
Testing Mobile Wireless Applications

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Tel: +81-3-4212-2546 Fax: +81-3-3556-1916
E-mail: ichiro@nii.ac.jp

Abstract

A framework is described that can be used to build and test application-level soft-
ware for wireless mobile computing. It emulates the physical mobility of wireless
devices by using the logical mobility of software-based emulators of the devices
and target software. Since each emulator is implemented as a mobile agent, it can
dynamically carry the target software to each of the sub-networks to which its de-
vice is connected on behalf of the device, permitting the software to interact with
other servers in the current sub-network. That is, it can test software designed to
run on a wireless device in the same way as if the software were disconnected from
the network, moved with the device, and reconnected to and operated on another
network. Also described are the lessons learned from exploiting the framework in
developing typical software for wireless devices.

1 Introduction

The development of software for portable computing devices is very difficult due to the
limited computational resources these devices have, even if they are standalone. Recent
advances in networking technology have enabled portable computing devices to link up
with servers through wireless networks, such as IEEE802.11b and Bluetooth, to access
information from them, and to delegate heavy tasks to them. A typical IEEE802.11b
wireless LAN consists of more than one base station (i.e. access point), whose typical
radio area is within at most a few hundred meters, connected through a local area net-
work. When a user moves from location to location, his/her mobile computing device
may be disconnected from the current network and reconnected to another network.
Several researchers has explored mechanisms to transparently mask variations in mo-
bility at the network or system level, such as Mobile-IP [14] and host mobility [19].
These approaches have been designed to enable packet delivery while a mobile device
is away from its home base.

However, the notion of mobility transparency is not always suitable for wireless
applications, such as user navigation systems in a city or museum and printing services.
Such applications need to access local servers on a local area network in the current



location. That is, a change in the network and location implies movement away from
the servers currently in use, toward new ones. Therefore, software development for
mobile computing devices that use short range wireless networks is often tedious and
extremely susceptible to change. To construct a correct application, it must be tested in
all the networks to which the device could be moved and hooked up to. Unfortunately,
the task of testing software for mobile computing devices has attracted little attention
so far. This is a serious impediment to its growth beyond mere laboratory prototypes.

To overcome this problem, a software testing approach suitable to wireless devices,
including PDAs and wireless appliances, is needed. We introduced a framework, called
Flying Emulator, for developing software running on portable computing devices in our
earlier paper [17]. The key idea of the framework is to offer a mobile agent-based em-
ulator of a mobile computing device. The emulator performs application-transparent
emulation of its target device for application software written in the Java language. Fur-
thermore, since the emulator is implemented as a mobile agent, it can carry its software
to remote networks according to patterns of physical mobility and test the software in-
side the environments of those networks. However, the framework presented in the
previous paper had no mechanism for simulating wireless networks or the small form
factor displays and controls of mobile wireless devices such as PDAs. Therefore, it
is not always suitable for testing applications for small wireless devices, in particu-
lar PDAs and wireless appliances. The goal of this paper is to enhance the existing
framework to solve these problems. The enhanced framework can have a mechanism
to simulate characteristics of wireless networks by using Java bytecode rewriting tech-
nique. That is, it can automatically replace Java classes for network processing in
applications by customized classes, which enable the developer to control features of
wireless networks such as network disconnection. It also provides a graphical front
end for target devices so that it is easy enough for end-users of wireless devices to use
in testing applications and evaluating contents.

The remainder of this paper is organized as follows. Section 2 discusses require-
ments in testing wireless applications and then outlines a framework for testing wireless
applications. Section 3 presents the design and implementation of the framework and
Section 4 demonstrates the usability of the framework through two real-world exam-
ples. Section 5 surveys related work and Section 6 provides a summary and discusses
some future issues.

2 Approach

The framework presented in this paper aims testing network-dependent application-
level Java-based software, including application-level protocols designed to run on
mobile devices, such as PDAs and notebook PCs, and which may often access servers
on local networks in the device’s current location either through short-range wireless
networks such as the IEEE802.11b or Bluetooth networks. This framework does not
address mobile phones because wireless networks for mobile phones provide a global
view in the sense that they offer continuous access to services and resources through
a land-based network, even when the device’s location changes. Emulation of the per-
formance of wireless networks, such as bandwidth and connectivity latency, is also



beyond the scope of the framework.

2.1 Requirements

To test applications designed to run on wireless devices, the framework should satisfy
the following requirements.

