases:

Case 1 〈t〉.P1

〈t′〉
−−→Q1 and t ≥ t1. Then 〈t〉.P1

〈t′〉
−−→ 〈t − t′〉.P1. Then 〈t〉.P1

〈t′〉
−−→

〈t − t′〉.P1. From Definition 2.3.6, 〈t〉.P2

〈t′〉
−−→ 〈t − t′〉.P2 and clearly (〈t − t′〉.P1,

〈t − t′〉.P2) ∈R is a strong bisimulation.

Case 2 〈t〉.P1

〈t′〉
−−→Q1 and t < t1. Then, 〈t〉.P1

〈t〉
−−→P1 and P1

〈t′−t〉
−−→Q1. From Defini-

tion 2.3.6, 〈t〉.P2

〈t〉
−−→P2 is required. Also, because P1 ∼T P2, we have P2

〈t′−t〉
−−→Q2

and clearly (Q1, Q2).

By a symmetric argument, we establish both the case (i) and (ii) of Definition 2.4.1.

Next we will prove (7). It is enough to show that R = {([t].P1, [t].P2) |P1 ∼T P2, t ≥
0 } is a strong bisimulation. Let [t].P1

µ
−−→Q1. We treat the case of µ = 〈t〉. There

are three cases:
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Case 1 µ ∈ Act and P1

µ
−−→P ′

1 Then, [t].P1

µ
−−→P ′

1 is required. Since P1 ∼T P2, we

have [t].P2

µ
−−→P ′

2 with P ′
1 ∼T P ′

2. The result follows directly.

Case 2 t ≥ t′, [t].P1

〈t′〉
−−→Q1, P1

〈t′〉
−−→P ′

1, Then, Q1 ≡ [t − t′].P ′
1 is required. Since

P1 ∼T P2, we have P2

〈t′〉
−−→P ′

2 with P ′
1 ∼T P ′

2. Also, from Definition 2.3.6,

[t].P2

〈t′〉
−−→[t − t′].P ′

2. Hence, (Q1, Q2) ∈ R.

Case 3 t > t′. Then [t].P1

〈t′〉
−−→0 is inferred from Definition 2.3.6. Also, we know

[t].P2

〈t′〉
−−→0.

By a symmetric argument, we complete the proof. ut

This tells us that ∼T is substitutive everywhere except under the recursion operation.

We have not defined the strong equivalence relation over expressions with variables.

Here we extend to expressions with variables.

Definition 2.4.8 Let E and F include one free variable X at most. Then E ∼T F

implies for all P of process expressions P, E{P/X} ∼T F{P/X} ut

Proposition 2.4.9 Let E and F include one free variables X at most. Then

E ∼T F implies recX : E ∼T recX : F .

Proof. By structural induction on E and F . ut

Proposition 2.4.10 Let A
def
= P , then A ∼T P . ut

Proof. By Definition 2.3.3, A
def
= P corresponds to the recursively definition. We have

that A and P have exactly the same derivative tree. ut

Theorem 2.4.11 Strong equivalence ∼T is preserved by all operators. ut

Proof. By Proposition 2.4.7 and 2.4.9. ut

By this proposition we can guarantee that if two processes are strongly equivalent,

the processes are substitutable for each other in any context. The property is very

useful in compositional constructions and verifications for time-dependent systems.
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Remarks

We presented a relationship between our strong equivalence (∼T ) and CCS’ strong

equivalence (∼). It seems that we can always assume that if P ∼ Q holds in CCS, then

P ∼T Q holds in RtCCS . There is however a counter example: unguarded recursion

expressions, e.g., recX : X expression. This is because in RtCCS such expressions

are not allowed. However, we think that such expressions are very unrealistic in

concurrent and parallel processes in real-world. Our strong equivalence can equate

processes in RtCCS which are equivalent according to CCS’s strong equivalence.

Timed Observation Equivalence

The strong equivalence has several useful algebraic properties. However this is under

the assumption that an observer is able to observe all actions, including an internal

action (i.e. a invisible action) — τ action — which indeed should not be observed.

We present a weaker equivalence.

The transition relation −−→ defined in chapter 2 does not distinguish between ob-

servable and unobservable actions. We define two transition relations due to the

non-observability of τ .

Definition 2.4.12

(i) P
µ

==⇒Q
def
= P (

τ
−−→)∗

µ
−−→(

τ
−−→)∗Q

(ii) P
µ̂

=⇒ Q
def
= P (

τ
−−→)∗

µ
−−→(

τ
−−→)∗Q if µ 6= τ and otherwise P (

τ
−−→)∗Q. ut

We are now ready to define an equivalence with the concept of observability.

Definition 2.4.13 A binary relation R ⊆ P×P is a weak bisimulation if (P1, P2) ∈
R implies, for all µ ∈ Act ∪ Γ ,

(i) ∀P ′
1: P1

µ
==⇒P ′

1 then ∃P ′
2: P2

µ̂
=⇒ P ′

2 and (P ′
1, P

′
2) ∈ R.

(ii) ∀P ′
2: P2

µ
==⇒P ′

2 then ∃P ′
1: P1

µ̂
=⇒ P ′

1 and (P ′
1, P

′
2) ∈ R.

P1 and P2 are observation-equivalent, written P1 ≈T P2, if there exists a weak bisim-

ulation R such that (P1, P2) ∈ R. ut
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Intuitively, if P1 and P2 are observation-equivalent, each action of P1 must be matched

by a sequence of actions of P2 with the same visible contents and timing, and con-

versely. The equivalence can equate two processes that are not distinguishable by

their observable behaviors and the timings of their behaviors.

Proposition 2.4.14 (1) ≈T is symmetric, reflexive, and transitive. (2) ≈T is the

largest strong bisimulation. ut

Proof. Definition 2.4.13 almost directly tells us this. ut

Proposition 2.4.15 For all P1, P2 ∈ P, P1 ∼T P2 implies P1 ≈T P2. ut

Proof. Definition 2.4.1 and 2.4.13 directly tells that every strong bisimulation is also

a observation-bisimulation. ut

In terms of ∼T , we have already presented many of equational laws. They are also

valid for ≈T because of ∼T ⊆≈T . Therefore we show only other equational laws which

are invalid for the strong equivalence, but valid for the observation equivalence.

Proposition 2.4.16

(1) τ.P ≈T P

(2) α.τ.P ≈T α.P

(3) τ.P + P ≈T τ.P

(4) α.(τ.P + Q) ≈T α.(τ.P + Q) + α.Q

Proof. We shall prove (1) only. The other cases can be proved from the application of

Definition 2.4.13, just as Proposition 2.4.3. We will prove that R = { (τ.P, P ) | P ∈
P }∪ Id is a weak bisimulation. So, let τ.P

〈t〉
==⇒P1 then it is enough to find P

〈̂t〉
=⇒ P2

and (P1, P2) ∈ R, whereas, let P
µ

==⇒P2 then it is enough to find P1. τ.P
µ̂

=⇒ P1

and (P1, P2) ∈ R. If τ.P
τ

==⇒P , P
τ̂

=⇒ P and clearly (P, P ) ∈ R. If P
µ

==⇒P ′, then

τ.P
τ̂

=⇒ µ̂
=⇒ P ′, and clearly (P, P ) ∈ R. ut

Proposition 2.4.17

(1) 〈t〉.τ.P ≈T 〈t〉.P
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(2) [t].τ.P ≈T P

(3) [t1].P + 〈t1〉.τ.[t2].P ≈T [t1 + t2].α.P ut

Proof. Easy application of Definition 2.4.13, as Proposition 2.4.5 ut

Proposition 2.4.18 Let P1 ≈T P2. Then we have the following properties:

(1) α.P1 ≈T α.P2

(2) P1|Q ≈T P2|Q
(3) P1 \ L ≈T P2 \ L

(4) P1[f ] ≈T P2[f ]

(5) 〈t〉.P1 ≈T 〈t〉.P2 ut

Proof. As Proposition 2.4.11. ut

Proposition 2.4.19 Let E and F include one free variables X at most. Then

E ≈T F implies recX : E ≈T recX : F .

Proof. By structural induction on E and F . ut

Proposition 2.4.20 Let A
def
= P , then A ≈T P . ut

Proof. By Definition 2.3.3, A
def
= P corresponds to the recursively definition. We have

that A and P have exactly the same derivative tree. ut

Theorem 2.4.21 Observation-equivalence ≈T is preserved by all operators except

for summation and time restriction operators. ut

Proof. By Proposition 2.4.13 and 2.4.19. ut

Unfortunately, like the weak equivalence of CCS[51], our weak equivalence is not

congruent. We show counterexamples:

P ≈T τ.P implies [t].P 6∼T [t].τ.P
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Timed Observation Congruence

To have a congruent relation based on the observation-equivalence, we need a little

restriction on the definition of the equivalence.

Definition 2.4.22 P1 and P2 are observation-congruent if for all µ ∈ Act ∪ Γ

(i) ∀P ′
1: P1

µ
==⇒P ′

1 then ∃P ′
2: P2

µ̂
=⇒ P ′

2 and P ′
1 ≈T P ′

2.

(ii) ∀P ′
2: P2

µ
==⇒P ′

2 then ∃P ′
1: P1

µ̂
=⇒ P ′

1 and P ′
1 ≈T P ′

2.

We write P1 =T P2 if P1 and P2 are observation-congruent. ut

Proposition 2.4.23 For all P1, P2 ∈ P

if P1 ∼T P2 then P1 =T P2, and if P1 =T P2 then P1 ≈T P2. ut

Proof. By Definition 2.4.1, 2.4.13, and 2.4.22, =T lies between ∼T and ≈T . ut

Theorem 2.4.24 =T is preserved by all operators.

Proof. Same as Proposition 2.4.11. ut

=T is a congruence relation and very close to timed observation equivalence. The

results provide a powerful method for proving the substitutability between two e-

quivalent processes. We can grantee that if two processes are observation-congruent,

they are substitutable for each other, even though their internal implementations are

different.

2.5 Examples

This section demonstrates how to apply RtCCS to reason about time-dependent

communicating systems.

Communication Protocol through N Processors

We consider a communication protocol through N processors (nodes) connected lin-

early. As the first step of our analysis, we describe a communication protocol between

two neighborhood processors.



CHAPTER 2. A TIME EXTENDED PROCESS CALCULUS 29

Communication Protocol between Two Neighborhood Processors

The communication protocol between two neighborhood processors consists of a

sender process (written as S), and a receiver process (written as R), linked through

a unreliable medium (written as M).

• Upon reception of data (action send), the sender process sends a data message

to the medium (action put). The process then waits for an acknowledgment

message (action ack). If the acknowledgment cannot be received within a spec-

ified period of time (t real time), the sender retransmits the data message to

the medium.

• After receiving a data message (action put), the medium transmits the data

message to the receiver process (action get). The delay of the transmission is

d1 real time. Also, when receiving an acknowledge message (action ok), it sends

the message to the sender process (action ok) after d2 real time.

• The receiver process gets a data message (action get) and then returns an ac-

knowledgment message to the sender through the medium and gives its neigh-

borhood processor the data (action receive).

We describe the protocol system in RtCCS as follows:

S
def
= send.S ′

S ′ def
= put.([t].ack.S + 〈t〉.S ′)

M
def
= put.〈d1〉.get.M + ok.〈d2〉.ack.M

R
def
= get.ok.(R|receive.0)

Note that put.([t].ack.S + 〈t〉.S ′) plays a role of timeout handling for action ack.

The communication protocol is described as (S|M |R) \ {get, put, ack, ok}. By

using the timed observation equivalence, the composition can be transformed into a

process which is behaviorally and temporally equivalent but has a simpler structure.

(S |M |R) \ {get, put, ack, ok} ≈T C

where C
def
= send.〈d1〉.(〈d2〉.C | receive.0)
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Let C be the behavioral and temporal specification of the protocol. Then, the above

result means that the implementation of the protocol satisfies its specification suc-

cessfully.

Communication Protocol through Linearly Connected N-Processors

Next, we linearly link N communication protocols through with N−1 node processors.

That is, i-th protocol is linked with its its both neighborhood protocols through

processors (written as Pi−1,i and Pi,i+1). Let p be the execution of time in each

processor.

Pi,i+1
def
= receivei.〈p〉.sendi+1.Pi,i+1

Pi,i+1 receives action receivei from i-th protocol. After an internal execution for p

real time, it sends action sendi+1. Communication through N protocols. is described

as the following parallel composition:

Sys
def
= (C[receive1/receive] | (P1,2 |C[send2/send, receive2/receive] |P2,3 | · · ·

· · · |C[sendN−1/send, receiveN−1/receive] |PN−1,N |C[sendN/send])

\
⋃

1≤i<N

{sendi} \
⋃

1<i≤N

{receivei}

Moreover, Sys can be transformed into simpler expression Sys by means of the timed

observation equivalence as shown below:

Sys ≈T Sys ′ where

P ′ def
= receive.(〈d1 + d2〉.P

′ | 〈(N − 1) × p + N × d1〉.send.0)

We can analyze the behavioral and temporal properties of the whole communication

system through simpler expression Sys more easily. For example, from Sys ′ we know

that the communication delay among N protocols is (N − 1) × p + N × d1 and the

front processor can become to receive data again after d1 + d2.

2.6 Concluding Remarks

This section introduced a new calculus for describing time-dependent systems. The

calculus is a minimal extension of Milner’s CCS by introducing two timed primitives:
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delay operator and time restriction operator. The calculus can successfully encompass

the pleasant properties of CCS and express various temporal properties of real time

systems in a single processor and small distributed systems, such as execution time,

delayed processing, and timeout handling.

In a large part of this chapter we have studied time-sensitive equivalence relations

over time dependent processes: strong equivalence, observation equivalence, and ob-

servation congruence. The strong equivalence shows that if processes are strongly

equivalent, they cannot be distinguished from one another in their time properties as

well as their functional behaviors. The observation equivalence and the observation

congruence can equate two processes that are not distinguishable in their observable

behaviors and the timings of the behaviors. In particular, the strong equivalence and

the observation congruence are proved to be congruent and thus provide a powerful

method for proving the reusability of real-time processes.



