
Dynamic Configuration of Agent Migration Protocols for the Internet

Ichiro Satoh
National Institute of Informatics / Japan Science and Technology Corporation

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: ichiro@nii.ac.jp

Abstract

This paper presents a framework for building network pro-
tocols for migrating mobile agents over the Internet. The
framework allows network protocols for agent migration to
be naturally implemented within mobile agents and then
dynamically deployed at network hosts by migrating the
agents that perform the protocols. It is built on a hierar-
chical mobile agent system, called MobileSpaces, and sev-
eral protocols for agent migration are designed and imple-
mented based on standard protocols in the Internet, for ex-
ample agent migration protocols through plain TCP, HTTP,
SMTP or SSL, and application-specific routing protocols for
efficiently migrating agents among multiple hosts. This pa-
per describes the framework and its prototype implementa-
tion, which uses Java as both the implementation language
and the protocol development language.

1 Introduction

Mobile agent technology is promoted as an emerging tech-
nology that will make it much easier to design, implement
and maintain distributed systems. Although this technol-
ogy has been expected to be used in the development of
various networked applications in the Internet, there have
few attempts to apply it to the Internet. The reason for
this is a mismatch in network processing, in addition to the
problem of protecting against malicious agents or malicious
hosts. That is, most existing mobile agent systems are es-
sentially designed to be used within an intranet, instead of
on the Internet, and also they are often dependent on par-
ticular network protocols such as Java RMI and HTTP. In
almost all intranet situations, however, there is a firewall
that prevents users from establishing a direct socket connec-
tion to/from an external node, except for certain ports, and
thus some of the systems cannot migrate any mobile agents
through the firewall. Moreover, several applications often
require application-specific network processing for migrat-
ing their agents over a network. For example, a mobile

agent for electronic commerce needs to be transformed into
an application-specific encrypted bit stream before transfer-
ring itself over a network, including the Internet. However,
existing mobile agent systems cannot dynamically adapt
their own network processing to the requirements of each
visiting agent because their network processing is statically
embedded inside them.

The goal of this paper is to present a mechanism for dy-
namically customizing network processing for agent migra-
tion in the Internet. We describe a framework for dynami-
cally deploying and changing network protocols for agent
migration according to the requirements of each visiting
agent and the external environment. This framework intro-
duces the notion of network processing of mobile agents,
by mobile agents, for mobile agents. The notion allows
network processing for mobile agents to be implemented
as a set of mobile agents. That is, our mobile agent-based
protocols can transmit mobile agents as first-class objects
to their destinations. Also, the dynamic deployment of the
mobile agent-based protocols can be naturally and easily
performed by the migration of the agents that support these
protocols. Therefore, our framework allows network pro-
cessing for mobile agents to be adapted to the requirements
of visiting agents and to changes in the environment.

This paper is organized as follows. Section 2 explains
our framework of customizable network processing for
agent migration. Section 3 briefly reviews our mobile agent
system, MobileSpaces, and Section 4 presents several mo-
bile agent-based protocols running on the system. Section
5 shows the usability of our framework based on two real-
world examples and Section 6 surveys related work. Section
7 describes the current status of the framework and Section
8 provides a summary and then touches on future issues.

2 Architecture

The framework presented in this paper provides a self-
configuring infrastructure for mobile agents. It can de-
ploy and configure network protocols for agent migration
according to the requirements of visiting agents and to

changes in the network environment. This section outlines
the overall architecture of the framework and describes the
basic idea of adaptive protocols based on the framework.

2.1 Configurable Network Processing

Our framework is built on a mobile agent system, called
MobileSpaces, presented in our previous paper [12]. The
system is characterized by two novel concepts: agent hier-
archy and inter-agent migration. The former means that
one mobile agent can be contained within another mobile
agent. That is, mobile agents are organized in a tree-like
structure. The latter means that each mobile agent can mi-
grate to other mobile agents as a whole, with all its inner
agents. Each agent can freely move into any agent in the
same agent hierarchy except into itself or its inner agents, as
long as the destination agent accepts it. A container agent is
responsible for automatically offering its own services and
resources to its inner agents and can subordinate its inner
agents. Therefore, an agent can directly instruct its inner
agents to move to another location.

migration

Agent C
Agent D

Agent B

Agent E

Agent A

step 1

step 2

Agent C

Agent A

Agent D

Agent B

Agent E

Figure 1. Agent hierarchy and inter-agent mi-
gration.