Network-dependency and interoperability: Cooperation among mobile comput-
ing devices and servers within a domestic or office network is indispensable because it
complements various features missing in the device. As a result, the appropriateness of
the software running on the device not only depends on its internal execution environ-
ment but also on the external environments, including servers, provided by the network
that it connects to. Moreover, testing the interoperability of various devices tends to be
tedious, since there are countless varieties of devices with which the target device can
interface.

Mobility and disconnection: Wireless access points, so-called hotspots, are being
installed in various places, such as airports, hotels, and cafes. While a wireless device
roams among the radio cells of the base stations within a hotspot, it can continue to ac-
cess servers provided within the hotspot as well as global networks such as the Internet.
On the other hand, when a device moves outside of the area of the current hotspot, it is
disconnected and cannot always enter the area of another hotspot, because the areas of
hotspots are still sparse. Such devices must often sleep to save battery life and avoid
the risk of accidental damage while moving.

Ease of use: The framework should be simple enough for end-users of wireless de-
vices to use in testing. It must be able to run on servers without any custom hardware
and enable easy operation of applications using a graphical user interface displayed
on a stationary computer in front of the developer. Many applications have their own
GUIs. The framework should enable the developer to test his/her target applications
including their GUIs.

Spontaneous and plug-and-play management: When a wireless mobile device is
reconnected, it may have to detect servers on the network to perform its task. To
achieve this, several middleware systems, such as Jini [2] and Universal Plug and Play
(UPnP) [12], have been used to manage devices. These mechanisms use multicast
communications whose packets can be transmitted to only the hosts within specified
sub-networks. Therefore, the software target to run on a wireless device must be tested
inside the sub-networks to which the device can be connected.

2.2 Overview of the Framework

It is difficult to build and debug software designed wireless mobile devices within the
devices themselves, because it has a less powerful processor with less memory and a
limited user interface with a clamped keyboard and small screen. A popular solution is



to use a software-based emulator for the target device. However, existing emulators are
not always usable for the development of software dependent on resources provided in
networks, because an emulator running on a standalone computer cannot simulate all
the resources provided in the networks to which its target device may connect. The
simplest way to solve this problem is for the developer to actually carry a workstation
running an emulator of the target device (or the device itself) and to attach it to the local
networks in the current location. This is of course troublesome for the developer and
consequently should only be resorted to in the final phase of software development.

Our framework aims to solve these problems through the use of a software-based
emulator that can simulate the internal execution environment of its target device, like
the approaches taken in previous works. The key idea of the framework is to emulate
the physical mobility of a wireless device between networks by using the software’s
logical mobility, which has been designed to run on the device between the networks,
as shown in Figure 1. The framework constructs a software-based emulator as a mobile
agent, which can travel from host to host under its own control. When a mobile agent-
based emulator and its target software moves among networks, it transfers the code and
state of the software to the destination network. The carried applications can access
servers provided in the destination and continue their processes as if they had been
physically moved with the target device.

migration

sub-network C

target

software

emulator
access

point

host
local servers

local servers

sub-network B

local servers

wireless

device

disconnection

and movement

target

software

disconnection

and movement

sub-network A

local servers

target

software

sub-network C

local servers

target

software

sub-network B

sub-network A

migration

target

software

emulator
access

point

host

migration

target

software

emulator

access

point

host

local servers

emulation

physical mobility

of a wireless device

logical mobility

of an emulator

Figure 1: Correlation between physical and logical mobilities

Each mobile agent is simply a logical entity that must thus be executed on a com-
puter. Therefore, we assume that each network to which the device may be moved
and attached has more than one special stationary host, called an access-point host that
offers a runtime system for mobile agents. Each access-point host has a runtime en-
vironment that enables applications running in a visiting emulator to connect to local
servers in its network.



3 Design and Implementation

The current implementation of this framework is based on a Java-based mobile agent
system called MobileSpaces[15].1 As Figure 2 shows, the framework has the following
three components:

sub-network A

migration

migration

local servers

local servers

local servers

sub-network B

sub-network C

remote control

server

target

software

emulator

control message

access point host

access

point host

control message

control message

mobile agent

based emulator

access point host

Figure 2: Architecture of the framework.

– A mobile agent-based emulator that can carry the target software to specified
access-point hosts on remote networks on behalf of a target wireless device.

