
A Component Framework for Document-centric Network Processing

Ichiro Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ichiro@nii.ac.jp

Abstract

A component framework for defining content-based network
processing is presented. It is unique among other existing
approaches because it enables contents to naturally define
their own processing and end-users to easily define network
processing. By using it, we can dynamically make an en-
riched document as a nested composition of software com-
ponents corresponding to various content, e.g., text, images,
and windows. It enables each component or document to
migrate over a network under its own control by using mo-
bile agent technology. Moreover, it introduces components
as carriers or forwarders because it enables them to carry
or transmit other components as first class objects to other
locations. It offers several basic operations for network pro-
cessing, e.g., forwarding, duplication, and synchronization.
It allows end-users to easily define their own content-based
or application-specific network processing by assembling
these components in through GUI manipulations. This pa-
per describes the framework and its implementation, which
currently uses Java as the implementation language as well
as a component development language, and then illustrates
several interesting applications that demonstrate its utility
and flexibility.

1 Introduction

Document manipulation, such as editing, viewing, saving,
and distributing documents, still plays a crucial role in mod-
ern information processing. In fact, electronic mails ex-
changing documents between users through networks and
web servers enable us to share documents stored in remote
computers. However, existing network processing of doc-
uments, e.g., electronic mails and webs, just treat docu-
ments as data, i.e., first class objects. However, network
processing of documents tends to be content-dependent and
application-specific. For example, a workflow management
system is required to distribute documents among employ-
ees according to the content of the documents and the com-
pany’s decision-making path. As a result, end-users often
want to define network processing of documents for them
to be able to accomplish their application-specific tasks.
However, the customization and management of network-
ing processing is too complex and difficult for end-users to
achieve. Some confidential documents also need to pass

through their favorite secure protocols.
This paper proposes a compound document framework,

called MobiDoc, as a solution to these problems. Like
other existing compound document frameworks, it enables
an enriched document to be composed of visual compo-
nents, e.g., text and images. The framework introduces the
notion of self-contained components in the sense that not
only the content of each component but also its codes to
view and edit the content are embedded in the component
to solve various problems, including content rights manage-
ment, with existing content-distribution. It also enables net-
work protocols for documents to be implemented by a set
of active documents. By using mobile agent technology,
documents or components can define their own itineraries
and migrate under their own control. Furthermore, docu-
ments can transmit other documents as first-class objects to
their destinations. The framework introduces components
for network processing as document-centric components, so
that it allows an end-user to easily and rapidly configure net-
work processing in the same way as if he/she had edited the
documents.
This paper is organized as follows. We first describes

the background and related work (Section 2) and outline
our compound document framework (Section 3). We then
present component runtime systems for executing and mi-
grating document components (Section 4) and present our
component model (Section 5). We describe its prototype
implementation (Section 6) and illustrate several applica-
tions of the framework (Section 7). We conclude by provid-
ing a summary and discussing future issues (Section 8).

2 Background

This section briefly describes the background of this frame-
work and its basic approaches.

2.1 Compound Document Framework

There have been many component frameworks for dis-
tributed computing, e.g., Enterprise JavaBeans (EJB) [19]
and Distributed COM (DCOM) [], because building sys-
tems from software components has already proven use-
ful in the development of large-scale software. These ex-
isting frameworks aim at defining the behaviors of dis-
tributed computing, i.e., server-side and client side process-

1

ing. Therefore, these frameworks are suitable for profes-
sional developers but not end-users.
There have been a few component frameworks for build-

ing enrich documents, i.e, so called compound documents,
e.g., OLE [2], OpenDoc [1], and CommonPoint [11], where
various visible parts, e.g., text and images created by dif-
ferent applications, can be combined into one document
and manipulated in-place within the document. There have
been several problems with these existing compound docu-
ment frameworks in distributed computing settings. A com-
pound component is defined in two parts: content and code
to modify the content. Content is stored inside the com-
ponent but the code for access it not always there. Thus,
when a user receives a compound document, he/she cannot
view or modify it if its content needs the support of differ-
ent applications, if he/she does not have all the applications.
Moreover, existing compound documents are inherently de-
signed as passive entities in the sense that their content can
be transmitted over a network by external network systems,
such as electronic-mail systems and workflow management
systems so that they cannot determine where they should go
next.
The framework presented in this paper has been designed

independently of existing component frameworks for dis-
tributed computing or compound documents. This is be-
cause it permits document-centric components to migrate
themselves over a network and process other components
as first-class objects [5], e.g., migrating or saving them to
other computers or on secondary disks. These features en-
able our components to naturally enjoy novel and powerful
features that existing components do not have. End-users
can also easily customize network processing of documents
through user-friendly manipulations to edit visual compo-
nents and they can control their own network processing
according to their content. The framework can also use typ-
ical Java-based components, e.g., Java Beans and Applets,
as its components.