Our mobile agents can transmit other mobile agents as
first-class objects [3], in the sense that mobile agents can be
passed to and returned from other mobile agents as values
by their container agents. Such container agents are still
mobile and thus can transport their inner agents to other
agents. As a result, our framework allows various opera-
tions for mobile agents, including network processing for
agent migration, to be naturally constructed and performed
by other mobile agents. That is, network protocols for agent
migration are implemented within mobile agents. Accord-
ingly, mobile agents are introduced as the only constituent
of our network processing for mobile agents. Moreover,
such protocols can be dynamically and easily changed by
migrating agents that implement the protocols to destina-
tions and immediate nodes. Therefore, our framework of-
fers a self-configurable infrastructure of network processing
for mobile agents. Furthermore, they can be constructed
and reused through a single programmable abstraction for
composition and refinement of mobile agents. As a result,

our framework can greatly simplify the development of ac-
tive networks.

2.2 Agent Migration Protocols for the Internet

Current protocols for data transmission are often arranged
in a hierarchy of layers. Each layer presents an inter-
face to the layers above it and extends services provided
by the layer below it. Our hierarchical structure for mo-
bile agents enables network protocols for agent migration
to be organized hierarchically. For example, network pro-
cessing agents at the bottom layer of the source host trans-
mit a mobile agent to the same kind of network processing
agents running at its destination host through their favorite
data transmission protocols. Encryption and authentication
mechanisms for agent migration are constructed at a layer
independent of network processing running at other layers.
Also, agent migration in a hierarchy is introduced as a basic
mechanism for accessing services provided by the underly-
ing layer. When an agent wants a service, it can access the
service by migrating itself into one of the agents providing
that service.

3 MobileSpaces: A Runtime System for Hi-
erarchical Mobile Agents

Here we briefly review the MobileSpaces system1, which
provides an infrastructure for building and executing mo-
bile agents for network processing in addition to mobile
agent based-applications. The MobileSpaces system sup-
ports mobile agents that obey the notions of agent hierarchy
and inter-agent migration presented in the previous section.

Our mobile agent system can dynamically adapt itself
to changes in the network environment because it is con-
structed based on a micro-kernel architecture, like several
operating systems. That is, the system consists of two parts:
a core system and subcomponents. The former offers only
the minimal and common functions, independent of the un-
derlying environment. It is thus independent of the network
infrastructure.2 The latter is a collection of subcomponents
outside the core system that provide other functions, for
example, agent migration between different computers and
persistence of secondary storage, which may depend on the
surrounding environment. These subcomponents, including
network processing for agent migration, are implemented
as mobile agents so that they can be dynamically added to
and removed from the system by migrating and replacing
the corresponding agents.

1Details of the MobileSpaces mobile agent system can be found in our
previous paper [12].

2The current implementation of the core system has a built-in mecha-
nism for transmitting agents over the network by using an extension of the
HTTP protocol running on TCP/IP.

3.1 Core System

Each core system runs on a computer and is made as small
as possible. It offers only three facilities.

Agent Hierarchy Management: Each runtime system
has an agent hierarchy, which is maintained as a tree-like
structure in which each node contains a mobile agent and
its attributes, and corresponds to the root node of its own
agent hierarchy. Agent migration in an agent hierarchy is
performed simply as a transformation of the tree structure of
the hierarchy. A container agent is introduced as a service
provider for its inner agents. Each agent offers a collection
of service methods that can be accessed by its inner agents.
Each agent is active but subordinate to its container agent.
That is, a container agent can instruct its inner agents to
move to other agents or computers, and it can marshal and
terminate them.

Agent Execution Management: Each mobile agent can
have more than one active thread under the control of the
core system. The core system maintains the life-cycle state
of mobile agents. When the life-cycle state of an agent is
changed, for example creation, termination, or migration,
the core system issues events to invoke certain methods in
the agent and its containing agents. The core system can
explicitly limit the length of an agent’s visit and the number
of staying agents. When the time limit of a staying agent
expires, it can automatically terminate the agent. This limi-
tation offers a mechanism for caching network protocols.