– Access-point hosts that are allocated to each network and enable the software
carried by an emulator to connect with various servers running on the network.

– A remote-control server that is a front-end to the whole system, enabling the
moving emulator and its target software to be monitored and operated by re-
motely displaying their GUIs on its screen.

In addition, we provided a runtime system that runs on a wearable computer and sup-
ports the execution of the tested software. As the framework is constructed inde-
pendently of the underlying system, it can run on any computer with a JDK 1.1- or
1.2-compatible Java virtual machine, including Personal Java, and the MobileSpaces
system.

3.1 Mobile Agent-based Emulator

Our mobile agent-based emulator can carry and test software designed to run on its
target wireless device. Figure 3 shows the structure of a mobile agent-based emulator
running on an access-point host.

Emulation of Mobility:

The developer can interactively control the movement of the emulator through the
graphical user interface displayed the remote-control server as Figure 4 shows. Also,

1The framework itself is independent of the MobileSpaces mobile agent system and can thus work with
other Java-based mobile agent systems.



Hardware / OS

Java VM

access 

point host

target software

sub-network

mobile agent-based emulator

mobile agent runtime system
local severs

user

interface
network

execution

control

event

handler

migration

control

file

system

Figure 3: Mobile agent-based emulator running on an access-point host.

each emulator can have its own itinerary, a list of hosts corresponding to the physical
movement pattern of its target wireless device.

When a wireless device moves in physical space, it may still be running. However,
our emulator cannot migrate over networks when its inner applications are running be-
cause they must be suspended and marshaled into a bitstream before being transferred
to the destination. To solve this problem, we designed our framework to divide the
life-cycle state of each application into the following three phases: networked running,
isolated running, and suspended. In the networked running state, the software is run-
ning in its emulator on an access-point host and is allowed to link to with servers on
the network. In the isolated running state, the software is still running but is prohibited
from communicating with any servers or devices on the network. This means that the
device is disconnected from the network. In the suspended state, the emulator stops its
target software and maintains the execution states, such as program variables, for the
software by marshaling itself into a bit stream along with the states and codes of its
target software.

When an emulator is suspended or migrated over networks, it can marshal itself
into a bit stream along with the heap blocks and codes of its target software since it
is implemented as a mobile agent. The emulator also dispatches certain events to its
target software to explicitly restart (or stop) its activities and acquire (or release) the
computational resources of the current host when the life-cycle state of the software
is changed. In addition, our framework can provide each mobile wireless device with
lightweight middleware to monitor the environment of the device, such as network
connectivity and location, and dispatch certain events to its target as a mobile agent-
based emulator corresponding to the device.

Emulation of Wireless Networking

When anchored at an access-point host, each emulator can directly inherit most net-
work resources from the host, such as java.net and java.rmi packages. In the



Figure 4: User interface for controlling mobile agent-based emulators.

current implementation, a moving emulator cannot have its own network identifier,
such as an IP address and port number, but this is not a serious problem because our
target software is a client-side program as mentioned previously. Applications running
on an emulator can interact with other applications running on different emulators and
servers on the current sub-network and the Internet if the sub-network is connected to
the Internet.

The current implementation simply maps the wireless device TCP/IP stack onto
the desktop TCP/IP stack to simulate IP connectivity. Some issues in wireless device
use can be simulated as well as to the extent that the medium of a desktop computing
environment allows; but there may be other issues, like network disconnection, latency,
and bandwidth. This framework has a mechanism to simulate characteristics of wire-
less networks. The mechanism overrides Java’s classes for network operation, such
as java.net.Socket and java.net.ServerSocket, with customized classes
that emulate that characteristics of wireless networks by using a bytecode rewriting
technique. Our bytecode rewriting tool is based on Byte Code Engineering Library
(BCEL) [5], which enables bytecode manipulations of Java classes and is also entirely
written in Java and does not have to extend the Java virtual machine. Our mechanism
detects certain classes in target applications and then transforms them into the corre-
sponding customized classes when the original classes are loaded at runtime. The cur-
rent implementation of this framework provides customized TCP socket classes that
are subclasses of java.net.Socket and java.net.ServerSocket and can
be explicitly disconnected and reconnected by the remote control server as shown in
Figure 5. Moreover, the developer can easily define customized classes to specify other
characteristics of wireless networks.