2.2 Related Work

We discuss several related works in the remainder of
this section. Our framework is implemented with Java.
Java provides a general component framework, called Jav-
aBeans, for building reusable software components de-
signed for Java language rather a document-centric frame-
work. The initial release of JavaBeans [8] did not con-
tain a hierarchical or logical structure for JavaBean ob-
jects, but its latest release [3] allows JavaBean objects to be
organized hierarchically. However, the JavaBeans frame-
work provides no higher-level document-related functions.
Moreover, it has not inherently been designed for mobility.
Therefore, it is difficult for a group of JavaBean objects in
the containment hierarchy to migrate to another computer.
Recently, several projects have started constructing com-

ponent frameworks for compound documents. Of these,
the Bonobo framework for software components and com-

pound documents is being developed by the GNOME
project [6]. It provides several mechanisms for creating
compound documents from a collection of components, but
it is based on an underlying middleware and GUI widget,
i.e., CORBA and GTK+, and does not support the distribu-
tion of components, including compound documents over a
network. XML-based technologies can also offer rich doc-
uments, but they inherit the problems of compound doc-
uments, because, when a computer receives XML-based
documents, the computer may not have viewer/editor pro-
grams for them. This framework uses mobile agent technol-
ogy. However, the technology assumes each mobile agent
to be an isolated entity that migrates independently and it
does not support any document-centric approaches. To cus-
tomize distributed computing, particularly network process-
ing between computers, several researchers have explored
active networking technologies [20]. However, these exist-
ing technologies have focused on configurations for low-
level network processing, e.g., routing and QoS protocols
and they are not suitable for end-users.
We presented a compound document framework for pro-

viding software components designed for compound docu-
ments [17, 18]. Although the previous framework was an
early prototype of the framework presented here and it en-
abled components to carry and forward other components
over a distributed system, the previous work was designed
for distributed documents under the documents’ control,
whereas the framework presented in this paper supports var-
ious networking for documents.

3 Design Principles

This section briefly outlines the framework presented here.

3.1 Requirements

This framework must satisfy the following requirements.
Composition: Like OpenDoc and JavaBeans, our frame-
work must compose a document or component of nested
components that can display visual parts, e.g., text, images,
and windows, and that enables us to edit components in-
place without opening a separate window for each compo-
nent.
Application-absence: Components should be distributed
and operated without the need for any applications in their
current computers. That is, when a computer receives a
component, it must be able to view or edit it, including its
inner components, even when the computer lacks applica-
tions.
Autonomy and Mobility: Each document or component
is an autonomous programmable entity and can determine
which components or computers it will go to according to
its program code and content, and then migrate to that des-
tination.
Reconfiguration: The network processing of documents,
components, or plain data can be easily and naturally de-

2

fined and customized as a combination of basic compo-
nents by end-users through document-manipulations just
like editing documents.

3.2 Component model

Let us present the basic ideas behind the framework.

Self-contained component
This framework introduces the notion of a self-contained
component, where the content of each component and its
codes are inseparable. When a component is distributed to
other computers, the framework not only transmits the con-
tent of each component but also its code to the destinations.
To our knowledge, no existing software component frame-
works, including compound document frameworks, make
the code and state of each component indivisible. Our no-
tion makes documents both secure and portable. The frame-
work permits only the code of a component to access its
content and it automatically invokes the code before or after
the component is viewed, modified distributed, duplicated,
and saved. When a user receives a document, he/she can
view or edit the document by using its code instead of any
applications deployed at its current computer. This results
in increasing in the size of the document but this will not
be excessively large in comparison with documents created
frommodern office applications as will be discussed in Sec-
tion 6.