Chapter 3

Locality in Communication

This chapter presents an extension of the calculus presented in Chapter 2 with the a-

bility to express asynchronous message passing, communication delay, and the notion

of process location.1 We develop algebraic relations for asynchronously communicat-

ing processes located remotely.

3.1 Introductory Remarks

In Chapter 2 we established a process calculus for time-dependent systems where

communication is synchronous — a process sends a message to another and the other

must receive the message at the same time.

However, in a large distributed system, processors are allocated remotely. The

spatial distance among distributed processes manifests communication delay. The

delay seriously affects the timings of interprocess communications. For example, due

to the delay, a process sends a message to another and the other will always receive

the message at a later time. However, the amount of the delay cannot often be pred-

icated exactly. Moreover, the delay often affects the style of communications among

processes. In synchronous communication settings, a sender process must be blocked

for at least the round-trip time of message transmission, including communication

delay. For efficiency reasons, communications among distributed processes are often

based on asynchronous forms instead of synchronous ones. However, asynchronous

1This chapter is a modified version of an article that has been published earlier in [71].

32
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communication often results in another non-deterministic property.

Therefore, delay and asynchrony in communication create serious difficulties in

the design and development of distributed systems. To construct correct and efficien-

t programs for distributed systems, we need to analyze the influences of delay and

asynchrony on the behavioral and temporal properties of the systems. This chap-

ter addresses this problem and proposes a theoretical framework for specifying and

verifying distributed systems with these features.

The framework consists of two parts: a description language and a verification

method for asynchronous interactions among distributed processes. The language is

formulated based on the calculus studied in Chapter 2. However, the original calculus

is based on synchronous communication. This chapter extends the original calculus

with the ability to express asynchronous message passing and delayed processing.

Furthermore, we introduce the notion of process location and specify communication

delay as temporal distance between the locations of sender and receiver processes.

On the other hand, the verification method is formulated on the basis of algebraic

relations over processes described in the language. Throughout this chapter, we

assume that every process shares the same time reference. Also, in this thesis, for

focusing temporal aspects in distributed systems, we avoid to introduce the expressive

capability for a distributed system where topological connections between processes

can change dynamically. However, the calculus can easily model such a system by

incorporating with the port-passing mechanism developed in [52].

3.2 Basic Framework

We extend the calculus presented in Chapter 2 with the ability to specify asyn-

chronous interactions among remote located processes. The extended calculus is

called RtCCSA. We summarize the basic idea of the extensions before giving its

formal definition.

Extension: Spatial Location and Communication Delay

Communication delay is a function of geographic distance between sender processes

and receiver ones. The amount of communication delay is highly dependent on the

locations of sender and receiver processes. We introduce the notion of process location
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to specify communication delay appropriately. Every process expression is enriched

with a location postfix, written as (E) : `, which means that process E is allocated

at location `. The length of communication delay is given as a set of the possible

distances between the locations of sender and receiver processes.

Extension: Asynchronous Communication

In distributed systems, communication between remotely located processes is often

realized by means of asynchronous message passing. However, the calculus developed

in the previous chapter is based on synchronous communication. We extend the

following two primitives for asynchronous message passing: non-blocking message

send and blocking message receive.

Non-blocking Message Send: This is represented by the creation of a process cor-

responding to an asynchronous message. The created process does not do any-

thing except for being received by an input port for the message. The approach

is basically the same to those developed in [5, 7, 36, 42]. However, our approach

makes such a created process guarded by a delay operator to be suspended for

the transmission latency of the message. Moreover, each message has its target

location. For example, a process residing at location ` which sends message a to

a process at location `′ is written as (`′ ↑a.E) :`, where E is its body program.

Blocking Message Receive: This is modeled as an input-action prefix which is

basically the same as the input action primitive of RtCCS . We assume that

each process can receive only the messages that arrive at its location. For

example, (↓a.E) : ` represents a process which is at location ` and receives a

message which arrives at the location and then behaves like (E) : `. We also

assume that the order of message arrival is indeterminate.

3.3 Definition

The syntax and the semantics of this calculus are formulated based on those of the

calculus presented in Chapter 2.
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Notation

We first define new notations which we will use hereafter. Communication delay is

given as a function parameterized by the locations of sender and receiver processes,

written as ∆.

Definition 3.3.1

• Let Loc be an infinite set of location names. Its elements are denoted as

`,`1,`2,. . ..

• Let ∆ ⊆ Loc × Loc → 2R
+0

be a communication delay function.

Note that, to model unpredictable communication delay, ∆(`, `′) specifies all the pos-

sible amount of communication delay from location ` to `′. For example, ∆(`1, `2) =

[10, 12] means that the communication delay from location `1 to `2 varies from 10 to

12 real time.

Syntax

In order to clarify our exposition, we divide the expressions into two groups: ex-

pressions for describing local processes written as E , and expressions for describing

asynchronous interactions among remotely located processes written as P.

Definition 3.3.2 The set E of local process expressions is defined by the following

expressions:

E ::= `↑a.E | 〈t〉.E | X | recX : E | F

F ::= 0 | ↓a.E | F1 + F2 | [t].F

where a is a message name in A, t is an element of R+0, and ` is a location name

in Loc. Hereafter we shall often use the more readable notation X
def
= E instead of

recX : E. ut

Definition 3.3.3 The set P of remote process expressions is defined by the following

expressions:

P ::= (E) :` | P1 |P2 | P \ N

where N is a subset of Λ, and f is an action mapping f : Act → Act . ut
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We give the intuitive meanings of some important constructors in the language below.

The meanings of other constructors are equal to those of RtCCS .

• (E) :` means that process E is residing at location `.

• (`′↑a.E) : ` represents a process which is residing at location `. The process

asynchronously sends message a to a process at location `′ and behaves like E.

• (↓a.E) :` represents a process that is at location ` and receives message a which

arrives at location `, and then behaves like E.

We define a function to extract location names from P expressions.

Definition 3.3.4 The function |·|Loc : P → 2Loc, which presents the location names

of processes, is defined as follows:

|(E) :`|Loc = {`}, |P1|P2|Loc = |P2|Loc ∪ |P2|Loc, |P \ N |Loc = |P |Loc ut

Semantics

The semantics of RtCCSA is defined through two steps: location translation rule

and labeled transition system. The former translates location-dependent expressions

into expressions in RtCCS process, written as (E) : `. The latter is equal to the

operational semantics of RtCCS . The translated expressions can be interpreted as

RtCCS expressions.

Location Translation

Before defining the location translation rule, we explain its basic idea. The following

examples will be enough to understand it.

(`R ↑a.ES) :`S −⇀
∑

t∈∆(`S ,`R)

τ.〈t〉.a`R
.0 | (ES) :`S

(↓a.ER) :`R −⇀ a`R
.(ER) :`R

The first rule defines the semantics of non-blocking message sending by translating

into RtCCS process expressions. The rule transforms (`R ↑a.E) : `S into a paral-

lel composition between two processes: (E) : `S and
∑

t∈∆(`S ,`R) τ. 〈t〉. a`R
. 0. The
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former corresponds to the subsequent computation. The latter corresponds to the

asynchronous message itself. It is received by a process at location `R after idling for

t real time to model the transmission delay of the message, where t is an arbitrary

one of the possible communication delay given as set ∆(`S, `R). The second rule as-

sociates an input action name with the location name of the process. As a result,

receiver processes can accept only the messages which arrive at their own locations.

Definition 3.3.5 The location translation rule (E) : ` is recursively defined as

follows:

(0) :` −⇀ 0 (1)

(X) :` −⇀ X (2)

(↓a.E) :` −⇀ a`.(E) :` (3)

(E1 + E2) :` −⇀ (E1) :` + (E2) :` (4)

(recX : E) :` −⇀ recX : (E) :` (5)

([t].E) :` −⇀ [t].(E) :` (6)

(`′↑a.E) :` −⇀
⊕

t∈∆(`,`′)

〈t〉.a`′ .0 | (E) :` (7)

(〈t〉.E) :` −⇀ 〈t〉.(E) :` (8)

where ` and `′ are location names and ∆ is a communication delay function. We

write
∑

i∈{1,...,n} τ.Ei as ⊕i∈{1,...,n}Ei. We rewrite form P \ N to P \ N ′ where N ′ def
=

{ a` | a ∈ N, ` ∈ Loc }. ut

Hereafter, we will often omit the −⇀ translation if it is directly understood from the

context.

Operational Semantics

The location translation rules can map all RtCCSA expressions into RtCCS ones. The

semantics of the translated expressions is defined through the semantics of RtCCS .

Definition 3.3.6 RtCCSA including no (E) :` is a labeled transition system defined

from the transition relation rules given in Definition 2.3.6. ut
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In asynchronous communication settings, sender processes cannot observe how the

messages which they send will be treated by the other processes. We introduce

special labeled transitions for asynchronous communication.

Definition 3.3.7 RtCCSA is a labeled transition system redefined from the tran-

sition relation rules given in Definition 2.3.6 and the following rules:

−

a`.0 |P
↑a

−−→
`

P

−

P
〈t〉`′↓a
−−→

`
(〈t〉.`′ ↑a.0) :` |P

where t ∈ R+0. We often denote P
〈0〉`′↓a
−−→

`
P ′ as P

`′↓a
−−→

`
P ′. We often write

P
〈t〉ε↓a
−−→

`

〈t〉.a`.0 |P instead of the second labeled transition rule. ut

We give intuitive meaning of the above transitions.

• P
↑a

−−→
`

P ′ means that an observer at location ` receives message a from P and

P behaves like P ′.

• P
〈t〉`′↓a
−−→

`
P ′ means that after t real time, an observer at location ` sends message

a to a process residing at location `′ and P becomes P ′.

Example 3.3.8 Let ∆(`1, `2) = {4} and ∆(`2, `1) = {5}.

(1) Asynchronous Output

(〈3〉.`2 ↑a. ↓b.0) :`1 −⇀ 〈3〉.(〈4〉.a`2 .0 | b`1 .)
〈7〉

−−→ a`2.0 | b`1 .0
↑a

−−→
`2

0 | b`1 .0

(2) Asynchronous Input

(↓a.`1 ↑b.0) :`2 −⇀ a`2 .(〈5〉.b`1 .0 |0)
〈3〉`2↓a
−−→

`1

〈3〉.(`2 ↑a.0) :`1 | a`2 .(〈5〉.b`1 .0 |0)

−⇀ 〈3〉.〈4〉.a`2 .0 | a`2 .(〈5〉.b`1.0 |0)
〈7〉

−−→ a`2 .0 | a`2 .(〈5〉.b`1 .0 |0)

· · ·
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(3) Asynchronous Communications between Two Processes

(〈3〉.`2 ↑a. ↓b.0) :`1 | (↓a.`1 ↑b.0) :`2 −⇀ 〈3〉.〈4〉.a`2 .0 | b`1 .0 | a`2 .(〈5〉.b`1 .0 |0)
〈7〉

−−→ a`2 .0 | b`1 .0 | a`2 .(〈5〉.b`1 .0 |0)
τ

−−→ 0 | b`1 .0 | 〈5〉.b`1 .0 |0
〈5〉

−−→ 0 | b`1 .0 | b`1 .0 |0
τ

−−→ 0 |0 |0 |0

The above transition relation does not distinguish between observable and unobserv-

able actions. Therefore we give weak transitions as follows:

Definition 3.3.9

• P
〈d〉`′↓a
==⇒̀ P ′ is defined as P (

τ
−−→)∗

〈d〉`′↓a
−−→

`
(

τ
−−→)∗ P ′

• P
↑a

==⇒̀ P ′ is defined as P (
τ

−−→)∗
↑a

−−→
`

(
τ

−−→)∗ P ′

• P
〈t〉

==⇒ P ′ is defined as P
〈t1〉

==⇒· · · 〈tn〉
==⇒ P ′ where t = t1 + · · · + tn

where t ∈ R+0 and
τ

−−→ and
〈t〉

==⇒ are defined in Definition 2.4.12. ut

3.4 Time-Sensitive Bisimulation

This section introduces an equivalence relation for remotely interacting processes.2

Definition 3.4.1 A symmetric relation R ⊆ (P×P)×2Loc is a remote bisimulation

on location set L (L ⊆ Loc) if (P1, P2) ∈ RL implies, for all a, b ∈ A, t ∈ R+0,

`a
L, `b

L ∈ L, and ` ∈ Loc;

(i) ∀P1
′: P1

↓̀a
==⇒

`a
L

〈t〉
==⇒ ↑b

==⇒
`b
L

P1
′ then

∃P2
′: P2

↓̀a
==⇒

`a
L

〈t〉
==⇒ ↑b

==⇒
`b
L

P2
′ and (P1

′, P2
′) ∈ RL.

(ii) ∀P2
′: P2

↓̀a
==⇒

`a
L

〈t〉
==⇒ ↑b

==⇒
`b
L

P2
′ then

∃P1
′: P1

↓̀a
==⇒

`a
L

〈t〉
==⇒ ↑b

==⇒
`b
L

P1
′ and (P1

′, P2
′) ∈ RL.

2Strong bisimulation might be regarded as more fundamental than the observation one. However,
it is somewhat unnatural to assume that observers have the ability to observe all events at remote
locations.
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where a, b may be empty action names. P1 and P2 are remotely bisimilar with respect

on L, written P1≈L
T P2, if there exists a remote bisimulation with respect to L, RL

such that (P1, P2) ∈ RL. ut

We here state the informal meaning of P1≈L
T P2. An observers at a location in L sends

P1 and P2 any messages as they like. And then, another observer at a location in L

waits messages from P1 and P2. If the messages which P1 and P2 return are the same

and arrives at the observer at the same time, and P ′
1 and P ′

2 can simulate to each

other in the same way, P1 and P2 are remotely equivalent. Note that the observers

do not have any sense of messages which arrive at any locations different from their

locations.

