
Bio-inspired Deployment of Distributed Applications

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Tel: +81-3-4212-2546 Fax: +81-3-3556-1916
E-mail: ichiro@nii.ac.jp

Abstract. This paper presents an approach to developing and managing self-
organizing distributed computing systems. The approach is used to construct an
application as a dynamic federation of mobile components that can migrate from
computer to computer while the application is being executed. It also enables
each component to explicitly define its own migration policy as the migration of
other components. Therefore, a federation of components can be migrated and
transformed according to its components’ local policies, including bio-inspired
deployment approaches. The approach was implemented as not only a test-bed
system for the organization of multi-agents but also a middleware for real dis-
tributed systems. This paper describes a prototype implementation of the middle-
ware built on a Java-based mobile agent system and its applications that illustrates
the utility and effectiveness of the approach.

1 Introduction

Distributed computing systems are often composed of a number of software compo-
nents, which run on different computers and interact with each other via a network. The
complexity of modern distributed systems has already frustrated our ability to deploy
components at appropriate computers through traditional approaches, such as central-
ized and top-down techniques. It is difficult to adapt such systems to changes in exe-
cution environments, such as adding or removing components and network topology,
and to the requirements of users. This problem becomes more serious in ubiquitous
computing as well as large-scale distributed systems, because ubiquitous computers are
heterogeneous and their computational resources, such as processors, storage, and input
and output devices, are limited so that they can only support their own initial applica-
tions. An application can execute on a group of one or more computers to satisfy its
own requirements beyond the capabilities of individual computers. Moreover, such a
group must be configurable in run-time because the goals and positions of users may
change dynamically. We believe that the solutions to extreme dynamics and complex-
ity in distributed systems, including ubiquitous computing environments, are based on
metaphors drawn from biological processes.

Therefore, this paper presents a framework to adapt a federation of components,
which may run on heterogeneous computers, to changes in user requirements and their
associated contexts, such as locations and tasks. The framework is based on two key
ideas. The first is to implement components as mobile agents that can travel from com-
puter to computer under their own control. That is, each component can autonomously

migrate to another computer and duplicate itself. The second is to facilitate the dynamic
federation of one or more components as a virtual computer over distributed systems.
The framework enables such a federation to be transformed and made mobile through
bio-inspired self-organization, such as that undertaken by cells in their transforming
and crawling locomotion.

This paper continues with a description of the issues we consider are necessary for
the framework (Section 2) and a description of the design goals for it (Section 3). We
then describe its design (Section 4) and a prototype implementation (Section 5). We also
discuss our experience with two applications, which we used the framework to develop
(Section 6), and briefly review related work (Section 7). We present some future issues
in brief (Section 8) and close with a summary (Section 9).

2 Approach

The goal of this framework is to provide a general infrastructure that enables applica-
tions on a distributed system to be deployed dynamically.

2.1 Distributed and Mobile Applications

The framework assumes that each application is composed of one or more software
components, as we can see in Fig. 2. Each component corresponds to a motile unicel-
lular structure since it is self-contained and self-mobile. An aggregation of components
can also be treated as a pseudoplasmodium, because such an aggregation can change
its structure and move over a distributed system according to changes in the underly-
ing system and the requirements of the application (Fig. 1). The framework provides
support for migration-transparent interactions between dynamically deployable com-
ponents. It instructs components to migrate to computers that can satisfy their require-
ments. Where to deploy components is an application-dependent decision and a well-
known practical policy is that any application that enables interaction with users should
be executed at nearby computers to reduce network latency. For example, when the
framework detects changes in a user’s positions, it provides addresses of nearby com-
puters by using the location information services we presented in our previous paper
[17] and components then migrate to the closest of the computers.