Hierarchical composition
Like OpenDoc and JavaBeans, this framework allows a hi-
erarchy of nested components to correspond to visual parts,
e.g., text, images, and windows, and conform to two no-
tions: i) Each component can be contained by at most one
component, and ii) It can dynamicallymigrate to other com-
ponents along with all its inner components. When a com-
ponent is contained by another component, the former is
still an individual component so that it can be removed from
the latter. Each component can freely move into any other
component except itself or its descendant components, as
long as the destination component accepts it. The destina-
tion may be at a different computer. Each container com-
ponent is responsible for automatically offering its own ser-
vices and resources to its inner components and controlling
its inner components. When a component requires a ser-
vice, it migrates itself to one of the container components
that can provide the service. The framework also allows
container components to process their inner components as
first-class objects. As a result, each container component
can migrate, save, and destroy its inner components in other
components or on secondary disks, whereas each contained
component cannot control its container component.

Component interaction
Component technologies to develop standalone or dis-
tributed systems have been needed to support various mech-
anisms to enable interactions between components. Our

compound documents themselves, on the other hand, are
visible and mobile. Early experience with this framework
suggests that components embedded in a compound docu-
ment only require simple interactions between one another.
Therefore, the framework enables a component to control
the size and layout of its inner components, and to invoke
the service methods explicitly provided by its container (and
its neighboring components through its container). In other
words, a component cannot access any services supported
by components other than its container component. This is
important in allowing successful migration to occur. If it
were not imposed, then migrating a component could mean
that the descendants of that component might suddenly find
that they could no longer access services upon which they
had relied.

3.3 Network processing

This framework provides two approaches to enable compo-
nents to customize their own network processing. The first
is to make components mobile in the sense that they can
define their itinerary and travel among multiple computers
along this itinerary using mobile agent technology. The sec-
ond enables components to define network processing for
themselves or their inner components. The framework pro-
vides four types of components as follows:

• Visual component stores its visual content within it-
self. It displays this content in the estate assigned by its
container component by using its own program. When
a visual component contains other components, it is
responsible for managing the estates of its inner com-
ponent within its own estate.

• Carrier component is transparent and can contain
more than one component, which may contain one
more component. It can carry its inner components
along its own itinerary. Moreover, since it can can
treat its inner components as first-class objects, it can
explicitly restrict or transform its inner components.

• Forwarder component is allocated at a component
or computer and can automatically transmit its inner
components to its destinations. It can also process its
visiting components as first-class objects before it for-
wards them.

Note that visual components can still travel between other
components or computers under their control. Network
processing components, e.g., carrier, and forwarder com-
ponents can also carry or forward other network process-
ing components over a network like visual components.
These components can be assembled and operated through
GUImanipulations and embedded into a document as visual
components.

4 Design

This framework consists of two parts: runtime systems and
components. The framework itself is independent of any

3

programming language, but its prototype implementation is
constructed on Java. It can exchange components between
runtime systems, even when their underlying systems, e.g.,
operating systems and hardware, are different, because Java
VM conceals differences between the underlying systems.

Runtime System

OS/Hardware

Java Virtual Machine

Network

Component
migration

Computer A Computer B

TCP connection
manager

Marashalling
managerComponent

execution
manager

MDContainer
Window
component

Program

Data

MDComponent Text component
Program
Data

Runtime System

OS/Hardware

Java Virtual Machine

TCP connection
manager

Marashalling
managerComponent

execution
manager

MDContainer
Document
component

Program

Data

MDComponent

MDComponent

MDComponent

Figure 1. Component migration between two
computers.

4.1 Component runtime system

Each runtime system is a middleware system for manag-
ing and executing components. Figure 1 outlines the basic
structure of a runtime system. Each runtime system governs
all the components inside it and provides them with APIs
for components in addition to Java’s classes. It assigns one
or more threads to each component and interrupts them be-
fore the component migrates, terminates, or is saved. Each
component can request its current runtime system to termi-
nate, save, and migrate itself and its inner components to
the destination that it wants to migrate to.

Runtime system

Callback method

Callback method

Program

DataContext
object

Callback manager

Service
methods

Component (Java object)

Component tree node

Internal program

Component layout manager
Component Runtime System

Component execution manager

Program

Data

Component B

Component layout manager

Component tree node

Program

Data

Component C

Component layout manager

Component tree node

Program

Data

Component A

component layout manager

Component tree node

Figure 2. Component hierarchy and structure
of components.