Emulation of Computing Environment

The framework assumes that its target software will be Java application programs. Ac-
cordingly, the Java virtual machine can actually shield the target software from many



target software

Java class

bytecode-level

transformation

inheritance

reference to 

Java class

reference to 

Java class
reconnection

disconnection

control messages

Controllable

Java class

java.net.Socket

remote

control

server

mobile agent-

based emulator

Java class

target software'

java.net.Socket

Runtime system

Java VM+Java classes

AnotherScoket

java.net.Socket

Access Point Host

AnotherSocket

Figure 5: Bytecode transformation for customizing a class for network operation.

features of the hardware and the operating system of mobile wireless devices. Each
emulator permits its target software to have access to the standard classes commonly
supported by the Java virtual machine as long as the target device offers them. In ad-
dition, the current implementation of our emulator supports several typical resources
of mobile wireless devices. Each emulator maintains a database to store files. Each
file can be stored in the database as a pair consisting of its file/directory path name
pattern and its content. Each emulator provides basic primitives for file operation,
such as creation, reading, writing, and deletion; it allows a user to insert files into it
through its GUI. Each emulator can permit its target software to be Java’s communi-
cation APIs (Java COMM) if they are provided on the device on which the emulator
runs. Furthermore, the framework offers a mechanism that enables its target software
to access equipment running on remote computers via serial ports. The mechanism
consists of proxies whose interfaces are compatible with Java’s communication APIs
and which can forward the port’s signals between the emulator and the remote-control
server through TCP/IP channels.

Emulation of User Interface

The user interfaces of most handheld computers are limited by their screen size, color,
and resolution, and they may not be equipped with traditional input devices such as
a keyboard or mouse. Each emulator can explicitly constrain the size of the user in-
terface being used from its inner applications by using a set of classes for the visible
content of the MobileSpaces system, called MobiDoc [16]. Also, it can have images
of the physical user interface of the target device as it would appear to the end-user.
Typical handheld devices will include a screen that may allow content to be displayed.
Therefore, the screen is seamlessly embedded into the pictures of the device, and the
basic controls of the device can be simulated through mouse-clickable buttons.

Our framework enables the whole user interface of a device, including the graph-
ical user interface of target applications, to be displayed on the screen of the remote
control server and operated from the standard input devices of the server, such as a
keyboard and mouse. This mechanism is constructed on the Remote Abstract Window



Toolkit (RAWT) developed by IBM [8]. This toolkit enables Java programs that run
on a remote host to display GUI data on a local host and receive GUI data from it.
The toolkit can be incorporated into each access-point host, thus enabling all the win-
dows of applications in a visiting emulator to be displayed on the screen of the remote
control server and operated using the keyboard and mouse of the server. Therefore,
the developer can always test his/her target applications, including their GUIs, within
a desktop computing environment and the access-point hosts do not have to offer any
graphics services and user-input devices. The current implementation of the framework
supports emulators for three kinds of computing devices: standard notebook PCs, pen-
based tablet PCs, and palm-sized PDAs. Figure 6 (A) shows a screenshot of the remote
control server and (B) is a picture of a tablet PC running a user navigator application.
The left window in Figure 6 (A) is the window of a mobile agent-based emulator of the
tablet-PC, where the emulator tests the application.

Figure 6: (A) Screenshot of remote control server and (B) Picture of a tablet PC

3.2 Access-point Host

We assume that more than one access-point host is allocated in each network, to which
the wireless device may be attached. As previously mentioned, the framework is built
on the MobileSpaces mobile agent system. Each access-point host is a server or work-
station offering a MobileSpaces runtime system for executing the mobile agent-based
emulator and migrating it to another access-point host. The host does not need any
custom hardware. When an agent is transferred over a network, the runtime system
stores the state and codes of the agent, including its software, in a bitstream defined
by Java’s JAR file format, which can support digital signatures for authentication. The
MobileSpaces runtime system supports a built-in mechanism for transmitting the bit-
stream over networks by using an extension of the HTTP protocol. In almost all in-
tranets, there is a firewall that prevents users from opening a direct socket connection
to a node across administrative boundaries. Since this mechanism is based on a tech-
nique called HTTP tunneling, emulators can be sent outside a firewall as HTTP POST
requests, and responses can be retrieved as HTTP responses.