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Fig. 1. Group migration

Computer A

(with keyboad and display)

Computer B (with

high-performance processor)

Computer B (with

high-performance processor)

Computer A

(with display)

Computer A

(with keyboad)

network

component

migration

component

migration

component migration

component

for processing

component

for output

component

for output

component

for processing

component

for input

component

for input

user movement user movement

Fig. 2. Federation of Network-enabled Appliances

2.2 Drawing Inspiration from Cell Transformation and Locomotion

Applications must not be bound to heterogeneous computers, which may have lim-
ited computational resources for specifics applications, but should be able to run on
any computer that can satisfy their requirements and those of their users. However, it
is difficult to deploy components at appropriate computers on a distributed computing
system where computers are dynamically added and removed. Furthermore, the require-
ments of users or applications may vary. For example, mobile users may also want to
constantly change the computers with which they interact. Consequently, applications
should be able to move from computer to computer to follow their users. Therefore,
our framework should enable a federation of partitioned applications, i.e., components,
to partially or entirely migrate to suitable computers according to changes in user con-
ditions and their associated context, e.g., locations, current tasks, and the number of
components.

Federation Mobility of Components as Cell-locomotion The framework is used to
build an application as a set of mobile agent-based components and enables components
to move to other computers while the application is running. As a result, the movement
of one component may affect other components. For example, two components are re-
quired to remain at the same computer or nearby computers, when the first is a program
that controls the keyboard and the second is a program that displays content on the
screen. Since each component travels between computers under its own control, a fed-
eration of components tends to spread over a distributed system so that these distant
components cannot efficiently coordinate with one another due to latency in communi-
cation. The framework therefore enables each component to explicitly specify its own
constraints to migrate components. For example, if a component has a migration con-
straint dependent on another component, when the other component moves to another
location, the former component decides its destination according to its own migration
constraints, i.e., the source or destination of the other component. Such constraints are

defined as policies within components and allow us to specify physical structures and
mechanisms in motile cells, such as membrane and cytoplasmic streaming, and gel-to-
sol transitions.

Speculative Deployment of Components as Cell-lamellipodia Lamellipodia are flat-
tened and protrusive projections that periodically expand from the surface of a cell.
Effective movement requires a motile cell to be polarised, so that its protoplasm mem-
brane is relatively quiescent everywhere else except its leading edge where lamellipodia
periodically project outward in all directions. As they pull on one another they create
intervening regions in which the cortex is stretched. This tug of war continues until one
lamellipodium aligns in a dominant direction and becomes unipolar, then migrates in
that direction. Lamellipodia can be viewed in terms of speculative migration or expan-
sion. Each component, however, should migrate to one of the most eligible computers
that can satisfy its requirements as long as its migration constraints are valid. However,
it cannot always establish precisely which destination is the most suitable. This frame-
work permits a component to speculatively deploy its clones at multiple computers and
to select one of the most appropriate clones. This mechanism corresponds to the process
lamellipodia go through in motile cells.

2.3 Architecture

Our framework should be used as a general test-bed for providing various bio-inspired
approaches in distributed systems as well as a middleware for adaptive distributed sys-
tems. There may also be one or more approaches to deploying components in a dis-
tributed system, because these are often application-specific. Therefore, the framework
itself should be as independent as possible of any component-deployment approach
and of any particular phenomenon in biological processes. By separating component-
deployment approaches from infrastructures, the framework provides a general middle-
ware for exchanging components between computers and enables such approaches to
be implemented within components instead of the middleware. That is, each compo-
nent can have its own deployment policy for specifying spatial constraints between its
location and the locations of other components at neighboring computers. As a result,
a federation of components is managed by each of the components’ policies instead of
any global policy.

3 Design and Implementation

The framework presented in this paper was implemented in Sun’s Java Developer Kit
version 1.4 and uses a Java-based mobile agent system to provide mobile components.
It consists of two parts: mobile components and component hosts. The first defines par-
titioned applications. The second is a middleware and enables components to migrate
from computer to computer.

3.1 Mobile Component

It is almost impossible to automatically partition existing standalone applications across
multiple computers. Instead, this framework relies on the concept of a component-based
application construction [21]. That is, an application is loosely composed of software
components, which may run on different computers. In the current implementation of
the framework, each component is a collection of Java objects in the standard JAR
file format that can migrate from computer to computer and duplicate itself through
mobile agent technology.1 After arriving at its destination or being duplicated, each
component can continue working without losing the accumulated work, such as the
content of instance variables in the component’s program, at the source computers. It is
also equipped with its own identifier and that of the federation that it should belong to. It
can explicitly specify the computational capability that its destination hosts must offer
in CC/PP form as we will discuss later. If a component is on a computer that cannot
satisfy its requirements, its intent is to leave the computer.