Component migration

When each runtime system saves or migrates a component
over a network, it marshals the component, the component’s
inner components, and information about their containment
relationships and visual layouts, called component nodes,
into a bit-stream and then later unmarshals the components

and information from the bit-stream. The runtime system
then transmits the marshaled component to its destination
through an extension of the HTTP protocol. 1 Since the run-
time system transmits both the code and state of the com-
ponent to the destination, the component can continue pro-
cessing, even when the destination is disconnected from the
source. Each runtime system also has a built-in mechanism
forwriting themarshaled component and reading it from the
underlying file system, network file system, and database
system without losing the component’s containment struc-
ture or inner components.
The current implementation uses the Java object serial-

ization package for marshaling and duplicating the states
of components. The package does not support the captur-
ing of stack frames of threads. Consequently, our system
cannot marshal the execution states of any thread objects.
Instead, the runtime system (and the Java virtual machine)
propagates certain events to components before and after
marshaling and unmarshaling them. The current implemen-
tation of our system uses the standard JAR file format for
passing components that can support digital signatures, al-
lowing for authentication.

Component migration

The runtime system marshals the components into a bit-
stream to duplicate components and then duplicates the
marshaled component, because Java has no deep-copy
mechanisms, which can make replicas of all objects embed-
ded in and referred to from these components. 2 To reduce
the size of the bit-stream, if inner components embedded in
a component share the same codes, the runtime system can
detect and remove such redundant codes from the bit-stream
corresponding to the marshaled component, including its in-
ner components.3

Component hierarchy management

The container technology developed by Enterprise Java
Beans provides interfaces for components and enables these
to transparently adapt to runtime services, e.g., transaction
management. This framework provides each component
with a wrapper, called a component tree node. Each node
contains its target component, its attributes, and its contain-
ment relationship inside it and provides interfaces between
its component and the runtime system (Figure 2). When a
component is created in a runtime system, the system cre-
ates a component tree node for the newly created compo-
nent and runs the node inside it. When a component mi-
grates to another location or duplicates itself, the runtime

1The current implementation can support HTTP tunneling to transfer
components outside firewalls.

2Since the framework treats a component and its clones as independent,
it does not support any consistency between them.

3This optimization mechanism involves a trade-off because its detec-
tion of redundant codes is not always lightweight. We intended to disable
the mechanism in the evaluations presented in Section 6.

4

system migrates its node with the component and makes a
replica of the node.
As we can see from Figure 3, a hierarchy of components

is maintained in the form of a tree structure, which has the
component tree nodes of components. Each node is defined
as a subclass of MDContainer or MDComponent, where
the first supports components, which can contain more than
one component inside it and the second supports compo-
nents, which cannot contain any components. 4 For exam-
ple, when a component has two other components inside
it, the nodes that contains the two inner components are at-
tached to the node that wraps the first component. Compo-
nent migration in a tree is only performed as a transforma-
tion of the subtree structure of the hierarchy. When a com-
ponent is moved over a network, on the other hand, the run-
time system marshals the node of the component, including
the nodes of its children, into a bit-stream and transmits the
component and its children, and the marshaled component
to the destination.

MDContainer

size
position

size
position

component layout manager

program
data

MDContainer

size

position

component layout manager

Box Component
program

data

Component
tree node

program
data

MDComponent

Text Component
program

data

C

D

B

Image Component

MDComponent

Component
tree node

Component
tree node

Component tree node

Window Component

Image view

Box Frame

Text

Window

Figure 3. Component Hierarchy

4.2 Component manipulation

Each component tree node defines the protocols that let
components embedded in it to communicate with one an-
other. It also provides in-place editing services similar
to those provided by OpenDoc and OLE. It offers several
value-added mechanisms for effectively sharing the visual
estate of a container among embedded components and for
coordinating their use of shared resources, such as key-
boards, mice, and windows.