Agent Verification Management: The current imple-
mentation of the system uses the Java object serialization
package for marshaling the states of agents, so agents are
transmitted based on the notion of weak mobility [4]. The
core system verifies whether a marshaled agent is valid or
not to protect the system against invalid or malicious agents,
by means of Java’s security mechanism. Enriched secu-
rity mechanisms for agent mechanisms can be implemented
by mobile agents outside the core system. Also, the core
system provides a facility for marshaling agents into bit
streams and unmarshaling them later.

3.2 Mobile Agent Program

Our mobile agents are programmable entities like other mo-
bile agents. Each agent consists of three parts: a body pro-
gram, context objects, and inner agents. The body program
is an instance of a subclass of abstract class Agent.3 This
class defines fundamental callback methods invoked when
the life-cycle of a mobile agent changes due to creation,

3Examples of mobile agent programs are given in the Appendix.

suspension, marshaling, unmarshaling, destruction etc., like
the delegation event model in Aglets [9]. It also provides a
command for agent migration in an agent hierarchy, writ-
ten as go(AgentURL destination). When an agent
performs the command, it migrates itself to the destination
agent specified as the argument of the command. An inner
agent cannot access any methods defined in its container
agent. Instead, each container is equipped with a context
object that offers service methods in a subclass of the Con-
text class, like the AppletContext class of Java’s Ap-
plets. These methods can be indirectly accessed by its inner
agents to get information about and interact with the envi-
ronment, such as with their container, their sibling agents,
and the underlying computer system. Each inner agent can
invoke the public methods defined in the context of its con-
tainer via several built-in application programming inter-
faces.

Each agent is associated with a resource limit that func-
tions as a generalized Time-To-Live field. This limit is
carried with the agent and is decremented by nodes as re-
sources are consumed when the agent arrives at a new place.
Nodes can discard agents when their limit reaches zero. To
restrict the total resource bounds, when one agent creates
another inside the network, the resources allocated to each
created agent must be less than those of the creating agent.

4 Agent Migration Protocols in the Internet

Since the MobileSpaces core system supports only func-
tions independent of the underlying environment, other
functions, including agent migration between different
computers, must be provided by mobile agents outside the
core system. The system introduces each mobile agent as a
service provider, because it is designed to provide service to
its inner agents. When a mobile agent is preparing for a trip
over a network, the agent migrates itself into a mobile agent
that provides appropriate network processing in the same
agent hierarchy and then the agent automatically transfers
the visiting agent (or migrates itself) to its destination, or
delegates other mobile agents in the same agent hierarchy.

4.1 Point-To-Point Channels for Agent Migration

Our framework enables point-to-point agent migration to
be provided by mobile agents, called transmitters, instead
of by the core system. Transmitter agents correspond to a
data-link layer or a network layer and are responsible for
establishing point-to-point channels for agent migration be-
tween the source host and destination host through a (sin-
gle hop or multiple hops) data transmission infrastructure,
such as TCP/IP, as shown in Figure 2. They abstract away
the variety in the underlying network infrastructure and ex-
change their inner agents with coexisting agents running

at remote computers through their favorite communication
protocols. Furthermore, transmitter agents are implemented
as mobile agents so that they can be dynamically added to
and removed from the system by migrating and replacing
the corresponding agents, to keep up with the changes in the
network environment. After an agent arrives at a transmitter
agent from the upper layer, the arriving agent indicates its fi-
nal destination. The transmitter suspends the arriving agent
(including its inner agents), then requests the core system
to serialize the state and code of the arriving agent. Next, it
sends the serialized agent to a coexisting transmitter agent
located at the destination. The transmitter agent at the desti-
nation receives the data and then reconstructs the agent (in-
cluding its inner agents) and migrates it to the destination
or to specified agents for offering upper-layer protocols.

Transmitter Agent

Routing Agent

Mobile Agent A

Mobile Agent B

Transmitter Agent

Routing Agent

Mobile Agent A

Mobile Agent B

channel

transimission
through
their protocol

Computer A Computer B

Runtime System Runtime System

Agent migration in
an agent hierarchy

Agent migration in
an agent hierarchy

Figure 2. Transmitter mobile agents for estab-
lishing channels between nodes.