As we will discuss in the following section, although the current implementation
supports five several migration policies for the mobilities of two components, we will
only present two typical policies as follows:

– When a component declares follow for another component, if the other component
moves, the declarer or its clone migrates to the destination or a nearby proper host.

– When a component declares fill for another component, if the other component
moves, the declarer or its clone migrates to the source of the latter component or a
nearby proper host.

follow
hook

step 2 step 3

follow hook

step 1

follow
hook

component
migration

cell cell cell cell cell cell

component
migration

computercomputer

A

computercomputer

follow hook

AAB BB

step 2 step 3

fill hook

step 1

fill
hookcell cell cell cell cell cell

computercomputer

A

computercomputer

fill hook

AAB BB

fill
hook

component
migration

component duplication and
migration

B

original

Fig. 3. Component migration with relocation policies

The first policy gathers components around specified components like aggregating dic-
tyostelium and the second policy makes components track the footprints of other mov-
ing components like cytoplasmic streaming in cells. Fig. 3 and 4 have examples of
the group migration of three components. When component B has a follow policy for

1 JavaBeans can easily be translated into components in the framework.

component A and component C has a dispatch policy for component B, if compo-
nent A moves, component B moves to component A’s destination host because the host
satisfies component B’s requirements and a copy of component C moves to compo-
nent B’s source host. Each component can change its policy while it is running. When
some components in a federation alternately become mobile or stationary, their irregular
movements correspond to the gel-to-sol transitions in motile cells.

Component

A

Component

A

Component

A

Component

C

Component

C

Component

C
Component

C'

Component

B

Component

B

Component

B

input device follow

hook

dispatch hook

a copy of

component C

step 1

step 3

step 2

powerful processor

output device

output device

input device

powerful processor computer

computercomputer computer

computer

computer

component B

federation

federation

federation

component A

Fig. 4. Examples of component group migration with relocation policies

Such policies may be similar to the dynamic layout of distributed applications in the
FarGo system [9]. However, FarGo’s policies aim at allowing a component to control
other components, whereas our policies aim at allowing a component to describe its
own migration, because our framework always treats components as autonomous enti-

ties that travel from computer to computer under their own control. Note that policies
may conflict in FarGo when two components can declare different relocation policies
for a single component. However, our framework is free of any conflict because each
component can only declare a policy to relocate itself instead of other components.

Each component can have references to other components within the application
federation that it belongs to. Each reference allows a component to interact with the
component that it specifies, even when the former and latter components reside at dif-
ferent computers or move to other computers. The current implementation of the refer-
ences provides mobility-transparent remote method invocation.

3.2 Component Host

Each component host provides a runtime system for executing components and migrat-
ing them to another place. Fig. 5 outlines the basic structure of a runtime system. Each
host establishes at most one TCP connection to each of its neighboring hosts and ex-
changes control messages, components, and inter-component communications with the
other hosts through the connection. Since it is constructed on the Java virtual machine, it
can conceal differences between the platform architecture of the source and destination
hosts, such as the operating system and hardware.

Component

A

Core Runtime System

OS/Hardware

component host 1 component host 2

Transport Protocol

TCP session

Component Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Component

Migration

Service

Java Virtual Machine

Component

B
Component

C

Component

C

Core Runtime System

OS/Hardware

Transport Protocol

Component Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Component

Migration

Service

Java Virtual Machine

Component

D
Component

E

Inter-component communication

component migrationD

Fig. 5. Architecture of component host.

Component Runtime Service Each runtime system governs all the components inside
it and maintains the life-cycle state of each component. When the life-cycle state of a
component changes, e.g. when it is created, terminates, or migrates to another host, the
runtime system issues specific events to the component. This is because the component
may have to acquire various resources or release them such as files, windows, or sockets,
which it had previously captured.

The framework offers a language-based on CC/PP (composite capability/preference
profiles) [23] to describe the capabilities of component hosts and the requirements of
components. For example, a description contains information on the properties of a
computing device: the vendor and model class (PC, PDA, or phone), the screen size,
the number of colors, CPU, memory, input devices, and secondary storage. Each host
informs the components within it, or its neighboring hosts, about its profile specified
with the language. Then, each of the components autonomously selects and migrates to
one of the candidate destinations. Moreover, since each component can count coexisting
components that are of the same type as it is, it can leave computers that have a high
component density.