Proposition 3.4.2 (1) ≈L
T is symmetric, reflexive, and transitive. (2) ≈L

T is the

biggest remote bisimulation with respect to L. ut

Proof. Definition 3.4.1 almost directly tells us this. ut

Example 3.4.3 Let `1, `2 ∈ L,

(1) (`1 ↑a.`2↑b.E) :` ≈L
T (`2↑b.`1 ↑a.E) :`

(2) (`1 ↑a.`3↑b1.E) :` ≈L
T (`1 ↑a.`3↑b2.E) :` where `3 6∈ L

The first of this example is important to demonstrate an essential characteristic of

asynchronous communication.

Proposition 3.4.4 Let (E1) :`≈L
T (E2) :` and P1≈L

T P2. Then we have the following

properties:

(1) (↓a.E1) :` ≈L
T (↓a.E2) :`

(2) (`′ ↑a.E1) :` ≈L
T (`′ ↑a.E2) :`

(3) P1|Q ≈L
T P2|Q

(4) P1 \ N ≈L
T P2 \ N

(5) 〈t〉.P1 ≈L
T 〈t〉.P2

where ∆(`, `′) is constant. ut

Proof. Similar to Proposition 2.4.11. ut
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Proposition 3.4.5

P1 ≈L1
T P2 and L2 ⊆ L1 then P1 ≈L2

T P2 ut

Proof. We can easily prove this from Definition 3.4.1. ut
If two processes are equivalent by an observer with a wider scope (L1), they can be

still equivalent by another observer with a narrow scope (L2 ⊆ L1).

3.5 Speed-Sensitive Prebisimulation

This section presents an algebraic order relation over distributed processes with re-

spect to their speeds. In asynchronous communication settings, sender processes do

not have to synchronize their receiver processes and thus can send messages as soon

as they can. Therefore, in the settings real-time processes do not need to completely

match their own temporal specification, and need only to deliver messages to their

receiver processes at earlier timings than those given in their specification. This re-

veals that in the verification of asynchronous communicating real-time processes, a

speed-sensitive order relation is often more suitable and practical than time-sensitive

equivalence relations.

Relating processes with Respect to Speed

Before defining the relations, we first illustrate the basic idea behind them. Suppose

two simple processes: A1
def
= (〈1〉.`↑a.E) : `A and A2

def
= (〈3〉.`↑a.E) : `A, where ` is an

observer’s location. A1 can send message a to the observer after 1 real time, and A2

can send the same message after 3 real time. That is, A1 can send the message sooner

than A2. Therefore, we would consider process A1 to be faster than process A2. We

define such a speed-sensitive order relation.

Definition 3.5.1 A binary relation R ⊆ (P × P) × R+0 × 2Loc is a t-speed pre-

bisimulation on L if (P1, P2) ∈ RL
t implies, for all a, b ∈ A, d ∈ R+0, ` ∈ Loc, and

`a
L, `b

L ∈ L;

(i) ∀t1, ∀P1
′: P1

〈d〉 ↓̀a
==⇒

`a
L

〈t1〉
==⇒ ↑b

==⇒
`b
L

P1
′ then

∃t2, ∃P2
′: P2

〈d〉 ↓̀a
==⇒

`a
L

〈t2〉
==⇒ ↑b

==⇒
`b
L

P2
′ and (P1

′, P2
′) ∈ RL

t−t1+t2
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(ii) ∀t2, ∀P2
′: P2

〈d〉 ↓̀a
==⇒

`a
L

〈t2〉
==⇒ ↑b

==⇒
`b
L

P2
′ then

∃t1, ∃P1
′: P1

〈d〉 ↓̀a
==⇒

`a
L

〈t1〉
==⇒ ↑b

==⇒
`b
L

P1
′ and (P1

′, P2
′) ∈ RL

t−t1+t2

where t ∈ R+0, L ⊆ Loc and a, b may be empty names. ut

In the above definition, RL
t is a family of relations indexed by a non-negative time

value t. Intuitively, t is the relative difference between the time of P1 and that of P2;

that is, it means that P1 precedes P2 by t real time.3 L corresponds to the observers’

locations. The following order relation ≤L
t starts with a pre-bisimulation indexed by

t (i.e., RL
t ) and can change t as the bisimulation proceeds only if t ≥ 0.

Definition 3.5.2 We let P1 ≤L
t P2 if there exists some t-speed pre-bisimulation on

L such that (P1, P2) ∈ RL
t . We call ≤L

t t-speed-sensitive order on L. We shall often

abbreviate ≤L
0 as ≤L.

We here state the informal meaning of P1 ≤L
t P2. We first assume (P1, P2) ∈ RL

t .

This assumption means P1 precedes P2 by t real time. An observer at location `a
L

(`a
L ∈ L) sends message a to P1 after d real time (written as P1

〈d〉 ↓̀a
==⇒

`a
L

in (i) ). It also

sends the same message to P2 after d real time (written as P2

〈d〉 ↓̀a
==⇒

`a
L

in (ii) ). And

then an observer at location `b
L (`b

L ∈ L) receives return message b from P1 after t1

real time (written as
〈t1〉

==⇒ ↑b
==⇒

`b
L

P1
′ in (i) ) and from P2 after t2 real time (written as

〈t2〉
==⇒ ↑b

==⇒
`b
L

P2
′ in (ii) ). If the arrival time of the return message from P1 is earlier than

that from P2,
4 and if P1

′ and P2
′ can be successfully observed in (P1

′, P2
′) ∈ RL

t−t1+t2

in the same way, P1 and P2 can perform the same behaviors but P1 can perform the

behaviors faster than P2.

We show several algebraic properties of the order relation below.

Proposition 3.5.3 Let P, P1, P2, P3 ∈ P, t1, t2 ∈ R+0, and L ⊆ Loc then,

(1) P ≤L
0 P

3This means that the performance of P1 is at most t real time faster than that of P2.
4Note that P2 already precedes P1 by t real time. Thus, the relative difference between the arrival

timing of the message from P2 and that from P1 is t − t1 + t2.
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(2) P1 ≤L
t1 P2 and P2 ≤L

t2 P3 then P1 ≤L
t1+t2 P3 ut

Proof. Definition 3.5.1 and 3.5.2 almost directly tells us this. ut

From these results, we see that P ≤L P and that if P1 ≤L P2 and P2 ≤L P3 then

P1 ≤L P3. Hence, ≤L is a preorder relation.

Proposition 3.5.4 Let P1, P2 ∈ P, L,L1, L2 ⊆ Loc, and t, t1, t2 ∈ R+0 then,

(1) P1 ≤L
t1

P2 and t1 ≤ t2 then P1 ≤L
t2

P2

(2) P1 ≤L1
t P2 and L2 ⊆ L1 then P1 ≤L2

t P2 ut

Proof. Easy application of Definition Definition 3.5.1 and 3.5.2. ut

The first half of the above proposition means that P1 can perform at most t1 real time

faster than P1. Then, P1 can still perform at most t2 real time faster than P1, where

t1 ≤ t2. The second half means that two processes ordered by an observer having a

scope (L1) can be still ordered by another observer having a more limited scope (L2).

It is very convenient to develop a precongruence with respect to speeds in order to

guarantee the substitutability between two ordered processes.

Proposition 3.5.5 Let (E1) : `, (E2) : `, P1, P2 ∈ P such that (E1) : ` ≤L (E2) : `

and P1 ≤L P2 where L ⊆ Loc and t ∈ R+0 then,

(1) (↓a.E1) :` ≤L (↓a.E2) :`

(2) (`′ ↑a.E1) :` ≤L (`′↑a.E2) :`

(3) (〈t〉.E1) :` ≤L (〈t〉.E2) :`

(4) P1 \ N ≤L P2 \ N

where ∆(`, `′) is constant. ut

Proof. As Proposition 2.4.11. ut

However, there is an undesirable problem in giving a pre-congruence with respect to

parallel composition. Suppose three processes: A1
def
= 〈1〉. ↑ a.0, A2

def
= 〈4〉. ↑ a.0 and

B
def
= ((a.B′ + ↓ b.B′′) | 〈2〉. ↑ b.0) \ {b} where we ignore the notion of location can be

ignored for simplify. We clearly have A1 ≤L A2 but cannot expect A1|B ≤L A2|B.

This reveals that a slower process cannot always be replaced by a faster process in
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a parallel composition with other processes. This anomaly is traced to contexts that

restrict the capability to execute a particular computation due to the passage of time,

e.g. timeout handling.

In order to define a rational pre-congruence with respect to speed, we here define

another order relation which is a little more strict than the ≤L
t relation.

Definition 3.5.6 A binary relation R ⊆ (P × P) ×R+0 × 2Loc is a t strict-speed

prebisimulation on L if (P1, P2) ∈ RL
t implies, for all a, b ∈ A, d1, d2 ∈ R+0 such that

d1 ≤ d2 + t, ` ∈ Loc, and `a
L, `b

L ∈ L;

(i) ∀t1, ∀P1
′: P1

〈d1〉 ↓̀a
==⇒

`a
L

〈t1〉
==⇒ ↑b

==⇒
`b
L

P1
′ then

∃t2, ∃P2
′: P2

〈d2〉 ↓̀a==⇒
`a
L

〈t2〉
==⇒ ↑b

==⇒
`b
L

P2
′ and (P1

′, P2
′) ∈ RL

t−t1+t2

(ii) ∀t2, ∀P2
′: P2

〈d2〉 ↓̀a
==⇒

`a
L

〈t2〉
==⇒ ↑b

==⇒
`b
L

P2
′ then

∃t1, ∃P1
′: P1

〈d1〉 ↓̀a
==⇒

`a
L

〈t1〉
==⇒ ↑b

==⇒
`b
L

P1
′ and (P1

′, P2
′) ∈ RL

t−t1+t2

where t ∈ R+0 and L ⊆ Loc and a, b may be an empty name. ut

Definition 3.5.7 We let P1≤L
t P2 if there exists some t strict-speed prebisimulation

on L such that (P1, P2) ∈ RL
t . We call ≤L

t t-strict-speed order on L. We shall often

abbreviate ≤L
0 as ≤L.

This relation is basically similar to ≤L
t except that the observer is a little strict. That

is, whereas the observer of ≤L
t sends a message to the concerned processes after the

amount of the passage of time, the observer of ≤L
t sends a message to the second

(slower) process arbitrarily later than to the (faster) process. Also, to allow easier

discussion hereafter, we define a restricted expression below.

Definition 3.5.8 Let P ∈ P. Then, if P ≤L
t P , we call P a sound expression on

L. We denote P ′ to the set of all the sound expressions.

We show several algebraic properties of the order relation below.

Proposition 3.5.9 Let P, P1, P2, P3 ∈ P ′, t1, t2 ∈ R+0, and L ⊆ Loc then,

(1) P ≤L
0 P
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(2) P1 ≤L
t1 P2 and P2 ≤L

t2 P3 then P1 ≤L
t1+t2 P3 ut

Proof. Definition 3.5.6 and 3.5.7 almost directly tells us this. ut

From these results, we see that P ≤L P and that if P1 ≤L P2 and P2 ≤L P3 then

P1 ≤L P3. Hence, ≤L is a preorder relation on P ′.

Proposition 3.5.10 Let P1, P2 ∈ P, L ⊆ Loc, and t ∈ T then,

(1) If P1 ≤L
t P2 then P1 ≤L

t P2

(2) If in Proposition 3.5.4 and 3.5.5 every ≤L
t is replaced by ≤L

t , the propositions

still hold. ut

The first above result shows that ≤L
t at least includes ≤L

t .

We will show that ≤L
t is precongruent with respect to a parallel composition. We

need a lemma before proving it.

Lemma 3.5.11 Let P1, P2, Q1, Q2, P1|Q1, P2|Q1 ∈ P ′, Then,

P1 ≤L
t P2 and Q1 ≤L

t Q2 then P1 |Q1 ≤L
t P2 |Q2

where we assume |P1|Loc, |P2|Loc, |Q1|Loc, |Q1|Loc ⊆ L ut

Proof. It is enough to show that RL
t = { (P1|Q1, P2|Q2) | P1 ≤L

t P2 and Q1 ≤L
t Q2 }

is strict-speed prebisimulation (t ≥ 0). Let P1|Q1

〈d1〉 ↓̀a==⇒
`a
L

〈t1〉
==⇒ ↑b

==⇒
`b
L

P1
′|Q1

′. It is enough

to find P2|Q2 such that P2|Q2

〈d1〉 ↓̀a
==⇒

`a
L

〈t2〉
==⇒ ↑b

==⇒
`b
L

P2
′|Q2

′ and (P1
′|Q1

′, P2
′|Q2

′) ∈ RL
t−t1+t2

.

There are three cases:

Case 1 Let P1|Q1

〈d1〉 ↓̀a
==⇒

`a
L

P1
′|Q1

′ then,

Subcase 1.1 Let P1

〈d1〉 ↓̀a
==⇒

`a
L

P1
′ and Q1 ≡ Q1

′. Then, from P1 ≤L
t P2, we have

∀d2 ≥ d1 + t, P2

〈d1〉 ↓̀a==⇒
`a
L

P2
′ with P1

′ ≤L
t−t1+t2

P2
′. By choosing Q2 to be Q2

′,

(P1
′|Q1

′, P2
′|Q2

′) ∈ RL
t−t1+t2

.

Subcase 1.2 Let P1 ≡ P1
′ Q1

〈d1〉 ↓̀a
==⇒

`a
L

Q1
′ then, similar.