Since each runtime system can be equipped with more
than one transmitter agent, upper-layer protocols can dy-
namically select a suitable agent in their requirements and
migrate their inner agents to the selected transmitter agents.
We have already implemented several transmitter agents
based on data communication protocols widely used in the
Internet, such as TCP, HTTP, and SMTP. Authentication
services normally available in secure communications in-
frastructure include this functionality. Therefore, we im-
plemented transmitter agents, which can exchange agents
with each other through Secure Socket Layer (SSL), one
of the most popular secure communication protocols in the
Internet. We provide a virtual class in Java that can be spe-
cialized to create transmitter agents for various protocols.
Therefore, we can easily implement point-to-point channels
based on other secure communication protocols for data
transmission.

4.2 Application-Specific Routing for Agent Mi-
gration

A mobile agent often must visit multiple hosts to perform
its task and thus is required to make an application-specific
and network-dependent itinerary. On the other hand, chan-
nels between transmitter agents support point-to-point agent

migration. Therefore, we need mechanisms to migrate an
application-specific mobile agent among multiple hosts so
it can perform its tasks. However, it is difficult to determine
the itinerary at the time the agent is designed or instantiated.
In addition, even if an agent was optimized for a particular
network, it might not be reused in another one. Therefore,
we introduce two approaches for determining and managing
the itinerary of agents, which are built on transmitter agents
running on hosts.

Step 1

Step 2

node 2Mobile Agent

forwardingforwarding

forwarding
node 1

node 3

node 2

node 1

node 3

Mobile Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Figure 3. Routing agents for forwarding an-
other agent to the next nodes.

Navigator Agent

Navigator Agent

Monitor Agent

Monitor Agent

migration

migration migration

migration

migration

navigation
route navigation route

navigation route
navigation
route

node 1

node 3

node 2

Step 1

Step 2

Figure 4. Navigator agent for traveling among
nodes with its inner agent.

� The first approach provides a function similar to that
of routers. We introduce a service provider, called
a forwarder agent, for redirecting moving agents to
new destinations. Each forwarder agent stays at a
host. When receiving agents, it redirects the agents to
their destinations through point-to-point channels es-
tablished among multiple nodes as shown in Figure 3.
Each forwarder agent holds a table describing part of

the structure of the network and can be dynamically
deployed at nodes and coordinate with other forwarder
agents to redirect moving agents to their destinations.
However, if the destinations are not reachable, it tries
to transfer the agents to another forwarder agents run-
ning on intermediate nodes as near the destinations as
possible. Each forwarder agent will repeat the entire
process in the same way until the agent arrives at the
destination.

� The second approach is similar to the notion of an ac-
tive packet (also called a programmable capsule) in ac-
tive network technology. Existing mobile agents can
move from one node to another under their own con-
trol, just as active packets can define their own routing.
We propose a service provider, called a navigator, for
conveying inner agents over a network, as shown in
Figure 4. Each navigator agent is a container of other
agents and travels with them in accordance with a list
of nodes statically or algorithmically determined, or
dynamically based on the agent’s previous computa-
tions and the current environment. That is, a navigator
agent can migrate itself to the next place as a whole
with all its inner agents. Each navigator has a routing
mechanism for managing a routing table consisting of
nodes the navigator agent needs to visit. It maintains
a list of nodes to be visited and provides methods to
dynamically add and remove elements from this list.

The interaction between a forwarder or navigator agent
and its inner agents is based on event-based communica-
tion. Upon receiving agents, a forwarder propagates certain
events to its visiting agents instructing them to do some-
thing during a given time period. After the events have
been processed by the inner agents, the forwarder naviga-
tor transmits another forwarder agent running at the next
host. Upon arriving at a place, a navigator propagates cer-
tain events to its inner agents. After the events have been
processed by the inner agents, the forwarder or navigator
continues on its itinerary. Since the two approaches can
hide the description of an agent’s itinerary from its behav-
ior, mobile agents become independent of the structure of
networks and the modularity and reusability of application-
specific mobile agents are promoted.