Component Migration Service All component hosts can exchange components with
others through the use of mobile agent technology. When a component is transferred
over a network, the component host on the sending side marshals the code of the com-
ponent and its state into a bit-stream and then transfers these to the destination. Another
component host on the receiving side receives and unmarshals the bit-stream. The cur-
rent implementation uses the standard JAR file format for passing components that can
support digital signatures, allowing for authentication. It also uses Java’s object seri-
alization package for marshaling components, which can save the content of instance
variables in a component program but does not support the stack frames of threads
being captured. Consequently, component hosts cannot serialize the execution states
of any thread objects. Instead, when a component is marshaled and unmarshaled, the
component host propagates certain events to its components to instruct the components
to stop their active threads, and then automatically stops and marshals them after a
given period. Moreover, each host has a database on the locations of components it has
received to support migration-transparent inter-component interactions. When a com-
ponent moves, the source host forwards messages to the moved component and the
destination host updates the databases of other hosts by multicasting control messages.

4 Component Programming

In this framework, each component is implemented as a collection of Java objects that
are defined as subclasses of the Component class as follows:

class Component extends MobileAgent implements Serializable {
void go(URL url) throws NoSuchHostException { ... }
setPolicy(ComponnetProfile cref,

MigrationPolicy mpolicy, boolean coexist) { ... }
setTTL(int lifespan) { ... }
void setGroupIdentifier(GroupIdentifier gid) { ... }
GroupIdentifier getGroupIdentifier() { ... }
void setComponentProfile(ComponentProfile cpf) { ... }
ComponentProfile getComponentProfile(ComponentRef ref) { ... }
boolean isConformableHost(HostProfile hfs) { ... }
....

}

We will explain some of the methods defined in the Component class. A component
executes the go(URL url) method to move to the destination host specified as the

url by its runtime system. The setTTL() specifies the life span, called Time-To-
Live (TTL), of the component. The span decrements the TTL value as the passage
of time. When the TTL of a component becomes zero, the component automatically
removes itself. The setGroupIdentifier() method ties the component to the
identity of the federation specified as gid. Each component can specify a requirement
that its destination hosts must satisfy by invoking the setComponentProfile()
method, with the requirement specified as cpf. The class has a service method called
isConformableHost(), which the component uses to decide whether or not the
capabilities of the component hosts specified as an instance of the HostProfile
class can satisfy the requirements of the component. Each component can have more
than one listener object that implements a specific listener interface to hook certain
events issued by the runtime system before or after changes in its life-cycle state.

4.1 Migration Policy Programming

While each component is running, it can declare its own migration policy by invoking
the setPolicy method of the Component class as follows:

setPolicy(cref, mp);

where the first argument is a reference to another component. The second argument is
an instance of the MigrationPolicy class.

MigrationPolicy mp = new MigrationPolicy(int policy);

When a component specified as cref migrates from its source to its destination, the
component creates an instance of the class with one of the following actions:

– If the second argument is new MigrationPolicy(Policy.FOLLOW), the
component migrates to the same destination computer.

– If the second argument is new MigrationPolicy(Policy.DISPTACH),
the component duplicates itself and migrates its clone to the same destination com-
puter.

– If the second argument is new MigrationPolicy(Policy.SHIFT), the com-
ponent migrates to the source computer.

– If the second argument is new MigrationPolicy(Policy.FILL), the com-
ponent duplicates itself and migrates its clone to the source computer.

– If the second argument is new MigrationPolicy(Policy.STAY), the com-
ponent stays at the current computer.

where each component can have at most one policy. Figure 6 outlines four basic poli-
cies, where two components, B and C, have policies for component A.

These policies are related to phenomena in biological processes. For example,Pol-
icy.FOLLOW enables a component to come near another component. When mul-
tiple components declares a policy for a leader component, they can swarm around
the leader component. Policy.SHIFT enables a component to follow the move-
ment of another component. The former component can track the latter component
as it moves. The policy thus corresponds to the phenomenon of cytoplasmic streaming.