Visual layout management

Each component can display its content within the rectan-
gular estate maintained by its container component. The
node of the component, which is defined as a subclass of

4The runtime system basically provides a node derived from the
MDContainer class for components except for the visual components
that has been designed not to have any inner components, e.g., text-viewer
and sound-player components.

the MDContainer or MDComponent class specifies at-
tributes, e.g., its minimum size, preferable size, and max-
imum size of the visible estate of its component, but the
estate is controlled by the node of its container compo-
nent. If a component contains more than one component
inside it, its node is responsible for assigning its inner com-
ponents their rectangular estates within its estate accord-
ing to the node’s layout manager, and for controlling the
sizes, positions, offsets, and order of their estates. When
a visual component moves to another visual component,
the moving component’s estate may be allocated at differ-
ent positions or be different in size. We can customize vi-
sual layout management by defining it as a subclass of the
MDContainer or MDComponent class. We can also de-
fine its new layout manager as an instance of a subclass of
the java.awt.LayoutManager class.

Visible operations

Each component tree node can dispatch certain events to
its components to notify them when certain actions happen
within their surroundings. When the boundary of the visible
area of a component is clicked, the component is selected
and displays eight rectangular control points for moving it
around and resizing it (Figure 4 (a)). The user can resize the
selected component, move it to another component, save
it, and terminate it by dragging its handles (Figure 4 (b)).
Each node can define its own document-wide operations,
such as mouse clicks and keystrokes as well as the built-in
operations of the framework.

(a) (b)

Figure 4. Editing layout of component and
popup-menu for controlling component

5 Component-based network processing

Each component for network processing is invisible and has
been designed to provide its service to its inner components.
A component can directly instruct its inner components to
move to another location, and can transform them. When
a component wants a service, it migrates into one of the
components that can provide that service.

5.1 Carrier component

Carrier components are transparent, can carry other com-
ponents to their destinations along their itineraries, and can
transform their inner components (see Figure 5).

5

Duplicator Component

Component A

Component A

Component A'

Synchronizer Component

Component A
Component B Component C

Forwarder Component

Component A
Component A

Component A

Component A

Component A

Component B

Component C

Carrier Component

Figure 5. Carrier component and basic for-
warder components for network processing.

Component distribution control
We developed a language enabling mobile agents to spec-
ify their own itineraries from multiple destinations [16].
The carrier components presented in this paper can define
their itineraries based on the language and migrate to other
computers along their itineraries. A carrier component may
be deployed at another location by forwarder components.
When the movement of a component deviates from its reg-
istered itinerary, the runtime system issues an exception to
the component.

Component access control

Moreover, carrier components can encapsulate or restrict
their inner components, because they can control their in-
ner components, while carrying them. This is useful in pro-
tecting content in visual components against illegal access
or modification. For example, we provided a special com-
ponent, called a safe component, which is like an armored
car. It is a container of other components and has a secret-
key-based cryptographic procedure inside it. When a com-
ponent visits the safe component, the safe component au-
tomatically serializes and encrypts the visiting component
under a secret key. It next migrates itself to the destina-
tion as a whole with all its inner components and its crypto-
graphic procedure except for its secret keys. After arriving
at the destination, the safe component keeps its inner com-
ponents secure inside it. Safe components can be imple-
mented independently of cryptographic algorithms because
the algorithms must be selected according to the require-
ments of the application. A non-standardized cryptographic
algorithm can be embedded into a safe component without
losing any interoperability because the component can con-

vey the procedure for the algorithm and perform it at both
the source and destination computers.

5.2 Forwarder component

Forwarder components are statically or dynamically de-
ployed at components. The forwarder component is a
key component in the framework. A variety of processes
for components, e.g., duplication and synchronization, can
be defined in derivations from the forwarder component.
When a forwarder component receives a component, it pro-
cesses the visiting component and then forwards it to its
target component.

Basic forwarder components for network processing

The current implementation provides basic operations for
component migration (Figure 5). By combining these
components, we can easily customize network processing.
Since these protocols are given as Java abstract classes, we
can easily define further advanced network processing by
extending these basic protocols.
Forwarder component can redirect its inner component
to other places. When it receives a component, it auto-
matically transfers the visiting component to its specified
destination as long as the destination is within the range
that the inner component can migrate to.
Duplicator component can receive another component
and then create a copy of its visiting component including
all instance variables. The cloned component has the same
content as the original component.
Synchronizer component can strand its inner components
until it can determine specified conditions can be satisfied,
e.g., the number of inner components, the arrivals of
specified components, and time constraints. A typical
synchronizer component defines a group of moving compo-
nents, as a barrier synchronization mechanism for parallel
processes. It strands the visiting components inside it, until
it receives all the components within the group.