Case 2 Let P1|Q1
〈t1〉

==⇒ ↑b
==⇒

`b
L

P1
′|Q1

′ then,
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Subcase 2.1 Let P1
〈t1〉

==⇒ ↑b
==⇒

`b
L

P1
′. and Q1

〈t1〉
==⇒ Q1

′. Then, from P1 ≤L
t P2, we

have ∃t2 ≥ t1 + t, P2
〈t2〉

==⇒ ↑b
==⇒

`b
L

P2
′ with P1

′ ≤L
t−t1+t2

P2
′. Also, from Q1 ≤L

t Q2,

we have ∀ṫ2 ≥ t1 + t, Q2

〈ṫ2〉ε↓a
==⇒

`Q

Q2
′ with Q1

′ ≤L
t−t1+ṫ2

Q̇2
′. By choosing ṫ2 to be

t2 and Q̇2
′ to be Q2

′, we have (P1
′|Q1

′, P2
′|Q2

′) ∈ RL
t−t1+t2 .

Subcase 2.2 Let P1
〈t1〉

==⇒ P1
′ and Q1

〈t1〉
==⇒ ↑b

==⇒
`b
L

Q1
′ then, similar.

Case 3 Let P1|Q1
〈t2〉

==⇒ P1
′|Q1

′ then,

Subcase 3.1 Let P1
〈t1〉

==⇒ P1
′, and P2

〈t1〉
==⇒ P2

′. Trivial.

Subcase 3.2 Let P1
〈t1〉

==⇒ ↑b
==⇒

`Q

P1
′, Q1

〈t1〉ε↓a
==⇒

`Q

Q1
′, and `Q ∈ |Q1|Loc(≡ |Q2|Loc)

Then, from P1≤L
t P2, we have ∃t2 ≥ t1 + t, P2

〈t2〉
==⇒ ↑b

==⇒
`Q

P2
′ with P1

′≤L
t−t1+t2

P2
′.

Also, from Q1 ≤L
t Q2, we have ∀ṫ2 ≥ t1 + t, Q2

〈ṫ2〉ε↓a
==⇒

`Q

Q2
′ with Q1

′ ≤L
t−t1+ṫ2

Q̇2
′.

By choosing ṫ2 to be t2 and Q̇2
′ to be Q2

′, we have (P1
′|Q1

′, P2
′|Q2

′) ∈ RL
t−t1+t2 .

Subcase 3.3 Let P1

〈t1〉ε↓a
==⇒

`P

P1
′, Q1

〈t1〉
==⇒ ↑b

==⇒
`P

Q1
′, and `P ∈ |P1|Loc(≡ |P2|Loc)

then, similar.

By a symmetric argument, we complete the proof. ut

Theorem 3.5.12 Let P1, P2, Q, P1|Q, P2|Q ∈ P ′.

P1 ≤L P2 and P1 |Q ≤L P2 |Q

where we assume |P1|Loc, |P2|Loc, |Q|Loc ⊆ L ut

Proof. By Lemma 3.5.11, we can easily prove this theorem. ut

Intuitively, the above result tells that a parallel composition between the faster pro-

cesses can really perform faster than one between the slower ones. That is, a system

when embedding the faster processes can really perform faster than when embedding

the slower ones.

Proposition 3.5.13 Let P1, P2 ∈ P ′, ∆1, ∆2 such that ∀` ∈ L,∀`′ ∈ |P1|Loc ∪
|P2|Loc : max∆1(`, `

′) ≤ min∆2(`, `
′) and max∆1(`

′, `) ≤ min∆2(`
′, `),

P1 ≤L P2 assuming ∆1 then P1 ≤L P2 assuming ∆2 ut
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This proposition shows that a slower process is still slower even from an observer

residing at a further location. However, the reverse implication of the proposition does

not hold; That is, for all ∆1, ∆2 such that ∀` ∈ L, `′ ∈ |P1|Loc∪|P2|Loc : max∆1(`, `
′) ≥

min∆2(`, `
′) and max∆1(`

′, `) ≥ min∆2(`
′, `) then, from P1 ≤L P2 assuming ∆1,

P1≤L P2 assuming ∆2 is not usually derived. This is impossible because the observer

of ≤L cannot notice any difference between its ordered processes before it receives

their first messages.

Remark The expressive power of sound expressions is weaker than that of P
because any expressions which contain the anomalous contexts mentioned above

are no longer definable, for example ((a ↓ .A1 + b ↓ .A2) | 〈2〉.` ↑ b.0) \ {b} : ` and

(〈2〉.a ↓ .0 | 〈4〉.a ↓ .0) : `. However, we insist that this is not an unreasonable restric-

tion because we never lose the expressive capability for time-dependent operations

which make some other event executable due to the passing of time, in particular

this restriction never affects any required expressiveness of the language in describing

the real-time systems which contain no timeout handling, including hard real-time

systems. On the contrary, every expression in P can satisfy all the propositions pre-

sented in this section, if we alter the fourth rule of Definition 2 into “P1

〈t〉
−−→P1

′ and

P2

〈t〉
−−→P2

′ imply P1|P2

〈t〉
−−→P1

′|P2
′”.5 However, this alternation allows an executable

communication to be suspended for arbitrary periods of time.

3.6 Examples

We show some examples to demonstrate the utility of the calculus and the relations

presented in this chapter.

Example of Description

The following example illustrates how to describe distributed processes in RtCCSA.

Example 3.6.1 We describe a simple communication protocol for an unreliable

communication network. The protocol consists of a sender process at location `S and a

5We leave further details of this alternative semantics to another paper [67].
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receiver process at location `R. The sender sends a message to the receiver (`R ↑send)

and waits for an acknowledgment (↓ ack). If it cannot receive the acknowledgment

within 8.0 real time, it retransmits the message. The receiver accepts the message (↓
send) and then returns an acknowledgment (`S ↑ack). These processes are described

as follows:

Sender :`S
def
= ((`R ↑send . (↓ack.0+ ↓ timeout . Sender) |

〈8.0〉 . `S ↑ timeout .0) \ {timeout}) :`S

Receiver :`R
def
= ↓send . `S ↑ack . 0 :`R

We assume that the communication from `S to `R takes 3.0 ± 1.0 real time and may

occasionally fail, and that from `R to `S takes 2.0±1.0 real time and may occasionally

fail.

∆(`S, `R) = {2.0, . . . , 4.0} ∪ {∞}

∆(`R, `S) = {1.0, . . . , 3.0} ∪ {∞}

∆(`S, `S) = {0}

where ∞ corresponds to a communication failure. By using rule (E) :`, these processes

are expanded as follows:

(Sender) :`S −⇀ · · −⇀ ⊕t∈∆(`S ,`R)〈t〉.send`R
.0|(ack`S

.0 + timeout`S
.(Sender) :`S)|

〈8.0〉.timeout`S
.0) \ {timeout`S}

(Receiver) :`R −⇀ · · −⇀ send`R
.〈2.0〉.ack`S

.0

By expanding (Sender : `S |Receiver : `R) \ {send , ack} in the above transition, we

can strictly analyze both the behavioral properties and the temporal properties of

the entire system. When ∆(`S, `R) is assumed to be 3.0 real time and ∆(`R, `S) to

be 2.0 real time, we show interactions between them as follows:

(Sender :`S |Receiver :`R) \ {send , ack}
τ

−−→ (〈3.0〉.send`R
.0 | (ack`S

.0 + timeout`S
.(Sender) :`S) |

〈8.0〉.timeout`S
.0) \ {timeout} | send`R

.〈2.0〉.ack`S
.0) \ {send , ack}

〈3.0〉
−−→ ((send`R

.0 | (ack`S
.0 + timeout`S

.(Sender) :`S) |
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〈5.0〉.timeout`S
.0) \ {timeout} | send`R

.〈2.0〉.ack`S
.0) \ {send , ack}

τ
−−→ ((ack`S

.0 + timeout`S
.(Sender) :`S) |

〈5.0〉.timeout`S
.0) \ {timeout} | 〈2.0〉.ack`S

.0) \ {send , ack}
〈2.0〉
−−→ ((ack`S

.0 + timeout`S
.(Sender) :`S) |

〈5.0〉.timeout`S
.0) \ {timeout} | ack`S

.0) \ {send , ack}
τ

−−→ (0 | 0) \ {send , ack}

Example of Verification

For the remainder of this section we will present an example of the verification of

distributed processes to demonstrate how the order relation works.

Example 3.6.2 We consider two printing service systems in a distributed sys-

tem. The first system consists of two remotely located processes: a printer process

(Printer 1) at location `P and a console process (Console1) at location `C . We denote

the location of their environment as `.

• Upon reception of a message (↓print) from the environment, the console process

queries the status of the printer process (`P ↑status). If it receives a permission

to send data (↓ idle), it sends data to the printer (`P ↑ data) after an internal

execution for 5 real time and waits for a completion notice of the print (↓end).

After receiving the notice, it sends a message to the environment (`↑ok).

• The printer process waits for a query message (↓ status) and then returns its

status (`C ↑ idle) after 5 real time and waits for data transmission (↓ data).

Since it takes 60 real time to print the data, it returns a print completion notice

(`C ↑end) after 60 real time.

The two processes are described as follows:

Console1 :`C
def
= (↓print . `P ↑status . ↓ idle . 〈5〉 . `P ↑data . ↓end . `↑ok . 0) :`C

Printer 1 :`P
def
= (↓status . 〈5〉 . `C ↑ idle . ↓data . 〈60〉 . `C ↑end .Printer 1) :`P

The first system is described as a parallel composition of the processes as follows:

(Printer 1 :`P |Console1 :`C) \ N1 where N1
def
= {status, idle, data, end}
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The second system consists of three remotely located processes: a printer process

(Printer 2) at location `P , an agent process (Agent) at location `A, and a console

process (Console2) at location `C . The agent process interacts with the printer process

and the console process. The printer process is identical to that in the first system

except for its message destinations.

• Upon reception of a message (↓ print), the console process sends the agent

process a printing request (`P ↑req) and then waits for a notice of printing start

(↓ started). After receiving the notice, it sends a message to the environment

(`↑ok).

• The agent process receives a printing request message (↓req). After an internal

execution of 20 real time, it queries the printer about its status (`P ↑ status).

If it receives the status (↓ idle), it sends data to the printer (`P ↑ data) after

an internal execution of 20 real time, and then sends a message to the console

(`C ↑ started). After that, it waits for next print request (↓ req) while waiting

for a print completion notice (↓end) from the printer process.

These processes are described as follows:

Console2 :`C
def
= (↓print . `A ↑req . ↓started . `↑ok . 0) :`C

Agent :`A
def
= (↓req . 〈20〉 . `P ↑status . ↓ idle . 〈20〉 .

(`P ↑data . `C ↑started . ↓end . 0 |Agent)) :`A

Printer2 :`P
def
= (↓status . 〈5〉 . `A ↑ idle . ↓data . 〈60〉 . `A ↑end .Printer 2) :`P

The whole second system is described as a parallel composition of the three process

as follows:

(Printer 2 :`P |Agent :`A |Console2 :`C) \ N2

where N2
def
= {req, status, idle, started, data, end}

We here compare the performances of these systems. We first assume that the com-

munication delay between `C and `P is 40 ± 1 real time, that between `A and `P is

20 ± 1 real time, and that between `C and `A is 30 ± 1 real time.
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∆(`P , `C) = ∆(`C , `P ) = {39.0, . . . , 41.0}
∆(`A, `P ) = ∆(`P , `A) = {19.0, . . . , 21.0}
∆(`C , `A) = ∆(`A, `C) = {29.0, . . . , 31.0}

We also assume that the other communication channels do not exist. By using the

timed order relation, the two systems are related as follows:

(Printer 1 :`P |Console1 :`C) \ N1

≤L (Printer 2 :`P |Agent :`A |Console2 :`C) \ N2

where L ⊆ Loc such that `, `A, `C , `P ∈ L

The above result shows that the two systems are behaviorally equivalent but that the

first system can perform faster than the second one.

Also, by using the timed order relation, we can verify that the systems satisfy

their specification. For example, let Spec :`C be a specification for the systems.

Spec :`C
def
= ↓req . 〈300〉 . `↑ok . 0 :`C

By using Definition 3.4.1 we conclude that:

(Printer 1 :`P |Console1 :`C) \ N1 ≤L Spec :`C

(Printer 2 :`P |Agent :`A |Console2 :`C) \ N2 ≤L Spec :`C

The above inequalities show that the two systems can execute the behaviors given in

the specification faster than the required execution time in the specification.

Next we will consider a reconstruction (or an improvement) of the second system.

Suppose another agent process (a new implementation) described as the following

Agent ′:

Agent ′
def
= (↓req . 〈5〉 . `P ↑status . ↓ idle . 〈5〉 .

(`P ↑data . `C ↑started . ↓end . 0 |Agent ′)

When we apply the two agent expressions to Definition 3.4.1, we know the following

result:

Agent ′ :`A ≤L Agent :`A
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The above inequality tells that Agent and Agent ′ are behaviorally equivalent and

Agent can perform faster than Agent ′. In order to improve the performance of the

whole second system, we replace Agent ′ by Agent in the system. We will need to

verify that the new second system really performs faster than the old one without

changing any behavioral properties. From the inequality and Proposition 3.5.12, we

can directly know the following desired fact:

(Printer 2 :`P |Agent ′ :`A |Console2 :`C)\N2

≤L (Printer2 :`P |Agent :`A |Console2 :`C)\N2

This demonstrates that Agent ′ can be behaviorally substituted for Agent in the sec-

ond system and that the new second system can perform faster than the old one.6

Moreover, by using the timed order relation we can compare the new system and the

first system.

(Printer 2 :`P |Agent ′ :`A |Console2 :`C) \ N2

≤L (Printer 1 :`P |Console1 :`C) \ N1

This holds for ≤L as well as ≤L.

3.7 Concluding Remarks

In this chapter, we proposed a process calculus for distributed processes. The calculus

is characterized by having the ability to express delay, asynchrony, and locality in

communication. It allows us to analyze the temporal and behavioral properties of

asynchronous interactions among remotely located processes.