B

C

A AB

C

B

C

A Clone B

Clone C

B

C

A A
B

C

B

C

A A

C

B

C

B

Clone B

Clone C

A

Policy.FOLLOW

Policy.FOLLOW

Policy.DISPATCH

Policy.DISPATCH

Policy.SHIFT

Policy.SHIFT

Policy.FILL

Policy.FILL

Step 1 (Policy.FOLLOW) Step 2 (Policy.FOLLOW)

Step 1 (Policy.DISPATCH) Step 2 (Policy.DISPATCH)

Step 1 (Policy.SHIFT) Step 2 (Policy.SHIFT)

Step 1 (Policy.FILL) Step 2 (Policy.FILL)

Fig. 6. Basic migration policies

Policy.DISPATCH) enables a component to stay in the current location and then de-
ploys its clone at the destination of another moving component.Policy.DISPATCH)
can model the footprint of a motile cell. We have assumed that a component can declare
the policy for another component and specify the TTLs of its clones as their life-spans.
As the latter component moves, cloned former component are deployed at the footmark
of the latter component and these clones are automatically volatilized after their life-
spans are over. Therefore, the clone components can be viewed as a pheromone that
is left behind after the latter component has moved on. Policy.FILL corresponds
to the phenomenon of cell division. The framework is open to define policies as long
as they are subclasses of the MigrationPolicy so that we can easily define new
policies, including bio-inspired ones.

4.2 Component Coordination Programming

Component references are responsible for tracking possibly moving targets and for in-
voking the targets’ methods. This framework provides the APIs for invoking the meth-
ods of other components on local or other computers with copies of arguments. Our
programming interface to invoke methods is similar to CORBA’s dynamic invocation
interface and does not have to statically define any stub or skeleton interfaces through a
precompiler approach, because our target is a dynamic computing system.

Message msg = new Message("print");

msg.setArg("hello world");
Object result = cref.invoke(msg);

The above code fragment is used to invoke a method of the component specified as
the cref reference. Apart from this, the framework supports a generic remote pub-
lish/subscribe mechanism that enables subscribers to express their interest in an event
so that they can be notified afterwards of any event fired by a publisher. This is imple-
mented through Java’s dynamic proxy mechanism, which has been a new feature of the
Java 2 Platform since version 1.3.2

5 Current Status

A prototype implementation of this framework was constructed with Sun’s Java Devel-
oper Kit version 1.4 and although it was not built for performance, we measured the
cost of component migration. For example, the cost of migrating the federation of three
components in Fig. 4 is 180 ms, where the cost of migrating a component between two
hosts over a TCP connection is 42 msec. This experiment was done with five computers
(1.2-GHz Pentium III, with Windows XP and JDK 1.4.2) connected through a Fast Eth-
ernet network. The latency included the costs of the following processes: transmitting
the component’s requirements from the source host to the LIS through TCP, transmit-
ting a candidate destination from the LIS to the source host through TCP, marshaling
the component, migrating the component from the source host to the destination host
through TCP, unmarshaling the agent, and verifying security.

The current implementation can encrypt components before migrating them over a
network and then decrypt them after they arrive at their destination. Moreover, since
each component is just a programmable entity, it can explicitly encrypt its particular
fields and migrate itself with these fields and its own cryptographic procedure. The Java
virtual machine can explicitly restrict components to only access specified resources to
protect hosts from malicious components. Although the current implementation cannot
protect components from malicious hosts, the runtime system supports some authen-
tication mechanisms to migrate components through mobile agent technology so that
each component host can only send agents to and only receive from trusted hosts.

6 Initial Experience

This section presents three examples that illustrate how the framework works.

6.1 Desktop Teleporting in Ubiquitous Computing Environments

The first example is a mobile editor and is composed of three partitioned components.
The first, called application logic, manages and stores text data and should be executed
on a host equipped with a powerful processor with much amount memory. The sec-
ond, called a viewer, displays text data on the screen of its current host and should

2 As the dynamic creation mechanism is beyond the scope of the papers. we have left it for
future publications.

be deployed at hosts equipped with large screens. The third is called a controller and
forwards texts from its current host’s keyboard to the first component. They have the
following relocation policies. The application logic and control components have fol-
low hook policies for the viewer component to deploy itself at the current host of the
viewer component or nearby hosts. As we can see from Fig. 7, we assumed that the
three components had been initially stored in two hosts.