4.3 Configuration of Agent Migration Protocol

It is often argued that the advantage of agent migration
lies in the reduction of communication costs in distributed
computing settings. Although this argument is understand-
able, our framework can make use of agent migration as
a unified mechanism for accessing, changing, or deploy-
ing network services for mobile agents. That is, when
an agent wants a service, it can access the service by

migrating itself to the agent which provides the service.
Agent migration in the agent hierarchy is accomplished
with the go() command and each mobile is referenced
in the form of uniform resource locators (URLs). Our
URL consists of two parts: scheme and address. The for-
mer is used as the reference of a service provider agent
rather than the protocol name. The latter specifies a hi-
erarchical mobile agent located at the same agent hierar-
chy or different computers. Suppose that an agent per-
forms go(new AgentURL("TCP-TRANSMITTER:
//some.where.com/ agent1/agent2")) where
TCP-TRANSMITTER denotes a transmitter agent which
migrates its inner agents at TCP-based communication.
When an agent performs the above command, the agent en-
ters the transmitter agent to request that it be migrated into
an agent which is a child agent, named agent2, of the
agent1 agent included in the base agent running on the
host addressed as some.where.com.

Our framework can simultaneously support a variety of
network protocols given by different mobile agents. Hence,
a mobile agent can be provided its required service by one
of the most suitable agents which can deliver the service
in the current execution environment. Therefore, agent mi-
gration can be viewed as a meta mechanism for changing
network protocols. Usually, each mobile agent itself selects
one of the service provider agents. To find an appropriate
service provider for network processing, an agent trying to
move to other nodes is required to know the environmental
information exactly, but it is difficult for a mobile agent to
access the environments. Therefore, we introduce a simple
and practical mechanism to detect suitable service providers
by using environment variables maintained by the operating
system and external programs.

The syntax of our URLs can contain the form $(vari-
able), where variable denotes a variable name whose
value is a string. These variables are basically maintained in
agents. Also, they can be associated with environment vari-
ables provided by the shell program or the operating sys-
tem. The current implementation of our system assumes
that the operating system and external programs can re-
flect environmental changes in the values of their environ-
ment variables. For example, suppose go(new Agen-
tURL("$(TRANSMITTER): //some.where.com/
agent1/agent2)) where $(TRANSMITTER) is a
variable for specifying a transmitter agent recommended
by the operating system or external programs. For When
the value of the variable is /HTTP-TRANSMITTER, which
specifies a TCP-based transmitter agent located at the root
of the agent hierarchy, the above URL is interpreted as
/HTTP-TRANSMITTER:
//some.where.com /agent1/agent2. When the net-
work environment is changed, the operating system or ex-
ternal programs can detect the change and update the value

of the TRANSMITTER environment variable so that the
value refers to one of the most suitable agents in the cur-
rent network environment.

4.4 Protocol Distribution

Given a dynamic network infrastructure, a mechanism is
needed for propagating mobile agents for supporting proto-
cols to where they are needed. The current implementation
of our framework provides the following three mechanisms:
(1) mobile agent-based protocols autonomously migrate to
nodes at which the protocols may be needed and remain
there in a decentralized manner; (2) mobile agent-based
protocols are passively deployed at nodes that may require
them by using forwarder agents prior to using the protocols
as distributors of protocols; and (3) moving agents can carry
mobile agent-based protocols inside themselves and deploy
the protocols at nodes that the agents traverse. This mech-
anism can improve performance in the expected common
case of agent migration, i.e., a sequence of agents that fol-
low the same path and require the same processing. All the
mechanisms are managed by mobile agents, instead of by
the runtime system and thus can be customized easily.

Our framework basically uses a scheme in which agents
for processing network protocols are downloaded before
they are needed, or simultaneously migrated with the agents
that need to be processed by the protocols. However, in
an effort to increase flexibility, we offer an on-demand ap-
proach: such agents can be downloaded on demand and
cached for future use, as in several existing active networks.
Mobile agent-based protocols identify their types and the
protocols to which they belong as they travel. When a mo-
bile agent arrives at a node, the cache of agents is checked.
If the required protocol agent is not present, a request to
fetch the missing agents is sent to the node from which the
agent arrived. The transmission of the arriving agent is sus-
pended, awaiting the protocol, for a finite time. The de-
ployment of transmitter agents needs to be performed by
other transmitter agents. For practical reasons, our current
implementation provides a built-in transmitter agent, which
can deploy other agents to specified nodes through extended
HTTP running on TCP/IP communication. It offers the
bootstrapping capability needed to install other protocols.