Also, we defined a time-sensitive equivalence relation and speed-sensitive order

relations. The equivalence can equate two processes when observers at particular lo-

cations cannot distinguish between them in the messages that arrive at the observers

and in the arrival timings of the messages. The order relations can decide whether

two processes are behaviorally equivalent and whether one of them can perform its be-

haviors faster than the other. One of the order relations is proved to be precongruent

with respect to parallel composition. By using the relations, we can guarantee that a

6Note that all the expressions in this example are sound.
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faster local process can be functionally substituted for a slower one in a distributed

system and that the system embedding the faster one can perform even faster than the

system embedding the slower one. It offers a foundation for proving the correctness

and the reusability of asynchronous interacting remotely located processes.



Chapter 4

Locality in Time

Communication delay is one of the most characteristic property of distributed sys-

tems. The previous chapter studied how the delay affects communications among

distributed processes. Also, the delay may feature temporal aspects of distributed

computing systems as compared to other computing systems. It prevents every pro-

cessor from sharing any unique global time reference. As a result, each processor must

follow its own physical clock, for example crystal-base clock, but such a clock is usu-

ally inaccurate and different from each other. This chapter addresses a formalization

of distributed processes following multiple inaccurate clocks.1

4.1 Introductory Remarks

Distributed systems often need real-time facilities to manage time critical responses.

These facilities are materialized by physical clocks on local processors instead of any

global clock. However, such physical clocks are not perfect. Their measurement

rates are different and may drift. Indeed, many clock synchronization techniques for

compensating for clock drift have already been explored, for example see [40, 43, 45,

48]. However, these techniques are not available in all distributed systems. Even

when such techniques are supported, if the required precision of time information is

finer than the intervals of clock synchronizations, differences and uncertainties among

clocks may lead cooperations among distributed processes to timing failures.

1This chapter is a modified version of an article that has been published earlier in [66, 68].

54
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We need to analyze the influences of the inaccuracies of clocks upon the behavioral

and temporal properties of distributed systems. A number of computing models

for distributed systems have already been proposed. However, most of them are

essentially formulated based on the assumption of the existence of a global clock.

Therefore, they cannot reason about distributed processes following inaccurate clocks.

This chapter aims to develop a new process calculus for describing distributed

processes following different clocks. The new calculus is formulated by extending the

calculus developed in Chapter 2 with the ability to express multiple inaccurate clocks

quantitatively.

4.2 Basic Framework

The new calculus is an extension of the calculus studied in Chapter 2 with the ability

to express multiple inaccurate clocks. It is called RtCCSL. Below we briefly survey

basic ideas of the new calculus.

The Passage of Time

We assume that the passage of physical time in every processor elapses at the same

rate.2 The coordinate of the passage of physical time is dense and called real time

domain. We assume that the precision of all local clocks can be specified based on

the time coordinate. In the calculus, the coordinate plays a role of the conceptual

time standard of when interpreting processes following local clocks.3

Local Clocks

Each local clock is introduced as an entity to measure the passage of physical time

according to its own measurement speed.4 Only the parameters of the delay oper-

ator and time restriction operator in RtCCS can correspond to such clocks. The

parameters are decreased exactly by the amount of the passage of time. However, the

2This assumption is natural and reasonable, because from Einstein’s Special Relativity, if relative
motion of all processors is negligible as compared to the speed of light, physical time in every
processor passes at the same speed.

3Note that this assumption does not imply the existence of any actual global clock.
4The word timer is considered to be better to refer these devices in the usual sense. However, we

will use the word clock to refer them, because the word clock is usually used to refer to these devices
in computer systems.
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measurement speeds of real clocks, — the decrease speeds of the parameters — are not

the same as the speed of the passage of physical time by virtue of their measurement

errors. Therefore, we introduce a mapping that associates each clock’s measurement

speed with the speed of the passage of physical time and vice versa. The mapping

specifies the precision of each clock. The mapping is given as a non-deterministic

function to model an inaccurate clock whose measurement rate drifts within a given

bound and whose errors in reading its measurement result.

Finally, we explain our way of modeling distributed processes. In the calculus, dis-

tributed processes are described as expressions with respect to their own local time

coordinates. And then, the expressions are translated into ones on the real time

domain by using special syntactic mappings, written as (E)[Φ]. The mapping trans-

lates all local time values in the expressions into ones on the real time domain. The

translated expressions can be interpreted as RtCCS expressions.

4.3 Definition

This section gives the definition of RtCCSL. A few preliminary definitions are needed

before giving the definition. We first define notations for clocks.

Notations

The passage of physical time are dense, written as R+0, whereas time values measured

by local clocks are discrete.

Definition 4.3.1 Let Ti be the set of time values measured by i-th clock, called

i-th local time domain,

Ti
def
= N ∪ {0} where N is a set of natural numbers. ut

Each local clock measures the length of the passage of time according to its own

measurement rate. The rate is coarser than that of the passage of the physical time,

and may drift. When reading time, the clock may have non-negligible reading errors.

We introduce a mapping to specify the measurement precision of each a clock.5

5Note that the mapping is a little different from that of usual functions in mathematics.
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Definition 4.3.2 Let Ti be the local time domain of i-th clock. We call Φi (Φi :

Ti → 2R
+0

) clock mapping for i-th clock, where Φi is given as follows:

Φi(t)
def
= { φ(t) | δ1t + ε1 ≤ φ(t) ≤ δ2t + ε2 } where Φ(0) = {0}

where we assume δ1, δ2, ε1, ε2 are given constants (δ1, δ2, ε1, ε2 ∈ R+0, δ1 ≤ δ2 and

ε1 ≤ ε2). We denote elements of Φi as φ, φ′, . . . (φ : Ti → R+0), where for all φ ∈ Φi

and t, ṫ ∈ Ti, there is some mapping φ̇ ∈ Φi such that φ(t + ṫ) = φ(t) + φ̇(ṫ). ut

In the above definition, δ1 and δ2 correspond to the minimal and the maximal mea-

surement rates of i-th clock respectively, and ε1 and ε2 correspond to the minimal and

the maximal possible offsets, when reading of i-th clock respectively. Φi(t) represents

all the possible values on real time domain measured by i-th clock at t local time

units. We classify clock mappings according to the properties of clocks.

Definition 4.3.3 Let T be a local time domain. We give Φ : T → 2R
+0

,

(1) Variable Clock: Φ is called a variable clock, where Φ can be defined as follows:

Φ(t)
def
= {φ(t) | δ1t ≤ φ(t) ≤ δ2t }

where δ1 and δ2 are given constants in R+0.

(2) Synchronized Clock: Φ is called a synchronized clock, where Φ can be given as

follows:

Φ(t)
def
= {φ(t) | δt + ε1 ≤ φ(t) ≤ δt + ε2 } (t > 0)

where we assume Φ(0)
def
= { 0 } and δ, ε1 and ε2 are given constants in R+0.

(3) Monotone Clock: Φ is called a monotone clock if for any t1, t2 ∈ T such that

t1 < t2: maxΦ(t1) < minΦ(t2). ut

Note that the clock given in (2) corresponds a clock adjusted by synchronization

mechanisms, for example see [40, 43, 45]. Therefore, the clock can satisfy the condition

of synchronized clocks given in [43] when choosing ε1 + ε2 to be less than εmax:

∀i, j ∈ I, ∀t ∈ T : |Φi(t) − Φj(t)| ≤ εmax
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where Φi and Φj are clock mappings for i-th and j-th clocks, and εmax means the

maximal time difference between their reading times.

We here define the inverses of clock mappings. In the calculus, all time values

measured by local clocks are assumed to be discrete. If an event is executed between

two consecutive time instants, the event occurs at the earlier time instant. Also, if

two or more events occur between two consecutive time instants, we say that the

events occur at the same time.

Definition 4.3.4 Let Φ−1
i : R+0 → 2Ti be the inverse function of clock function Φi

given as follows:

Φ−1
i (T )

def
=

⋃
φ∈Φi

{ t ∈ Ti | φ(t) ≤ T < φ(t + 1) }

where T ∈ R+0. ut

We show an alternative notation of the inverse mapping below.6

Proposition 4.3.5 Let Φi: Ti → 2R
+0

be the clock mapping of i-th local clock and

Ψ: R+0 → 2Ti. Then, Ψ(T ) is equivalent to Φ−1
i (T ).

Ψ(T )
def
= { t ∈ Ti |

⌊T − ε2

δ2

⌋
≤ t ≤

⌊T − ε1

δ1

⌋
}

where Φi(t)
def
= {φ(t) | δ1t + ε1 ≤ φ(t) ≤ δ2t + ε2 }

where we assume that δ1 and δ2 are the minimal and the maximal possible measure-

ment rates respectively, and ε1 and ε2 are the minimal and the maximal errors when

reading of the clock, respectively. ut

Example 4.3.6

(1) Suppose a synchronized clock whose measurement rate is 8 real time and its

minimal and maximal possible reading errors are from 0 to 2. The clock mapping

of the clock is denoted as follows:

Φ1(t)
def
= { φ(t) | 8t + 0 ≤ φ(t) ≤ 8t + 2 }

6bxc = n where n ≤ x < n + 1 and n is an integer.
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where we assume Φ1(0) = {0}. Its inverse mapping is given as follows:

Φ−1
1 (T )

def
= { t |

⌊T − 2

8

⌋
≤ t ≤

⌊T

8

⌋
}

(2) Suppose a variable clock whose measurement rate varies from 3 to 5 real time

is given as follows:

Φ2(t)
def
= { φ(t) | 3t ≤ φ(t) ≤ 5t }

Its inverse mapping is given as follows:

Φ−1
2 (T )

def
= { t |

⌊T

5

⌋
≤ t ≤

⌊T

3

⌋
}

Syntax

To clarify our exposition, we divide the syntax of the calculus into two groups: se-

quential expressions for describing processes on a processor (or a node) with one

local clock, and interacting expressions for describing interactions among distributed

processes following different clocks.

Definition 4.3.7 The set E of local process expressions, ranged over by E, E1, E2,

is defined by the following expressions:

E ::= 0 | X | α.E | E1 + E2 | recX : E | 〈t〉.E | [t].E

where t is an element of a local time domain. We assume that every process variable

is guarded.7. Hereafter we shall often use the more readable notation X
def
= E instead

of recX : E. ut

Definition 4.3.8 The set P of interacting expressions, ranged over by P, P1, P2, is

defined by the following expressions:

P ::= (E)[Φ] | P1 |P2 | P [f ] | P \ L

where Φ is a time translation mapping. We assume that f ∈ Act → Act where

f(τ) = τ , and L ⊆ Λ. We will often abbreviate (E)[Φ] as E[Φ]. ut
7X is guarded in E if each occurrence of X is only within some subexpressions α.E′ in E where

α is not an empty element; c.f. unguarded expressions, e.g. recX : X or recX : X + S.
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Remarks Let us give some remarks on the syntax.

• E[Φ] means a process E executed by a processor (or a node) with local clock

Φ. All the constructors except for E[Φ] coincide with those in RtCCS .

• By the definition of P, the expressions applicable to (−)[Φ] are restricted to

sequential expressions included in E . Therefore, the calculus might not seem to

be able to describe parallel processes following the same clock. However, such

parallel processes can be reduced to an equivalent sequential expression in E by

using the expansion rules developed in Corollary 1 and Proposition 10 of the

author’s paper [64]. Therefore, this limitation never creates any actual problem

in describing distributed systems.

Semantics

The semantics of RtCCSL is defined through two steps: clock translation rule written

as E[Φ] which translate corresponding expressions based on local time into ones on

the real time domain. And then, the translated expressions can be interpreted as

RtCCS expressions through RtCCS ’s operational semantics.

Clock Translation

We first define the clock translation rule. The rule maps expressions based on a local

time domain into ones based on the real time domain by translating all local time

values in the expressions into corresponding values on the real time domain.

Definition 4.3.9 (E)[Φ], called clock translation rule, is recursively defined as

follows:
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E[Φ] −⇀
⊕

φ∈Φ E[Φ]φ (1)

(0)[Φ]φ −⇀ 0 (2)

(X)[Φ]φ −⇀ X (3)

(λ.E)[Φ]φ −⇀ λ.E[Φ] (4)

(τ.E)[Φ]φ −⇀ τ.E[Φ]φ (5)

(E1 + E2)[Φ]φ −⇀ E1[Φ]φ + E2[Φ]φ (6)

(recX : E)[Φ]φ −⇀ recX : E[Φ]φ (7)

(〈t〉.E)[Φ]φ −⇀ 〈φ(t)〉.E[Φ]φ̇ (8)

([t].E)[Φ]φ −⇀ [φ(t)].E[Φ]φ (9)

where ∀ṫ, φ(t + ṫ) = φ(t) + φ̇(ṫ). We write τ.E1 + · · ·+ τ.En as
⊕

i∈{1,...,n} Ei. ut

We briefly explain the intuitive meaning of some important rules in Definition 4.3.9.

• The first rule means that E[Φ] corresponds to process E which follows an arbi-

trary one of all the clocks whose possible precisions are specified as Φ.

• The fourth rule defines that every process rewinds its own clock only after

performing any communication action. However, such a rewinded clock does

not always reproduce the same measurement errors.

• The ninth rule translates the idling time of 〈t〉.E on the local time domain into

a corresponding value on the real time domain.

• The tenth rule translates the deadline time of [t].E on the local time domain

into a corresponding value on the real time coordinate.

Hereafter, we will often omit the −⇀ translation if it is directly understood from the

context.

Operational Semantics

The clock translation rules can eliminate all (−)[Φ] from RtCCSL expressions. The

syntax and semantics of the translated expressions on the real time domain coincide

with RtCCS expressions. All the translated expressions can be interpreted as RtCCS

expressions.
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Definition 4.3.10 RtCCSL including no (E)[Φ] is a labeled transition system de-

fined through the transition relation rules given in Definition 2.3.6.

Note that the translated expressions can enjoy all the proof techniques presented in

Chapter 2.