The system can track the movement of the user in physical space through RFID-tag
technology.3 It also introduces a component, called a user-counterpart, since the com-
ponent works as a virtual counterpart in cyberspace. The component can automatically
move to hosts near the current location of the user, even while the user is moving. That
is, a user-counterpart is always at a host near the user. Because the viewer component
has a follow hook policy to move the user-counterpart component, it moves to a host
that has a user-counterpart or nearby hosts. When a user moves to another location, the
components can be dynamically allocated at suitable hosts without the loss of any coor-
dination as we can see from Fig. 7. When application-specific components are animal
cells, the counter component can be treated as a bait for those cells.

computer A

(with keyboad

and screen)

computer B (with high-performance

processor and memory)

computer B (with high-performance

processor and memory)

computer A

(with screen)

computer A

(with keyboad)

network

step 3

component

migration

step 4

component

migration

step 4

component migration

application

logic component

viewer

component

viewer

componnet

application

logic component

controller

component

controller

component

step 1

user movement

step 1

user movement

user
counter-part
component

user
counter-part
component

RFID-tracking

system

RFID-tracking

system

step 2

component migration

RFID-tag

RFID-tag

RFID-tag

Fig. 7. Initial allocation of components for editor-application.

3 An RFID-based location-dependent deployment of component was presented in our previous
paper [17].

6.2 Ants-based routing mechanisms

Ants are able to locate a path to a food source using trails of chemical substances called
pheromones that are deposited by other ants. Several researchers have attempted to use
the notion of ant pheromones for network-routing mechanisms [3, 20]. Our framework
allows moving components to leave themselves on their trails and to become automati-
cally volatilized after their life-spans are over. A mobile agent corresponding to an ant
A corresponding to a pheromone is attached to another mobile agent corresponding to
an ant according to the fill policy. When the latter agent randomly selects its destination
and migrates to the selected destination, the former agent creates a clone and migrates
to the source host of the latter. Since each of the cloned agents defines its life-span
by invoking the setTTL method, they are active for a specified duration after being
created. If there are other agents corresponding to pheromones in the host, the visiting
agent adds their time spans to its own time span. When another agent corresponding
to another ant migrates over the network, it can select a host that has the agents corre-
sponding to pheromones whose time-spans are the longest from the neighboring hosts.
We experimented on ant-based routing for mobile agents using this prototype imple-
mentation and eight hosts. However, we knew that it would be difficult to quickly con-
verge a short-path to the destination in real systems, because routing mechanisms tend
to be diverging.

6.3 Component Diffusion in Sensor Networks

The second example is the speculative deployment of components as is done with
cell-lamellipodia. This provides a mechanism that dynamically and speculatively de-
ploys components at sensor nodes when there are environmental changes. This mech-
anism was inspired by lamellipodia in cells. It assumes that the sensor field is a two-
dimensional surface composed of sensor nodes and it monitors environmental changes,
such as motion in objects and variations in temperature. It is a well known fact that
after a sensor node detects environmental changes in its area of coverage, some of its
geographically neighboring nodes tend to detect similar changes after a short time. Dif-
fusion occurs as follows. When a component on a sensor node finds changes in its en-
vironment, the component duplicates itself and deploys the copy at neighboring nodes
as long as the nodes have the same kinds of components (Fig. 8). Each component is
associated with a resource limit that functions as a generalized Time-To-Live field. Al-
though a node can monitor changes in interesting environments, it sets the TTLs of its
components as their own initial value. It otherwise decrements TTLs as the passage of
time. When the TTL of a component becomes zero, the component automatically re-
moves itself. This example is still in the early stages of experimentation but we have
developed a mobile agent-based middleware for sensor networks [22] and plan to ex-
tend this framework to the middleware.