5 Examples

This section presents some practical examples of the frame-
work presented in this paper that demonstrate how it can be
exploited.

5.1 Authentication for Agent Migration

Before migrating an agent to its destination host, the mov-
ing agent, the source host, and the destination host should
to be authenticated. Our current implementation provides
a Kerberos-based authentication mechanism for agent mi-
gration. Kerberos [18] provides secure authentication ser-
vices, provided the Kerberos server itself is trusted. It au-
thenticates users without exposing their passwords on the
network and generates secret encryption keys that can be
selectively shared between mutually suspicious parties. It
also allows roaming mobile agents to authenticate them-
selves in foreign domains where they are unknown, thus en-
hancing the scale of mobility. Our methods have also been
devised to use Kerberos for authorization control and ac-
counting before establishing a TCP connection to transmit
mobile agents from the source host to the destination host.
This system consists of authentication servers and a ticket-
granting server. Each authentication server verifies users
during login, and the ticket-granting server issues proof of
identifier tickets. We assume that transmitter agents are al-
located at the source host and the destination host. A trans-
mitter agent at the source host requests a session key to an
authentication server and the ticket-granting server. After
receiving the key from the ticket-granting server, the trans-
mitter agent migrates its inner agents to the destination. The
current implementation is susceptible to off-line password
guessing attacks and to replay attacks for a limited time
window.

5.2 Monitoring Network Nodes

A typical application of mobile agents is as a monitoring
system for network management, and a discussion of the
suitability of mobile agents in network management can be
found in [2, 8]. Using navigator agents presented in the
previous section, we can easily construct a system for mon-
itoring a set of equipment located at nodes in a network and
reacting to certain behavioral patterns.

A monitoring agent collects the network traffic load by
accessing SNMP data from the MIB. However, it has no
mechanism for its own itinerary and thus is not dependent
on a particular network. On the other hand, a navigator
agent is responsible for periodically traveling among nodes
in a network. It can be designed for navigating in a particu-
lar network, and it can guide monitoring agents inside itself
through its itinerary over the network.

When a monitoring agent is preparing to monitor a net-
work, it enters a navigator agent designed for that network.
The navigator then generates an efficient travel plan to visit
certain nodes in the network. Next, it migrates itself and the
monitoring agent to the nodes sequentially. When it arrives
at each destination, it dispatches certain events to its inner

agents at specified timings. A navigator agent can handle
exceptions such as inactive hosts on behalf of monitoring
agents while trying to migrate itself and its inner agents to
new destinations. When the agent has to travel over a net-
work more than one time, it can refer the result of its previ-
ous itinerary such as reachable nodes and arrival timings in
the next itinerary.

5.3 Locating Mobile Agents

When an agent wants to interact with another agent, it must
know the current location of the target agent. Therefore,
we need a mechanism for tracking a moving agent. An ex-
tension of our forwarder agent offers such a mechanism as
shown in Figure 5. Just before an agent moves into another
agent, it creates and leaves a forwarder agent behind. The
forwarder agent inherits the name of the moving agent and
transfers its visiting agent to the new location of the moving
agent. Therefore, when an agent wants to migrate to another
agent that has moved elsewhere, it can migrate into the for-
warder agent in return for the target agent. The forwarder
agent then automatically transfers it to the current location
of the target agent. Several schemes for efficiently locat-
ing mobile agents have been explored in the field of pro-
cess/object migration in distributed operating systems. Our
forwarder agents can easily support most of these schemes
because they are programmable entities and can flexibly ne-
gotiate with each other through data transmission protocols
such as TCP/IP.

AgentAAgentB
migration

AgentB

forwarding
AgentB

AgentA
Forwarder Agent

step1

step2

Computer A Computer B

Computer A Computer B

Figure 5. Forwarder agents for locating mov-
ing agents.

6 Current Status

Our adaptive protocols have been implemented with the
Java language and tested in the MobileSpaces mobile agent
system, which is built on the Java virtual machine. The core
system is constructed independently of the underlying sys-
tem and can run on any computer with JDK 1.2-compatible
Java runtime.