3.3 Remote-control Server

The remote-control server is a control entity responsible for managing the whole sys-
tem. It can run on a standard workstation that supports Java and does need any custom
hardware. It can always track the locations of all the emulators, because each access-
point host sends certain messages to the control server whenever a moving emulator
arrives or leaves. Moreover, the server acts as a graphical front end for the system,
enabling the developer to freely instruct moving emulators to migrate to other loca-
tions and terminate, through its own graphical user interface. It also can monitor and
record the status of all access-point hosts by periodically multicasting query messages
to them.

4 Application

To demonstrate the utility of our framework, we used it to test two typical mobile
wireless applications.

4.1 Testing of Network-dependent Software

Portable computing devices have been used in several other projects to provide user
navigation in a city [1, 4]. Similarly, we developed a prototype navigation system
for a building of the National Institute of Informatics using PDAs with IEEE 802.11b
wireless LAN connectivity. Each floor in the building has its own local area networks
and one or more wireless LAN base stations. The system provides each visitor with
a PDA that obtains location-dependent information from servers allocated on the sub-
network of the current location via IEEE802.11b wireless networks. As a visitor moves
from floor to floor, the PDA automatically displays a map of the current floor. To test
the system, we constructed a mobile agent-based emulator for the PDA. The emulator
can migrate a map viewer application designed to run on the PDA to the sub-network
of another floor and enable the application to access the local database of the floor and
display suitable maps.

Figure 7 (A) shows the window of the map viewer application tested in the emulator
forwarded from an access point host to the remote control server by using the RAWT
toolkit and (B) is a picture of the target PDA (Compaq iPAQ) running the map viewer
application. As illustrated in Figure 7 (A) and (B), both the application running on
the emulator and the application running on the target device can present the same
navigation information. That is, the tested application can run in the target device in the
same way as it was executed in the emulator. Furthermore, this example shows that the
framework can provide a powerful method for testing not only application software for
portable computers but also for creating location-dependent contents, such as map and
annotations about locations. Moreover, by using the RAWT toolkit, this framework
enables a content creator to view the location-dependent information that should be
displayed on the PDA on the screen of his/her stationary computer. Also, since the
emulator can define its own itinerary among multiple access points, it can easily and
exactly trace the mobility of each visitor and test the contents displayed on the screen



A) B)

Figure 7: (A) the window of a mobile agent-based emulator with a map viewer appli-
cation running on an access point host displayed on the screen of remote control server
and (B) the same application running on a PDA.

of his/her PDA.

4.2 Testing of Multicast-based Protocol

Since wireless devices move from network and network, they need to be managed in an
ad-hoc manner. Universal Plug and Play (UPnP) [12] is a powerful infrastructure for
enabling a device to dynamically join a network, obtain an IP address, convey its ca-
pabilities upon request, and learn about the presence and capabilities of other devices.
Using it, we easily tested the interoperability of UPnP-aware Java application software
designed to run wireless devices and a subset implementation of the UPnP protocol in
our previous project [13]. UPnP uses a multicast-based management protocol, called
simple service discovery protocol (SSDP), with which a device can announce its pres-
ence to others as well as to discover other devices or services. For example, a joining
device multicasts messages to advertise its services to the UPnP’s control points. Since
such multicast messages are available within the domain of specified sub-networks,
UPnP-aware software designed to run on a device must operate within the domain to
receive the messages. Therefore, we constructed a mobile agent-based emulator as a
carrier for the software. When the emulator arrives at an access-point host within the
domain, the software it carries can multicast advertisement-messages to hosts in the
domain and can receive search-messages multicasted from other devices in the domain
as if the emulator’s target were joined to the domain, as shown Figure 8. We demon-
strated that the software in an emulator running on a host can interact with software in
another emulator running on a different host as well as on the same host through UPnP
protocols. In addition, software tested successfully in the emulator could still be run
in the same way on the device without modifying or recompiling it. Our framework
can thus provide a powerful methodology for testing the interoperability of protocols,
within limited specified sub-networks, for reasons of security and reduced network
traffic.



plug-and-play
connection

wireless network area (multicast domain)

target
software

target
software

emulator

wireless network area (multicast domain)

multicast-based
management

multicast-based
management

access point
host

access point
host

target
software

emulator

A) B)

agent
migration

Figure 8: Emulation of (A) the plug-and-play operation of a mobile device by (B) the
migration of the emulator for the device between access-point hosts.