7 Related Work

The section discusses several bio-inspired approaches to distributed and multi-agents
systems. Most of the work has been based on simulators. For example, Swarm [7] and

Step 1

duplication

duplication

volatilizing

volatilizing

volatilizing

volatilizing

Step 2

moving entity moving entity

sensor node sensor node

Fig. 8. Component diffusion in moving entity

MASS [6] are general simulators for multi-agent models. However, real systems are
complex and varied. Our goal was also to provide a practical middleware for adap-
tive distributed systems. Unfortunately, we could not gain a rich experience with bio-
inspired approaches in real systems because there have been few real systems based on
approaches in the real world.4 We still lack a lot of data that are essential to simulating
the approaches accurately. Therefore, real experiments in a real distributed system must
have priority over simulation-based experiments for actual experience to accumulate.

A few attempts have provided infrastructures for real distributed systems, like ours.
The Anthill project [1] by University of Bologna developed a bio-inspired middleware
for peer-to-peer systems, which is composed of a collection of interconnected nests.
Autonomous agents, called ants can travel across the network trying to satisfy user re-
quests, like ours. The project provided bio-inspired frameworks, called Messor [11]
and Bison [12]. Messor is a load-balancing application of Anthill and Bison is a con-
ceptual bio-inspired framework based on Anthill. The main difference between Anthill,
including its applications, and our framework is that it introduces agents as independent
entities and ours permits components to be organized in a self-organized manner. The
Co-Field project [10] by University di Modena e Reggio Emilia proposed the notion of
a computational force-field model for coordinating the movements of a group of agents,
including mobile devices, mobile robots, and sensors. However, the model only seems
to be available within the limits of simulation and not within a real distributed system.
Hive [8] is a distributed agent middleware for building decentralized applications and it
can deploy agents at devices in ubiquitous computing environments and organize these
devices as groups of agents. Although it introduced metaphors drawn from ecology, it
cannot change the structure of agents dynamically whereas ours can.

We described an infrastructure for location-aware mobile agents in a previous pa-
per [17]. Like the framework presented in this paper, this infrastructure provides tagged
entities, including people and things, with application-level software to support and an-

4 In fact, several existing simulation-based results seem to be based on arbitrary hypotheses in
the sense that various parameters in their experiments lack any technical grounds.

notate them. However, since it cannot partition an application into one or more compo-
nents, it must deploy and run an application within single instead of multiple computers.
We presented an early prototype implementation of the federation mechanism presented
in this paper in another previous paper [18]

8 Future Work

There are still further issues that need to be resolved. The final goal of this middleware
is to provide a general test-bed for various bio-inspired approaches for adaptive dis-
tributed systems. Although the current implementation focuses on the deployment of
components, we plan to extend it so that it can be used to modify the behavior of each
component, while they are running. Also, as its performance is not yet entirely satis-
factory, further measurements and optimizations will be needed. The current migration
policy for partitioned applications may still be naive. We have studied some higher-level
routings for mobile agents in previous papers [14, 16, 19] and are interested in apply-
ing routing approaches to partitioned applications. We plan to develop a monitoring
and testing system for components by using an approach where we test context-aware
applications on mobile computers [15].

9 Conclusion

This paper presented a middleware system for providing a dynamic federation of com-
ponents on a distributed system. Since the middleware enabled each component to mi-
grate over a distributed system under its own policy, the federation was mobile and able
to be transformed in a self-organized manner. For example, it permitted components to
follow other moving components and deployed their clones at different computers sim-
ilar to what happens in the locomotion of motile cells. We designed and implemented
a prototype middleware system and demonstrated its effectiveness in several applica-
tions.

References

1. O. Babaoglu and H. Meling and A. Montresor, Anthill: A Framework for the Development
of Agent-Based Peer-to-Peer Systems, Proceeding of 22th IEEE International Conference on
Distributed Computing Systems, July 2002.

2. B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer, EasyLiving: Technologies for Intel-
ligent Environments, Proceedings of International Symposium on Handheld and Ubiquitous
Computing (HUC’00), pp. 12-27, September, 2000.

3. G. Di Caro and M. Dorigo, AntNet: Distributed Stigmergetic Control for Communications
Networks, Journal of Artificial Intelligence Research, vol.9, pp. 317-365, 1998.