4.4 Bisimulations with Time Uncertainties

In Chapter 2 we studied some time-sensitive equivalence relations. They can equate

two processes when both their behavioral properties and their temporal properties are

completely matched with each other. However, these relations may often be too strict

in the verification of distributed processes with temporal uncertainties. It is practical

that two processes following inaccurate clocks can be considered to be equivalent,

only if their behaviors are completely matched and differences in their timings are

within a given bound. We develop such an equivalence by extending the notion of

bisimulation [58, 51] and study its theoretical properties.

Definition 4.4.1 A binary relation RΦ is a Φ-clock bisimulation (Φ : T` → 2R
+0

)

if (P1, P2) ∈ RΦ implies, for all α ∈ Act ,

(i) ∀m1, ∀P ′
1: P1

〈m1〉
==⇒ α

==⇒ P ′
1 then

∃m2, ∃P ′
2: P2

〈m2〉
==⇒ α̂

=⇒ P ′
2 and Φ−1(m1) ∩ Φ−1(m2) 6= ∅ and (P ′

1, P
′
2) ∈ RΦ.

(ii) ∀m2, ∀P ′
2: P2

〈m2〉
==⇒ α

==⇒ P ′
2 then

∃m1, ∃P ′
1: P1

〈m1〉
==⇒ α̂

=⇒ P ′
1 and Φ−1(m1) ∩ Φ−1(m2) 6= ∅ and (P ′

1, P
′
2) ∈ RΦ.

where m1, m2 ∈ R+0. We say P1 and P2 are Φ-clock bisimilar, written as P1 ≈Φ P2,

if there exists a Φ-clock bisimulation, RΦ such that (P1, P2) ∈ RΦ. ut

We explain the key idea of ≈Φ. We introduce a conceptual experimenter following

a non-perfect clock, written Φ, which may be coarse and may drift within a certain

bound. The experimenter cannot find any temporal difference smaller than the mea-

surement sensitivity of the clock. Therefore, if the experimenter cannot distinguish

between two processes, P1 and P2, in their observational behaviors and their temporal

differences are within the measurement sensitivity of the clock, P1 ≈Φ P2.

From Definition 4.4.1 we can directly prove the following properties.
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Proposition 4.4.2 For all P, P1, P2, P3 ∈ P we have the following properties:

(1) P ≈Φ P

(2) P1 ≈Φ P2, then P2 ≈Φ P1

(3) ≈Φ is the largest Φ-clock bisimulation. ut

Proof. Immediate from Definition 4.4.1. ut

Proposition 4.4.3 Let P1, P2, Q ∈ P : P1 ≈Φ P2 then

(1) P1 \ L ≈Φ P2 \ L

(2) P1[f ] ≈Φ P2[f ]

(3) P1|Q ≈Φ P2|Q

where we assume that Q ∈ P contains no delay operator nor time restriction operator.

ut

Proof. Analogous to Proposition 2.4.7. ut

From P1 ≈Φ P2, we do not have 〈t〉.P1 ≈Φ 〈t〉.P2 nor [t].P1 ≈Φ [t].P2. We show a

counterexample: 〈2〉.a.0 ≈Φ′ 〈4〉.a.0 where Φ′(t) = {6t}, but 〈3〉.〈2〉.a.0 6≈Φ′ 〈3〉.〈4〉.a.0,

and [3].〈2〉.a.0 6≈Φ′ [3].〈4〉.a.0.

We show a relationship between this bisimilarity and the observation bisimilarity

studied in Chapter 2.

Proposition 4.4.4 For all P1, P2 ∈ P we have the following property:

P1 ∼T P2 then P1 ≈Φ P2 ut

Proof. Because of Φ−1(m) ∩ Φ−1(m) 6= ∅. ut

There is another relation between ∼T and ≈Φ. A few preliminary lemmas are needed

before showing the result.

Lemma 4.4.5 ∀φ ∈ Φ, ∀m: E[Φ]φ
〈m〉

==⇒ α
==⇒ E ′[Φ] then E

〈φ−1(m)〉
==⇒ α

==⇒ E ′

Proof. We proceed by transition induction on the depth of the inference of E
〈φ−1(m)〉
==⇒

α
==⇒ E ′. Consider the cases for E.
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Case 1 E ≡ 0, obvious by definition.

Case 2 E ≡ X, a process variable. By a shorter inference for X from X[Φ]φ−⇀ X.

Case 3 E ≡ α.Ė, Then we have (α.Ė)[Φ]φ−⇀ α.Ė[Φ]
〈ṁ〉

==⇒ α
==⇒Ė[Φ]. The result

follows by choosing E ′ to be Ė.

Case 4 E ≡ E1 + E2, Then either E1
〈φ−1(m)〉
==⇒ α

==⇒E ′ or E2
〈φ−1(m)〉
==⇒ α

==⇒E ′ by a shorter

inference. We can apply the lemma in either case.

Case 5 E ≡ recX : Ė, Then we have Ė
〈φ−1(m)〉
==⇒ α

==⇒Ė ′. By a shorter inference for

Ė, we will get the result.

Case 6 E ≡ 〈d〉.Ė, By induction, φ̇ ∈ Φ such that φ(d+φ̇−1(ṁ)) = φ(d)+φ̇(φ̇−1(ṁ)),

we have (Ė)[Φ]φ̇
〈ṁ〉

==⇒ α
==⇒(Ė ′)[Φ] then Ė

〈φ̇−1(ṁ)〉
==⇒ α

==⇒E ′. Since (〈d〉.Ė)[Φ]φ−⇀

〈φ(d)〉.(Ė)[Φ]φ̇ and (Ė)[Φ]φ̇
〈φ(d)〉
==⇒ 〈ṁ〉

==⇒ (Ė ′)[Φ]φ̇, the result follows easily by choos-

ing m to be φ(d) + ṁ and E ′ to be Ė ′.

Case 7 E ≡ [d].Ė, by inductive hypothesis of E, (Ė)[Φ]φ
〈m〉

==⇒ (Ė ′)[Φ]φ then Ė
〈φ−1(m)〉
==⇒ α

==⇒Ė ′. Since m ≤ φ(d), we have φ−1(m) ≤ d. By choosing Ė ′ to be E ′,

we get the result. ut

Lemma 4.4.6 ∀k: E
〈k〉

==⇒ λ
==⇒ E ′ then

∀φ ∈ Φ, ∀m: k = φ−1(m), E[Φ]φ
〈m〉

==⇒ λ
==⇒ E ′[Φ] ut

Proof. We proceed by transition induction on the depth of the inference of E[Φ]φ
〈m〉

==⇒ α
==⇒E ′ [Φ]. Consider the cases for E.

Case 1 E ≡ 0, obvious from definition.

Case 2 E ≡ X, a process variable. By a shorter inference for X from X[Φ]φ−⇀ X.

Case 3 E ≡ α.Ė, Then we have (α.Ė)[Φ]φ−⇀ α.Ė[Φ]. By induction, the result

easily follows by choosing E ′ to be Ė.

Case 4 E ≡ E1 + E2, Then, we have (E1 + E2)[Φ]φ−⇀ E1[Φ]φ + E2[Φ]φ and then

either E1[Φ]φ
〈m〉

==⇒ α
==⇒E ′[Φ] or E2[Φ]φ

〈m〉
==⇒ α

==⇒E ′[Φ]. We can apply the lemma

in either case.

Case 5 E ≡ recX : Ė, Then we have recX : Ė[Φ]−⇀ recX : Ė[Φ]. By induction

we can apply the lemma to recX : Ė[Φ] and we get the result.
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Case 6 E ≡ 〈d〉.Ė. Then, by induction, we have for any φ̇ ∈ Φ such that for any k̇,

φ(d + k̇) = φ(d) + φ̇(k̇) For any ṁ, Ė[Φ]φ̇
〈ṁ〉

==⇒ α
==⇒Ė ′[Φ] then k̇ = φ̇−1(ṁ) and

Ė
〈k̇〉

==⇒ α
==⇒Ė ′. Since (〈d〉.Ė)[Φ]φ−⇀ 〈φ(d)〉.Ė[Φ]φ̇

〈φ(d)〉
==⇒Ė[Φ]φ̇ and φ−1(φ(d)+ṁ) =

d + φ̇−1(ṁ). The result follows easily by choosing Ė ′ to be E ′ and m to be

φ(d) + ṁ.

Case 7 E ≡ [d].Ė. Then, we have ([d].Ė)[Φ]φ−⇀ [φ(d)].Ė[Φ]φ. By inductive hypoth-

esis of E, Ė
〈k̇〉

==⇒ α
==⇒Ė then k = φ−1(m) and Ė[Φ]φ

〈m〉
==⇒ α

==⇒Ė[Φ]. By choosing

Ė ′ to be E ′, the result follows. ut

Lemma 4.4.7 ∀k: E
〈k〉

==⇒ τ
==⇒ E ′ then ∀φ ∈ Φ, E[Φ]φ

〈φ(k)〉
==⇒ τ

==⇒ E ′[Φ]. ut

Proof. Analogous to 4.4.6. ut

We now present that there is a correlation between clock translation E[Φ] and Φ-clock

bisimilarity.

Theorem 4.4.8 Let Φ be a monotone clock. For any E1, E2 ∈ E ,

E1 ∼T E2 iff E1[Φ] ≈Φ E2[Φ] ut

Proof. (=⇒) By proving that RΦ is a Φ-clock bisimulation, where RΦ
def
= { (E1[Φ],

E2[Φ]) | E1 ∼ E2 } Let ∀m1: E1[Φ]
〈m1〉
==⇒ α

==⇒E ′
1[Φ]. When α = τ , it is easy. Therefore,

we will prove the case of α 6= τ . Then, from Lemma 4.4.5, ∀φ1 ∈ Φ, ∀k: k = φ−1
1 (m1)

with E1
〈k〉

==⇒ α
==⇒E ′

1. Since E1 ∼ E2, we have E2
〈k〉

==⇒ α̂
=⇒ E ′

2 with E ′
1 ∼ E ′

2. From

Lemma 4.4.6, we have ∃m2: k = Φ−1(m2) and E2[Φ]φ
〈m2〉
==⇒ α̂

=⇒ E ′
2[Φ]. Since Φ is a

monotone clock, we have Φ−1(m1) ∩ Φ−1(m2) 6= ∅.
(⇐=) By proving that R is a Φ-clock bisimulation, where R def

= { (E1, E2) | E1[Φ]

∼Φ E2[Φ] } Let ∀k: E1
〈k〉

==⇒ α
==⇒E ′

1. When α = τ , it is easy. Therefore, we will

prove the case of α 6= τ . Then, from Lemma 4.4.6, ∀φ1 ∈ Φ,∀m1 : k = φ−1
1 (m1) ∧

E1[Φ]φ
〈m1〉
==⇒ α

==⇒E ′
1[Φ]. From E1[Φ] ∼Φ E2[Φ], we have ∀φ2 ∈ Φ,∃m2 : E2[Φ]φ

〈m2〉
==⇒

α̂
=⇒ E ′

2[Φ]φ and Φ−1(m1) ∩ Φ−1(m2) 6= ∅ and E ′
1[Φ] ∼Φ E ′

2[Φ]. Hence, since Φ is a

monotone clock, k = Φ−1(m2) is required. From Lemma 4.4.5, we have ∃φ′
2 ∈ Φ∧k =

φ′−1
2 (m2) : E2

〈k〉
==⇒ α̂

=⇒ E ′
2 with E ′

1[Φ] ∼Φ E ′
2[Φ].

By a symmetric argument, we complete the proof that RΦ and R are the bisim-

ulation. ut
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The above result tells that ≈Φ is a complement of E[Φ] and vice versa. Therefore, in

equating two distributed processes following inaccurate clocks, it allows us to abstract

away the influences of inaccuracies of clocks from differences between their temporal

properties of them exactly. We can predicate temporal differences among two time-

dependent programs, even when they executed with processors following inaccurate

clocks.

Timed Bisimulations according to Clock Precisions

In the rest of this section we introduce two orders over clocks with respect to clock’s

sensitivity. First we define an order based on the granularity of clocks.

Definition 4.4.9 Let Φ1 : T1 → 2R
+0

and Φ2 : T2 → 2R
+0

be clock mappings where

T1 are T2 are local time domains, ∀t2 ∈ T2, ∃t1 ∈ T1 : Φ1(t1) = Φ2(t2) then, we say

that Φ1 is finer than Φ2, written as Φ1 ≤ Φ2. ut

This order relation relates two clocks according to their measurement granularities.

If the granularity of one of them is less than that of the another, the former is finer

than the latter.

Definition 4.4.10 Let Φ1 : T → 2R
+0

and Φ2 : T → 2R
+0

be clock mappings

where T is a local time domains, ∀t ∈ T : Φ1(t) ⊆ Φ2(t) then, we say that Φ1 is more

precise than Φ2, written as Φ1 � Φ2. ut

This order relates two clocks according to the possible measurement errors. If the

possible errors of a clock is smaller than that of the another, the former is more precise

than the latter.

From Definition 4.4.9 and 4.4.10, we can easily confirm that ≤ and � are preorder

relations. We show two interesting facts between ≈Φ and these orders.

Proposition 4.4.11 ∀P1, P2 ∈ P, Φ1 ≤ Φ2, P1 ≈Φ1 P2 then P1 ≈Φ2 P2 ut

Proof. { n1 | Φ−1
1 (m) ∩ Φ−1

1 (n1) 6= ∅ } ⊆ { n2 | Φ−1
2 (m) ∩ Φ−1

2 (n2) 6= ∅ }. ut

This proposition tells that if two processes cannot be distinguished by an observer

following a clock whose time unit is one second, then they cannot be distinguished

by another observer having a clock with the unit of one minute.



CHAPTER 4. LOCALITY IN TIME 67

Proposition 4.4.12 ∀P1, P2 ∈ P, Φ1 � Φ2 P1 ≈Φ1 P2 then P1 ≈Φ2 P2 ut

Proof. From for all m,n : (Φ−1
1 (m) ∩ Φ−1

1 (n)) ⊆ (Φ−1
2 (m) ∩ Φ−1

2 (n)). ut

Let the measurement error of a clock (e.g. ±1 seconds) be less than that of another

clock (e.g. ±5 seconds). If two processes cannot be distinguished from each other by

an observer with the former clock, they cannot do by one with the latter clock.