Even though our implementation was not built for per-
formance, we have conducted a basic experiment on agent

migration. The cost of an agent migration in an agent hier-
archy was measured to be 5 ms, including the cost to check
whether the visiting agent was permitted to enter the desti-
nation agent or not. The cost of agent migration supported
by transmitter agents allocated on two computers was mea-
sured to be 25 ms. A transmitter agent can communicate
with another one by using an application-level protocol for
agent transmission whose mechanism is modeled on that of
the HTTP protocol over TCP/IP communication. On the
sender side, a transmitter agent serializes and transfers the
codes and state of an agent (including its inner agents) to the
transmitter on the receiver side and waits for an acknowl-
edgment message. The second result is the sum of the mar-
shaling, compression, opening TCP connection, transmis-
sion, acknowledgment, decompression, security and con-
sistency verifications, and unmarshaling. The moving agent
is a simple navigator agent and consists of basic callback
methods and contains two child agents. Its data size is about
3 Kbytes (zip-compressed).

7 Related Work

Mobile agents are active programs, which can travel be-
tween locations, i.e., agent platforms or runtime systems
running on different computers. Many mobile agent sys-
tems have been released over the last few years, for ex-
ample, Aglets [9], Mole [17], Telescript [20], and Voyager
[11]. To our knowledge, none can extend and adapt their
functions to the requirements of their visiting agents and
changes in the environment while running, whereas ours
can. Although mobile agents need to be used in heteroge-
neous environments, for example, mobile computers, infor-
mation appliances, and wireless networks, existing systems
explicitly and implicitly assume a particular network infras-
tructure. To overcome this problem, the agent migration
mechanism of Aglets is implemented based on a hierarchi-
cal approach and thus the mechanism itself can be indepen-
dent of the underlying network infrastructure, but cannot
dynamically adapt to changes in the network environments,
unlike ours. Among them, the MobileSpaces system pre-
sented in our previous [12] can dynamically adapt itself to
changes in its execution environment. However, the sys-
tem itself is just an infrastructure and thus does not sup-
port any agent migration protocols for the Internet. More-
over, we proposed a layered architecture for building mobile
agent-based protocols for migrating mobile agents in previ-
ous studies [14, 15]. That architecture serves as the basis for
the framework presented in this paper, but its target is to of-
fer application-specific routing mechanisms, instead of any
protocols for transmitting agents over the Internet. On the
other hand, this paper proposes a self-configurable architec-
ture for building and deploying agent migration protocols
for the Internet.

The framework presented in this paper changes network
processing by incorporating it with active network technol-
ogy [19]. There have been many attempts to apply mo-
bile agent technology to the development of active networks
[1, 8], since mobile agents can be regarded as a special case
of mobile code technology, which is the basis of most exist-
ing active network technologies. In contrast, we apply ac-
tive network technology to mobile agent technology. More-
over, there have been many reported attempts to customize
processing in the literature of meta-level and self-reflective
architecture, instead of mobile agent technology. However,
their customization mechanisms are often so complex that it
is difficult to construct them and make them accessible and
secure. We need to construct a simple and natural approach
to configuring and adapting network processing for agent
migration.

8 Conclusion

We have presented a framework for building a self-
configuring infrastructure for agent migration over the In-
ternet. The framework provides a layered architecture for
adaptive protocols for mobile agents. These network pro-
tocols for agent migration can be naturally implemented
within mobile agents and thus can be dynamically added
to and removed from the system by migrating the corre-
sponding agents, according to the requirements of visiting
agents and changes in the environment. We presented sev-
eral mobile agent-based protocols based on standard pro-
tocols in the Internet. Our prototype implementation built
on a Java-based mobile agent system, called MobileSpaces,
allowed us to experiment with the construction and deploy-
ment of these protocols. This experience strongly suggests
that the use of active network technologies in mobile agents
holds considerable promise and that our framework can dy-
namically and flexibly customize network processing for
agent migration, without any limitation on the reusability
of application-specific agents.