4. K. J. Goldman, B. Swaminathan, T. P. McCartney, M. D. Anderson, R. Sethuraman The
Programmers’ Playground: I/O Abstraction for User-Configurable Distributed Applications,
IEEE Transactions on Software Engineering, vol. 21, no. 9, pp.735-746, September 1995.

5. A. Harter, A. Hopper, P. Steggeles, A. Ward, P. Webster, The Anatomy of a Context-Aware
Application, Proceedings of Conference on Mobile Computing and Networking (MOBI-
COM’99), pp. 59-68, ACM Press, 1999.

6. B. Horling, and V. Lesser, and R. Vincent, Multi-Agent System Simulation Framework Pro-
ceeding of IMACS World Congress 2000 on Scientific Computation, Applied Mathematics
and Simulation, August 2000.

7. N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm Simulation System, A
Toolkit for Building Multi-Agent Simulations, Technical report, Swarm Development Group,
June 1996.

8. N. Minar, M. Gray, O. Roup, R. Krikorian, P. Maes, Hive: Distributed Agents for Network-
ing Things, International Symposium on Agent Systems and Applications / International
Symposium on Mobile Agents (ASA/MA’99), 1999.

9. O. Holder, I. Ben-Shaul, and H. Gazit, System Support for Dynamic Layout of Distributed
Applications, Proceedings of International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Soceity, 1999.

10. M. Mamei, L. Leonardi, F. Zambonelli, Co-Fields: A Unifying Approach to Swarm Intelli-
gence, International Workshop on Engineering Societies in the Agents World (ESAW 2002),
Lecture Notes in Computer Science, vol. 2577, Springer Verlag 2003.

11. A. Montresor, H. Meling, and O. Babaoglu, Messor: Load-Balancing through a Swarm of
Autonomous Agents, Proceedings of International Workshop on Agents and Peer-to-Peer
Computing, July 2002.

12. A. Montresor and O. Babaoglu, Biology-Inspired Approaches to Peer-to-Peer Computing in
BISON Proceedings of International Conference on Intelligent System Design and Applica-
tions, Oklahoma, August 2003.

13. M. Román, H. Ho, R. H. Campbell, Application Mobility in Active Spaces, Proceedings of
International Conference on Mobile and Ubiquitous Multimedia, 2002.

14. I. Satoh, Building Reusable Mobile Agents for Network Management, IEEE Transactions on
Systems, Man and Cybernetics, vol.33, no. 3, part-C, pp.350-357, August 2003.

15. I. Satoh, A Testing Framework for Mobile Computing Software, IEEE Transactions on Soft-
ware Engineering, vol. 29, no. 12, pp.1112-1121, December 2003.

16. I. Satoh, Configurable Network Processing for Mobile Agents on the Internet Cluster Com-
puting (The Journal of Networks, Software Tools and Applications), vol. 7, no.1, pp.73-83,
Kluwer, January 2004.

17. I. Satoh, Linking Phyical Worlds to Logical Worlds with Mobile Agents, Proceedings of
IEEE International Conference on Mobile Data Management (MDM’2004), pp. 332-343,
IEEE Computer Society, January 2004.

18. I. Satoh, Dynamic Federation of Partitioned Applications in Ubiquitous Computing Environ-
ments, Proceedings of IEEE International Conference on Pervasive Computing and Commu-
nications (PerCom’2004), pp.356-360, IEEE Computer Society, March 2004.

19. I. Satoh, Selection of Mobile Agents, Proceedings of IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’2004), pp.484-493, IEEE Computer Society, March
2004.

20. R. Schoonderwoerd, O. Holland, and J. Bruten, Ant-like agents for load balancing in
telecommunications networks, Proceedings of Conference on Autonomous Agents, pages
209-216. ACM Press, 1997.

21. C. Szyperski, Component Software, Addison-Wesley, 1998.
22. Umezawa T, Satoh I, Anzai Y. A Mobile Agent-based Framework for Configurable Sensor

Networks. Proceedings of International Workshop on Mobile Agents for Telecommunication
Applications (MATA’2002); Lecture Notes in Computer Science 2002; Springer; Vol. 2521:
128-140.

23. World Wide Web Consortium (W3C), Composite Capability/Preference Profiles (CC/PP),
http://www.w3.org/TR/NOTE-CCPP, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