4.5 Examples

In order to illustrate how to describe and verify distributed processes in RtCCSL, we

present some simple examples.

Example 4.5.1 Suppose interactions between a client process and a sever process

executed with different processors.

• The client process (Client ) sends a request message (action req) and then waits

for a return message (action ret). If the return message is not received within

6 units of local time, then it sends the request message again.

• Upon reception of a request message (action req), the server process (Server)

sends a return message (action ret) after an internal execution of 5 units of local

time.

The client and server programs are denoted as follows:

Client
def
= req.([6].ret.0 + 〈6〉.Client)

Server
def
= req.〈5〉.ret.Server

We assume that the client process and the server one are allocated on different pro-

cessors having different clocks, written by Φc and Φs. The measurement rate of the

client’s clock varies from 4 to 6 on R+0. The measurement rate of the server’s clock

varies from 3 to 5 on R+0. For simplify, we assume that these clocks do not have any

reading errors. Φc and Φs are defined as follows:

Φc(t)
def
= { φc(t) | 4t ≤ φc(t) ≤ 6t }

Φs(t)
def
= { φs(t) | 3t ≤ φs(t) ≤ 5t }
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where for any φ ∈ Φ, ∀t, ṫ ∈ T there is some function φ̇ ∈ Φi in φ(t+ ṫ) = φ(t)+ φ̇(ṫ).

By using E[Φ] mapping rule, the client and the server are mapped on the real

time domain as shown below.

Client [Φc] −⇀ · · ·−⇀ req.([φc(6)].ret.0 + 〈φc(6)〉.Client [Φc]φ̇c
)

Server [Φs] −⇀ · · ·−⇀ req.〈φs(5)〉.ret.Server [Φs]

where φc and φ̇c are elements of Φc such that ∀t : φc(6) + φ̇c(t) = φc(6 + t). φs

is an elements of Φs. From the definition of Φc and Φs, there are multiple results

for φc(6) ∈ {24, 25, ..36} and φs(5) ∈ {15, 16, ..25}. The interactions between these

processes is described as follow:

(Client [Φc] | Server [Φs]) \ {req, ret}

The result of the interactions is dependent on the evaluated values of φc(6) and φs(5).

Here we show some of the possible results:

(1) In the case of φc(6) > φs(5),

(Client [Φc] | Server [Φs]) \ {req, ret}
τ

−−→ ([φc(6)].ret.0 + 〈φc(6)〉.Client [Φc]φ̇c
) |

〈φs(5)〉.ret.Server [Φs]) \ {req, ret}
〈φs(5)〉
−−→ ([φc(6)

.− φs(5)].ret.0 + 〈φc(6)
.− φs(5)〉.Client [Φc]φ̇c

) |
ret.Server [Φs]) \ {req, ret}

τ
−−→ 0 | Server [Φs]φs) \ {req, ret}

(success)

In the above case, the client can receive the return message before it goes into

timeout.

(2) In the case of φc(6) ≤ φs(5),

(Client [Φc] | Server [Φs]) \ {req, ret}
τ

−−→ ([φc(6)].ret.0 + 〈φc(6)〉.Client [Φc]φ̇c
) |

〈φs(5)〉.ret.Server [Φs]) \ {req, ret}
〈φc(6)〉
−−→ Client [Φc]φ̇c

| 〈φs(5)
.− φc(6)〉.ret.Server [Φs]) \ {req, ret}

〈φs(5)−φc(6)〉
−−→ Client [Φc]φ̇c

| ret.Server [Φs]) \ {req, ret}
(failure)



CHAPTER 4. LOCALITY IN TIME 69

In the above case, the client goes into timeout before receiving any return

message ret. Thus, the processes go into a timing failure.

RtCCSL allows us to analyze how the differences among local clocks affect the result

of interactions in distributed computing. ut

Note that the idling time of the delay operator in Server means execution steps

for handling the request in the server. Φs in Server [Φs] represents an index on the

performance of a processor executing the server. In this contexts, when a processor’s

clock has a smaller measurement rate, the processor is faster. This result shows that

the time translation rules (−)[Φ] allows us to represent differences among processors’

performances as well as differences among processors’ clocks.

Example 4.5.2 We demonstrate the utility of Φ-clock bisimulations. Suppose

two client processes, written ClientA and ClientB. ClientA sends a request message

(action req) and then waits for a return message (action ret). It sends the request

message again, if the return message is not received within 8 units of its local time.

On the other hand, ClientB is the same of ClientA except that its deadline time is 9

units of its local time. These processes are denoted as follows:

ClientA
def
= req.[8].ret.0 + 〈8〉.Client

ClientB
def
= req.[9].ret.0 + 〈9〉.Client

We consider a clock defined as: Φ1(t)
def
= {φ1(t) |φ1(t)

def
= 6t }). An observer following

Φ1 cannot distinguish between the two processes in their temporal properties because

1 ∈ Φ−1
1 (8) and 1 ∈ Φ−1

1 (9).

ClientA ≈Φ1 ClientB c.f . ClientA 6≈ ClientB

We here suppose a clock Φ2 such that Φ1 ≤ Φ2, where Φ2 is defined as Φ2
def
=

{φ2(t) |φ2(t)
def
= 12t }). By Proposition 4.4.11 we have ClinetA ≈Φ2 ClinetB.

This example shows that our bisimilarity provides a practical method to verify real-

time processes with non-strict time constraints. For example, let ClientA be a spec-

ification of the client process and ClientB be an implementation of the process.
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ClientA ≈Φ1 ClientB shows that the implementation completely satisfies the behav-

ioral requirements in the specification and that temporal differences between both of

them is within a permissible bound specified in terms of Φ1.

Example 4.5.3 Suppose a client process (Client ) whose timeout time is 6 units of

local time as follows:

Client
def
= req.〈6〉.ret.0

We assume that the program is allocated on two processors with different local clocks,

denoted as ΦA and ΦB. The measurement rates of ΦA and ΦB may vary from 99 to

101 and from 100 to 102 respectively. These clocks are described as follow:

ΦA(t)
def
= { φA(t) | 99t ≤ φA(t) ≤ 101t }

ΦB(t)
def
= { φB(t) | 100t ≤ φB(t) ≤ 102t }

By (·)[Φ] mapping rules, Client following clock ΦA is mapped on the standard time

domain as shown below:

Client [ΦA] −⇀ · · ·−⇀ req.([6].ret.0 + 〈6〉.Client [ΦA]φ̇A
)

An observer with the following variable clock Φ′(t) equates these processes.

Φ′(t)
def
= { φ′(t) | 69t ≤ φ′(t) ≤ 71t }

Client [ΦA] ≈Φ′ Client [ΦB ] c.f . Client [ΦA] 6≈ Client [ΦB]

This result proves that Φ′-clock bisimilarity can equate two distributed processes even

if their clocks are different and are not constant.

4.6 Concluding Remarks

This chapter proposed a new calculus which is an extension of the calculus developed

in Chapter 2 with the ability to express processes following multiple inaccurate clocks.

The calculus allows us to describe the properties of physical clocks quantitatively
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and analyze the influences of their inaccuracies upon the behavioral and temporal

properties of synchronous interactions among distributed processes. We also defined

a time-sensitive bisimulation and study its theoretical properties. The bisimulation

equates processes with temporal uncertainties, when their behaviors are completely

matched and their timings are different within a given bound. It provides a suitable

method to verify distributed processes following inaccurate clocks and and real-time

processes with non-strict time constraints.

The approach studied in this chapter to deal with multiple inaccurate clocks is

essentially independent of the calculus. It is general to be applied this kind of real-time

formalisms, such as other timed process calculi, timed automata, real-time temporal

logic, timed petri net, and so on.



Chapter 5

Related Work

In recent years, a wide variety formal models have been explored for the specification

and verification of distributed computing systems. Some of them have laid a foun-

dation for our work. In this chapter we compare with other existing process calculi

which have the notion of quantitative time. Next we survey existing works which

intend to model some peculiar features of distributed systems.

5.1 Timed Extended Process Calculi

Process calculi are structured description languages for non-deterministic and con-

current systems. A number of process calculi has been proposed in the literature.

Examples are CSP [35], SCCS [50], CCS [51], π-calculus [52], ACP [4], LOTOS [10],

and so on. These calculi lack the notion of time and thus cannot cope with descrip-

tions of time-dependent systems. Several researchers have extended these process

calculi with quantitatively expressive capabilities of temporal properties of systems.

We summarize these time extended process calculi below.

CCS and it Extensions

During five years, several researchers have studied timed extensions of CCS. The

extensions are various but have some common features. They assume that all actions

take zero duration, and introduce a kind of synchronous broadcast communication

actions among all processes to represent the passage of time. They also have special

72
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operators whose contents are dependent on the passage of time. These operators can

be classified into two groups according to their expressiveness.

Timed Extension: Delayed Processing. TPA developed by Hennessy and Re-

gan in [31] is an extension of CCS. In addition to all the standard CCS operators, the

calculus has a delay operator written as σ.P to represent the suspension of execution

for a unit of time. Timed CCS developed by Wang in [80, 79] has a special delay

operator, written as ε(d).α@t.P which represents the suspension of execution for d

real time. In ε(d).α@t.P , variable t records the time at which α is executed. TPA and

Timed CCS assume that time advances only when communications are not possible,

like ours. However, there is a negative side in TPA and Timed CCS. Once an action

is enabled, it is not disabled directly. Therefore, these calculi are difficult to express

some indispensable temporal facilities found in distributed systems such as timeout

handling.

Timed Extension: Timed Restriction. Moller and Tofts in [53, 54, 75] develop

a time extension of CCS. It is characterized by the following primitives: 0, δ.P , (t).P ,

and P ⊕ P . 0 corresponds to a terminate process but does not allow time to pass;

δ.P corresponds to the derived arbitrary delay operator of in SCCS [50] and is willing

to wait any amount of time; (t).P represents an idling for t time units; and P ⊕Q is

a time-sensitive choice operator. The choice is made not only by an action but also

by idling when either P or Q. By combining (t).P and ⊕, the calculus can restrict

actions which are already executable.

Further, Timed CCS by Chen in [14] introduces a special action prefix, written

as αt2
t1 .P . CCSiT (CCS with interval Time) by Daniels in [17] have a action prefix,

written as α@[t1, t2).P . Both these operators represent a process which can perform

action α from t1 to t2 units of time. The both examples correspond to 〈t1〉.[t2].P in

ours. TPCCS by Hannson in [28, 27] is an extension of CCS with a timeout operator

and the notion of probability. The timeout operator is described as a binary operator,

written .. For example, P . Q behaves like P if P performs an action for one time

unit, otherwise like Q. The timeout operator stops the passage of time at its pre-

timeout process. Therefore, the timeout operator cannot apply to any time-dependent

processes. Recently, Hennessy and Regan in [30] extend their TPA with a timeout
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operator, written as bP ct(Q). Their operator is similar to ATP’s timeout operator

developed in [57] and does not stop the passage of time at its pre-timeout process It

corresponds to [t].P + 〈t〉.Q in ours.

CSP and its Extensions

For about ten years, a variety of time extensions of the CSP language by C. A. R.Hoare

in [35] has been studied. By incorporating enrich operators of CSP, time extended

CSP provides a powerful method to describe various time-dependent systems. It first

appeared in [61] and has undergone a series of enhancements by Oxford University

Timed CSP Group in [19, 18] and other researchers. Several denotational semantic

models have been provided for the language in [25, 38, 62]. These semantics models

define the meaning of time extended CSP programs to be a set of possible behaviors

and timings at which the behaviors are performed and refused. In [20, 37] time

extended CSP with asynchronous communication mechanisms is formulated based

on a metric temporal logic.

Synchronous CCS and its Extensions

SCCS by Milner [50] is a process calculus for synchronously computing processes

based on the idea that all parallel processes proceed in lock-step. There are some

process calculi derived from SCCS, such as Meije by Simone [73] and CIRCAL by

Milne [49]. These calculi assume the execution time of an action to be one unit of

time and thus express quantities in time as the number of sequential actions. CCSR

by Gerber and Lee [23, 24] introduces into SCCS with the concepts of quantitative

time, priority, and computational resource. Processes assigned to the same resource

are interleaved according to their priorities. However, in these SCCS-base approaches

computation among parallel processes is essentially synchronous. Therefore, they

do not fit to model distributed systems, where processes proceed at indeterminate

relative speeds.

Other Calculi

ATP by Sifakis and Nicollin [57] has a timeout operator, written as bP ct(Q). In-

tuitively, it behaves as Q after t time units unless P performs some action within t
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time units. The operator is encoded as [t].P + 〈t〉.Q in our calculi. In ATP α.P can

only offer action α only within one time unit, whereas ours can perform action α at

any time whenever α.P are executable. Baeten and Bergstra in [6, 5] extend ACP [4]

with a special operator corresponding to our delay operator. There are several timed

enhancements of LOTOS [10]. Leduce [44] extends LOTOS with a timed operator

which is similar to ATP’s timeout operator. Bryans, Davis, and Schneider in [12]

extend LOTOS with two timed operators: ∆dP and a{d}; P , corresponding to our

delay operator and time restriction operator respectively.

Remarks

We summarize comparisons between our theories and other time-extended calculi.

Among our theories, RtCCS is unique among other existing process calculi in the

following points; the first is that it has two temporal operators: delay operator and

time restriction operator, in addition to the expressiveness of CCS; the second is

that its temporal semantics does not interfere with the operational semantics of CCS.

Therefore, it can encompass CCS and exactly inherit all the pleasant properties of

CCS, including many proof techniques studied in CCS without changing them.

5.2 Formalisms for Locality in Communication

This section compare with existing formalisms which address locality in communica-

tion.