5 Related Work

As mentioned above, software-based emulators of portable computing devices facili-
tate development and testing of standalone software running on the devices, but most
existing emulators do not support wireless devices in the sense that they cannot sim-
ulate the whole network in which the target device will interact. An extreme solution
is to actually carry around portable devices and attach them to local networks at the
destinations, but this would be extremely troublesome for developers and content cre-
ators. Another solution is to let the target software run on a local workstation and link
to remote devices and servers through networks, e.g., the InfoPad project at Berkeley
[11] and Lancaster University’s network emulator [6]. However, accomplishing this in
a responsive and reliable manner is difficult, and the emulators cannot remotely access
all the services and resources that are available only within the local networks because
of security protection mechanisms. Moreover, the approach is inappropriate in testing
software using service discovery protocols. Since a mobile computing environment is
dynamic, we require zero user configuration and administration. To solve this problem,
several middleware systems, such as Jini [2] and Universal Plug and Play [12], are of-
ten used to manage devices. These systems use multicast communications to find their
management servers and devices, but the multicast messages can only be transmitted
to hosts within specified sub-networks. Therefore, the software that is to run on ubiq-
uitous computing devices must be tested within the sub-networks to which the devices
may be connected.

There have been various attempts to apply mobile agent technology [3, 7, 10], in-
cluding the mobile code approach, to wireless mobile computing, but their goals are
to handle network disconnection using the mobility of agents, instead of any testing
of software for mobile computing. Our previous framework presented in [17] lacks a
mechanism for simulating the user interface of wireless devices and the characteristics
of wireless networks. It also does not support multicast networking, so that it cannot
be used to test wireless appliances managed in a plug-and-play manner.



6 Conclusion

We have described a framework for building and testing application-level Java-based
software designed to run on wireless devices. The framework provides software-based
emulators for target software by incorporating a Java virtual machine. Since these
emulators are constructed as mobile agents, they can carry software on behalf of the
target device to networks that the device may be moved and connected to. That is,
testing software is provided with the services and resources provided through its current
network as if the software were being executed on the target device when attached to
the network. Software successfully tested in the emulator can be run in the same way
on the target device without being modified or recompiled. Moreover, the framework
allows emulators to easily simulate other characteristics of wireless networks by using
a runtime bytecode rewriting technique, Our early experience indicated that we can
greatly reduce the time required to develop software for wireless devices using the
framework.

There are, however, further issues that need to be resolved. Security is one of the
most serious concerns in mobile agent technology. However, since our framework is
used in the development phase instead of the operation phases, this issue is not as se-
rious as it is in other mobile agent-based applications. Nevertheless, we plan to devise
schemes to guarantee security and to control access, since the current implementation
relies on the JDK 1.1 security manager. Since our framework can complement ex-
isting software-development methods for wireless computing discussed in Section 5.
Therefore, we are interested in developing a tool to integrate our approach with other
methods. The location-aware mobile agent infrastructure we developed incorporates
RF-based and infrared-based tag sensors [18] and the framework we propose should be
able to support these sensors.

References
[1] G.D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton, “Cyberguide: A Mobile

Context-Aware Tour Guide”. ACM Wireless Networks 3, pp.421–433. 1997.
[2] K. Arnold, A. Wollrath, R. Scheifler, and J.Waldo, “The Jini Specification”. Addison-Wesley, 1999.
[3] G. Cabri, L. Leonardi, F Zambonelli, “Engineering Mobile Agent Applications via Context-Dependent

Coordination”, pp.1039-1055, IEEE Transaction of Software Engineering, Vol. 28, No. 11, November
2002.

[4] K. Cheverst, N. Davis, K. Mitchell, and A. Friday, “Experiences of Developing and Deploying a
Context-Aware Tourist Guide: The GUIDE Project”, Proceedings of ACM/IEEE Conference on Mo-
bile Computing and Networking (MOBICOM’2000), pp.20–31, 2000.

[5] M. Dahm, “Byte Code Engineering Library”, http://jakarta.apache.org/bcel/index.html
[6] N. Davies, G. S. Blair, K. Cheverst, and A. Friday, “A Network Emulator to Support the Development

of Adaptive Applications”, Proceedings of USENIX Symposium on Mobile and Location Independent
Computing, USENIX, 1995.

[7] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobility”, IEEE Transactions on Soft-
ware Engineering, 24(5), 1998.

[8] International Business Machines Corporation, “Remote Abstract Window Toolkit for Java”,
http://www.alphaworks.ibm.com/, 1998.