Finally, we would like to mention further issues. Our
early performance measurements indicate that the perfor-
mance of our adaptive protocols is reasonable for a high-
level prototype and fast enough for experimenting with
application-specific protocols. However, the performance
of the current implementation is not yet satisfactory. We
plan to improve the performance. We are interested in de-
veloping various agent migration protocols for the Internet,
in addition to the examples presented in this paper. We also
constructed a mobile agent-based approach for building and
testing applications for mobile computing [16] and are in-
terested in applying this framework to such a software de-
velopment methodology for mobile computing. In addition
to, our adaptive protocols are not always dependent on our
framework and thus should be applied to other active net-

work infrastructure.

References

[1] C. Baumer, and T. Magedanz, “The Grasshopper Mobile Agent Plat-
form Enabling Short-Term Active Broadband Intelligent Network
Implementation”, Proceedings of Intenral Working Conference on
Active Networks, pp.109–116, LNCS, Vol.1653, Springer, 1999.

[2] A. Bieszczad, B. Pagurek, and T. White, “Mobile Agents for Net-
work Management. IEEE Communications Surveys”, Vol. 1, No. 1,
Fourth Quarter 1998.

[3] D. P. Friedman, M. Wand, and C. T. Haynes, “Essentials of Program-
ming Languages”, MIT Press, 1992.

[4] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mo-
bility”, IEEE Transactions on Software Engineering, 24(5), 1998.

[5] R. S. Gray, “Agent Tcl: A Transportable Agent System”, CIKM
Workshop on Intelligent Information Agents, 1995.

[6] T. Gschwind, M. Feridun, and S. Pleisch, “ADK: Building Mobile
Agents for Network and System Management from Resuable Com-
ponents”, Technical University of Vienna, TUV-1841-99-10, 1999.

[7] C. Hedrick, “Routing Information Protocol”, RFC 1058, June 1988.

[8] A. Karmouch, “Mobile Software Agents for Telecommunications”,
IEEE Communication Magazine, vol. 36 no. 7, 1998.

[9] B. D. Lange and M. Oshima, “Programming and Deploying Java Mo-
bile Agents with Aglets”, Addison-Wesley, 1998.

[10] D. S. Milojicic, W. LaForge, and D. Chauhan, “Mobile Objects and
Agents (MOA)”, Proceedings of USENIX Conference on Object Ori-
ented Technologies and Systems, April 1998.

[11] ObjectSpace Inc, “ObjectSpace Voyager Technical Overview”, Ob-
jectSpace, Inc. 1997.

[12] I. Satoh, “MobileSpaces: A Framework for Building Adaptive Dis-
tributed Applications Using a Hierarchical Mobile Agent System”,
Proceedings of International Conference on Distributed Computing
Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April,
2000.

[13] I. Satoh, “MobiDoc: A Framework for Building Mobile Compound
Documents from Hierarchical Mobile Agents”, Proceedings of Sym-
posium on Agent Systems and Applications / Symposium on Mobile
Agents (ASA/MA’2000), LNCS Vol.1882, pp.113-125, Springer,
2000.

[14] I. Satoh, “Adaptive Protocols for Agent Migration”, Proceedings of
IEEE International Conference on Distributed Computing Systems
(ICDCS’2001), pp.711-714, IEEE Computer Society, April, 2001.

[15] I. Satoh, “Network Processing of Mobile Agents, by Mobile Agents,
for Mobile Agents”, Proceedings of Workshop on Mobile Agents for
Telecommunication Applications (MATA’2001), LNCS, Vol.2164,
pp.81-92, Springer, August, 2001.

[16] I. Satoh, “Flying Emulator: Rapid Building and Testing of Net-
worked Applications for Mobile Computers”, to appear in Proceed-
ings of Conference on Mobile Agents (MA’2001), LNCS, Springer,
December, 2001.

[17] M. Strasser and J. Baumann, and F. Hole, “Mole: A Java Based Mo-
bile Agent System”, Proceedings of ECOOP Workshop on Mobile
Objects, 1996.

[18] J. G. Steiner, B. Clifford Neuman, and J.I. Schiller, “Kerberos: An
Authentication Service for Open Network Systems”, Proceedings of
the Winter 1988 Usenix Conference. pp.191–201, February, 1988.

[19] D. L. Tennenhouse et al., “A Survey of Active Network Research”,
IEEE Communication Magazine, vol. 35, no. 1, 1997.

[20] J. E. White, “Telescript Technology: Mobile Agents”, General
Magic, 1995.