Process Calculi with Spatial Locality

Distributed systems often consist of processors allocated remotely. The correctness of

distributed computation is not independent of the locations at which processors are

allocated. Several researchers propose process calculi which have the notion of spatial

locality, for example see [9, 13, 39, 56]. The basic idea of these calculi is to assign

localities to processes and actions. They distinguish between actions which occur at

different locations, even when the actions have the same name. However, none of the

previous attempts to study a relationship between spatial locality and communication

delay, although spatial locality is manifested by a function of communication delay.
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Process Calculi with Asynchronous Communication

Ordinary process calculi are based on synchronous communication. However, for

efficiency reasons, in distributed systems communication among remote processors

is often asynchronous. Recently, a few process calculi with the ability to express

asynchronous communication have been explored.

Most of the calculi introduce auxiliary mechanisms: message buffering, in order to

capture non-blocking message sending. For example, Begstra and Klop in [8] extend

ACP with arrival ordering queue and non ordering queue for messages. De Boer, Klop,

and Paramidessi in [20] have studied further refinements of the calculus developed

in [8] by formulating trace and failure equivalences for asynchronous communication.

However, such buffering mechanisms are not always suitable to purely computational

aspects of process calculi.

On the other hand, there have been several process calculi which model asyn-

chronous messages as newly created output processes in [6, 36, 42], like ours. On the

basis of π-calculus, Honda and Tokoro develop a calculus to construct a purely the-

oretical foundation for asynchronous communication with port passing mechanism.

Their calculus lacks any alternative choice operator and thus is difficult to express

systems depending on limited computational resources.

Among them, the calculus proposed by Baeten and Bergstra in [6] is notable. The

calculus is a real time extension of ACP and can express asynchronous communication

channel with latency. The calculus represents an asynchronous message as a newly

created process corresponding to the message, and models communication delay as

a suspension of the created process for the length of the latency. It is very similar

to the calculus developed in Chapter 3. However, their calculus is difficult to have

inequalities for processes such as our speed-sensitive order relation, because it is

essentially formulated through a set of equational laws for precess expressions.

Remarks

Asynchrony, delay, and locality in communication are closely related with one another.

The calculus developed in Chapter 3 is intended to establish a theory for reasoning

about these aspects in a unified way.
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5.3 Formalisms for Locality in Time

The present section compares with other formalisms for reasoning about locality in

time. Temporal differences and uncertainties among physical clocks may distributed

computing systems to inefficient or failure. Therefore, several methods for agreement

on processes’ time have been proposed by using clock synchronization techniques

[40, 43, 45]. These methods are useful in keeping differences among physical clocks

with a specified degree of accuracy. However, these methods are not available in

all distributed systems. Even when such techniques are supported, if the required

precision of time information is finer than the granularity of clock synchronizations,

we need to take differences among clocks into consideration again.

However, most of existing formalisms for concurrent and distributed systems es-

sentially assume the existence of the global clock. A few models can cope with the

notion of local time. Andersen and Mendler propose a calculus with the notion of

local time [2]. The calculus models the passage of time as multiple synchronous com-

munication actions. Each process puts its own clocks forward by one time unit when

only particular ones of the actions are performed. Therefore, the speeds of the pas-

sage of time in all processes are different. However, the calculus lacks any expressive

capability of the properties of inaccurate clocks. As we know, there is no process

calculus which can specify the properties of physical clocks quantitatively other than

ours.

During the last ten years, there have been various attempts to extend temporal

logic with the notion of quantitative time, for example see [32, 33, 41]. Most of them

are based on the existence of a global clock. Among them, Corsetti and Montanari in

[16, 55] extend real-time extended temporal logic with the ability to deal with different

time granularities. However, the logic does not have any expressive capability of clocks

whose measurement rates may drift. Wang, Al Mok and Emerson in [78] propose a

real-time extended temporal logic with the ability to reason about multiple inaccurate

clocks. They present inequalities for treating inaccuracies of clocks and a real-time

model checking technique for reasoning about the inequalities. Alur, Courcoubetis,

and Henzinger in [1] develop time-sensitive bisimulations for descriptions in temporal

logic and automata having an explicit variable to indicate the passage of time. The

bisimulations equate two descriptions according to the sensitivity of multiple constant



CHAPTER 5. RELATED WORK 78

clocks instead of any inaccurate clocks.

Remarks

Among the calculi studied in this thesis, RtCCSL is characterized by the ability to

specify the properties of physical clocks including various measurement errors quan-

titatively. It provides a powerful framework to analyze the influence of uncertainties

and differences of physical clocks upon the temporal and behavioral properties of

distributed systems.

5.4 Verification Techniques

The traditional method for verification in process calculi is to establish equivalence

relations between two descriptions of a system; one typically corresponding to the

specification of the system and the other corresponding to an implementation of

the system. The relations equate two descriptions only by checking whether they

cannot be distinguished from each other in their functions. When the two descriptions

are equivalent, we conclude the implementation satisfies its specification. Several

researchers have explored algebraic relations with time-sensitivity for the verification

of time-dependent processes. We briefly survey existing time-sensitive relations.

Time-Sensitive Equivalence Relations

Many of the existing time-extended process calculi provide special equivalence re-

lations over process expressions. The relations are formulated based on non-timed

equivalence relations such as bisimulation equivalence [58], trace equivalence [11], fail-

ure equivalence [11], and testing equivalence [21], but they cannot distinguish between

the timings of processes.

Several researchers have explored time extensions of the strong bisimulation [51],

for example see [27, 14, 17, 26, 54, 57, 64, 75, 79]. The extended bisimulations

equate two processes if they cannot be distinguished from each other in their temporal

properties as well as their behavioral one. Most of them are difficult to have the

concept of observation, because their timed semantics often disable internal actions

to be ignored and cannot enjoy some pleasant properties of untimed observation
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equivalences. Some researchers develop time-sensitive equivalence relations with the

concept of observation, on the assumption that when an internal or communication

action is enabled, processes must perform the action without imposing unnecessary

idling, like ours. The relations can successfully inherit all the properties of untimed

observation equivalences. Hennessy and Regan introduce a similar assumption and

proposed time-sensitive testing equivalences in [31, 30]. Some of time-extended CSP

works have time-sensitive equivalence relations based on trace equivalence and failure

equivalence, for example see [18, 62].

Time-Sensitive Order Relations

We formulated an order relation over two processes with respect to their execution

speeds. We compare with other existing order relations.

Speed-Sensitive Order Relations. Moller and Tofts in [54] proposed a preorder

relation over processes with respect to their relative speeds. The relation is formulated

based on the bisimulation concept. However, unlike ours, their calculus assumes to

permit an executable communication to be suspended for arbitrary periods of time.

As a result, their relation shows only that a process may possibly execute faster than

the other. Also, their relation is essentially dependent on synchronous communication

and thus cannot cope with asynchronous interactions among distributed processes.

Recently, Vogler in [77] presents a speed-sensitive preorder relation based on the

testing equivalence concept [21].1 The relation can relate asynchronously communi-

cating processes according to their relative speed in the worst case scenario of their

execution. However, the computational semantics of the relation is formulated based

on causality between events on the assumption that actions are not instantaneous,

unlike ours.

Cost-Sensitive Order Relations. Arun-Kumar and Hennessy in [3] propose an

approach to relate processes with respect to their relative efficiencies based on the

bisimulation concept [51]. Cleaveland and Zwarico in [15] propose a similar approach

based on the testing equivalence concept [21].

1We should emphasize that our speed-sensitive order relation was proposed in 1994, independently
of Vogler’s work.
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These approaches are based on algebraic order relations which relate two processes

only if their behavioral properties are match and one of them can perform less internal

actions τ than the other. That is to say, a process which needs to take more τ actions

to execute the same properties than the other, is a slower process. However, both the

approaches have some problems in the analysis of the efficiency of distributed systems.

It is very difficult to reflect the execution cost of real systems upon descriptions of

processes exactly. The relations intend to order two processes with respect to their

energetic execution cost, instead of execution time.

Remarks

We summarize comparisons with existing verification techniques for time-dependent

processes. Most of time-extended process calculi are given a semantics — the meaning

of a time-dependent process is given by a tree of possible transitions, describing the

possible behaviors of the process and their timings. As mentioned previously, several

researchers have explored time-sensitive equivalences which are based on trace equiva-

lence, failure equivalence, testing equivalence, and bisimulation equivalence like ours.

Such time-sensitive equivalences are concord with the semantics of process calculi,

because they relate between the tree structures of two processes. The equivalences

provide a basis of the verification of time-dependent processes. However, there is a

problem when they used in verifying real distributed systems. The equivalences can

equate two behaviorally equivalent processes only when their temporal properties

completely match with each other. Besides, the temporal properties of any two real

distributed processes may not be completely coincide with each other, by virtue of the

influences of inaccurate clocks and unpredictable communication latency. Therefore,

such time-sensitive equivalences may be too strict to verify distributed processes. On

the other hand, we defined a pseudo time-sensitive equivalence relation, which can

equate two processes when their behavioral properties are equivalent and their tem-

poral ones are different within a specified bound. The equivalence is more practical

in the verification of real distributed systems. As far as we know, there is not such a

pseudo equivalence relation other than ours.



Chapter 6

Conclusion

In this thesis we have seen ways to formulate temporal aspects of distributed comput-

ing, through developing an elementary process calculus for time-sensitive computing

and its two further expressive extensions.

The elementary calculus is defined on the assumption that every process commu-

nicates synchronously and shares a global clock. Its language consists of two new

time-dependent constructors: delay operator and time restriction operator, in addi-

tion to operational constructors found in many non-timed process calculi: sequential

execution, parallel composition, synchronous communication, message scope, and re-

cursion definition. It has enough expressive capabilities of temporal properties of

real-time systems. The semantics of the language is given by means of two labeled

transition systems, corresponding to the semantics of operational behaviors and that

of the passage of time. Since the semantics of the time extensions does not interfere

with that of operational behaviors, the calculus can enjoy many pleasant properties

of non-timed process calculi including verification techniques.

On the basis of the calculus, we developed three time-sensitive equivalence re-

lations over communicating processes: strong equivalence, observation equivalence,

and observation congruence. These relations are formulated based on the notion of

bisimulation. They can equate two processes if they cannot be distinguished from

one another in their time properties as well as their behavioral properties. They of-

fer a theoretical and practical framework for verifying real-time systems in a single

processor and small distributed systems.

81
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The two further extensions reinforce the calculus with the ability to express pe-

culiar temporal properties of distributed computing. One of the extensions addresses

asynchrony and delay in communications among distributed processes following a

global clock. The extension enriches the original calculus with supplement language

constructors: non-blocking message send and blocking message receive. It has the

notion of process location and lets us to specify the latency of interprocess com-

munication as the temporal distance between the locations of sender and receiver

processes. Its semantics can be given through a set of rules that translate these

extended supplement language constructions into the original calculus.

Furthermore, we defined a time-sensitive equivalence and order relations. The

equivalence is characterized by equating two distributed processes according to the

results of remote interactions with testing processes. The order relations can order

two behaviorally equivalent processes with respect to their relative execution speeds.

The relations guarantee that in asynchronous communication settings, a system em-

bedding a faster process can still perform faster than the system embedding its slower

one, without altering any functional behaviors. Since in asynchronous communication

settings, it often is necessary only to verify that real-time processes can perform faster

than what is required by their specification, these relations offer a suitable method for

proving the correctness and the reusability of asynchronous communicating processes.

The other extension lets the original calculus embody the expressive capability

of multiple inaccurate clocks. The extension has a special mapping to specify the

precision of physical clocks quantitatively. The mapping also translates descriptions

of processes following local clocks into the original calculus. By incorporating the

expressiveness of the original calculus, the extension allows us to analyze the influences

of inaccuracies of physical clocks upon distributed computing systems. Furthermore,

we developed an equality based on the notion of local time. It equates two processes

when their behaviors are completely matched and their timings are different within a

given bound. It is useful in verifying distributed systems with inaccurate clocks and

non-strict time constraints.

Time is a crucial factor in constructing distributed systems for the sake of archiving

reliability and efficient cooperation with external systems and non computational

systems. Nowadays, distributed systems are being more and more opened to their

external environments, where time is real. The timed formalisms studied in this thesis
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are getting important increasingly.

Future Work

There are many issues that we leave in this thesis. One of the most important issues

is to investigate further refinements of these calculi. Here we would like to point out

other further directions of this work.

Probabilistic Models. The present calculi lack any mechanism for reasoning about

probability of systems. The mechanism allows us to analyze the performance of partic-

ular systems more exactly such as communication protocols with unreliable channels.

We are interested in combining probability and time as stochastic Petri net.

Task Scheduling. When the number of available processors is less than that of

active processes, a scheduling policy is required to make good use of the available

processors. However, for simplicity, we intended to make minimal assumptions about

the scheduling in this thesis. Studying a process calculus with the notion of concrete

scheduling policies is an interesting issue.

Programming Languages. The calculi are expected to support formal reason-

ing at every stage of the development process of programs for distributed systems.

Therefore, we should bridge the gap between our process calculi and real implemen-

tation languages. We are fortune in our having a general technique to encode parallel

real-time languages into RtCCS expressions in [70, 69]. We need to enhance the

technique to distributed programs by incorporating the expressive capabilities of the

calculi developed in this thesis.

Tool Supports. We wish the present calculi to be adopted by industrial users.

To do this, it is necessary to support reliable software tools to manipulate formal

specifications and to assist verifications. We plan to develop some automatic reasoning

systems for distributed processes described in the calculi by means of model checking,

theorem solving approaches, and so on.
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Open Systems. There are some distributed systems where new computers and

new services will always come and change dynamically, for example the Internet and

Open Information System [34]. In the other word, such systems are always incomplete

and open to their internal and external changings. On the other hand, the existing

specification techniques, including our calculi, are intended to reason about closed

systems. A theoretical framework to specify such open distributed systems attracts

much interest.
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