[9] J. Jing, “Client-Server Computing in Mobile Environments”, ACM Computing Survey.
[10] B. D. Lange and M. Oshima, “Programming and Deploying Java Mobile Agents with Aglets”,

Addison-Wesley, 1998.



[11] M. Le, F. Burghardt, and J. Rabaey, “Software Architecture of the Infopad System”, Workshop on
Mobile and Wireless Information Systems. 1994.

[12] Microsoft Corporation, “Universal Plug and Play Device Architecture Version 1.0” June, 2000.
http://www.upnp.org/UpnPDevice Architecutre 1.0.htm

[13] T. Nakajima, I. Satoh, and H. Aizu, “A Virtual Overlay Network for Integrating Home Appliances”,
Proceedings of International Symposium on Applications and the Internet (SAINT’2002), pp.246-253,
IEEE Computer Society, January, 2002.

[14] C. Perkins, “IP Mobility Support”, Internet Request For Comments RFC 2002, 1996.

[15] I. Satoh, “MobileSpaces: A Framework for Building Adaptive Distributed Applications Using a Hi-
erarchical Mobile Agent System”, Proceedings of International Conference on Distributed Computing
Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April, 2000.

[16] I. Satoh, “MobiDoc: A Framework for Building Mobile Compound Documents from Hierarchical
Mobile Agents”, Proceedings of Symposium on Agent Systems and Applications / Symposium on
Mobile Agents (ASA/MA’2000), Lecture Notes in Computer Science, Vol.1882, pp.113-125, Springer,
2000.

[17] I. Satoh, “Flying Emulator: Rapid Building and Testing of Networked Applications for Mobile Com-
puters”, Proceedings of Conference on Mobile Agents (MA’2001), LNCS, Vol.2240, pp.103-118,
Springer, December, 2001.

[18] I. Satoh, “SpatialAgents: Integrating of User Mobility and Program Mobility in Ubiquitous Computing
Environments”, to appear in Wireless Communications and Mobile Computing (Accepted), Vol. 3,
John Wiley, 2003.

[19] A. C. Snoeren and H. Balakrishnan, “An End-to-End Approach to Host Mobility”, Proceeding of
Conference on Mobile Computing and Networking (MobiCom’02), pp.155-166, ACM Press, 2002.

Appendix: Application Program

As mentioned previously, each application, which can be tested in our mobile agent-
based emulators, is composed of more than one mobile agent-based component. How-
ever, typical Java software units, including Java applets and Java beans, can be easily
modified to such components by implementing the following listener interface.

1: interface ApplicationListener
2: created() // invoked after creation
3: terminating() // invoked before termination
4: networked() // invoked after network enabled
5: isolated() // invoked after network disconnected
6: suspending() // invoked before suspension
7: resumed() // invoked after resumption
8: }

isolated()suspending()

networked()resumed()

terminating()terminating()

created()

isolated

running

state

networked

running

state

suspended

state

Figure 9: Callback method invocations in the life-cycle state-transition.

The above interface specifies callback methods invoked by the emulator and the run-
time system on the target device when the life-cycle states of an application, such as



networked running state, isolated running state, and suspended state as shown in Fig-
ure 9. Each application must define proper processes in each of these methods to hook
and handle such changes. For example, suppose that a mobile agent-based emulator is
just about to migrate from its current host to another host. As shown in Figure 10, an
application contained in the emulator is notified through the following process:

1. The isolated() method of the application is invoked to handle the discon-
nection from the network, and then the application must release resources, such
as sockets and rmi’s remote references, which are captured by the application
and be prohibited from connecting to any servers.

2. Next, the suspending() method of the application is invoked to instruct it
to do something, for example, closing its graphical user interface, and then the
application is marshaled into a bit-stream.

3. The emulator migrates to the destination as a whole with all its inner applications.

4. After the application is unmarshaled from the bit-stream, its resumed()method
is invoked to do something, for example, redrawing its graphical user interface.

5. After the networked()method is invoked, the application is permitted to con-
nect servers on the current networks.

Netowrk A Network Bisolated()

suspending()

migration

networked()

resumed()

Network A Network B

Mobile computing 
device

Network A Network B
isolated()

suspending()

migration

networked()

resumed()

Network A Network B

Application Mobile
Emulator

Access Point Host

Access
Point
Host

Application

Figure 10: The movement of a computing device and the migration of the correspond-
ing mobile agent-based emulator.