We can define flows of components over a distributed
system as a combination of forwarder components like ac-
tive routers (or nodes) in active network technology. The
components previously described have properties that cus-
tomize their processing and provide support to GUI edi-
tors like those for the property editors developed by Java
Beans. The editors allow users to edit the property values
of a given type. For example, forwarding components can
configure their destinations in their properties and synchro-
nization components can explicitly define their conditions.
Moreover, these components can be dynamically deployed
at remote hosts through document manipulations because
they are still components of compound documents.
Since these components cover most basic functions to

implement network protocols, end-users can rapidly and
easily implement the protocols they want by combining

6

components. Various types of network processing for com-
ponents can be implemented as components. Since these
protocols are given as abstract classes in the Java language,
we can easily define further advanced network process-
ing by extending these basic protocols. Figure 6 shows
application-specific document-delivery (for workflow man-
agement systems) executed by combining basic compo-
nents.

Duplicater component

Computer A

Forwarder

component

Forwarder

component

Forwarder

componentComputer B

Computer C computer D

Computer E

Synchronizer

component

Workflow

component

Figure 6. Combination of basic components
for network processing

Forwarder
component

Text-editor
component

Window
component

Drag-and-drop of text-editor component
on forwarder component

(A) (B)

Figure 7. (A) Screenshot of window com-
ponent contains text-editor and forwarding
components and (B) screenshot of window
component when text-editor component is
dragged and dropped on forwarding compo-
nents.

Network-wide component manipulation

This framework itself does not support any network-wide
component manipulations, e.g., cut-and-paste and drag-
and-drop between computers. Instead, such operations can
easily be achieved through the forwarding and duplicator
components. One can also use forwarding components
as a mechanism to deploy network processing at remote
computers. Figure 7 presents a compound document that
includes several forwarding components, which automat-
ically transfer other components to specified components
at remote nodes. When a user wants to enable new net-
work processing at remote nodes, he/she drags and drops
the component that supports the processing to forwarding
components corresponding to the nodes. This action trans-
fers that component to the target of the forwarding compo-
nent. Moreover, forwarding components can have property
editors for their target components at the new location in
addition to their own editors, allowing us to customize the
properties of components deployed at remote computers by
using their editors, which can be implemented as plug-in
modules. Note that the user interface presented in Figure 7

has only been implemented as components. Therefore, the
interface itself can easily be distributed to other computers.
That is, a component can be viewed as the only constituent
of the framework. This gives users and programmers a sin-
gle unified perspective of the system.
Figure 8 shows a compound document for deploying

components for network processing at computers on a net-
work. When three forwarder components contained in the
document receive components, they automatically forward
their visitors to their target computers. We can easily mi-
grate a component for network processing at each of the for-
warders by duplicating the component through our duplica-
tor component. Note that the document is just a configura-
tion for network processing and can be stored in secondary
storage as a first class object just like visual components.

Computer A

Computer C

Computer B

Network

Network world

Document world
Component
deployment

Component
deployment

Component for
network processing

Compound doucment

Forwarder
component

Forwarder component

Forwarder
component

Components for
network processing

Figure 8. Compound document for deploying
components at computers.

6 Current Status

We implemented the framework using Java language
(JDK1.4 or later version), and we developed various com-
ponents for compound documents and network processing.
Since the Java virtual machine and libraries abstract away
differences between the underlying systems, e.g., operating
systems and hardware, components can migrate between
and be executed on runtime systems running on different
computers, whose underlying systems may be different.
Figure 9 has a screen-shot of this framework. The left

window is a palette of part components and the center and
right windows are compound documents contained in the
components corresponding to GUI-windows. When a user
wants to place a component on his/her editing compound
document, he/she drags the wanted component from the
palette and then drops it on the estate of the document.
Since the palette itself is implemented as a container com-
ponent of part components, it can migrate to another com-
puter and be saved in secondary storage. We can regis-
ter new components, which may be edited or modified, in
the palette throughGUI-based data-transfer operations, e.g.,
drag-and-drop or copy-and-paste. End-users can also define

7

Palette
component

Web-browser
component

Document
component

Rich-text
component

Image-viewer
component Carrier component

Box
component

Window
component

Clock
component

Text
component

Figure 9. Example compound documents

and customize their application-specific network processing
by combing forwarder components through GUI manipula-
tions in the same way as if they were editing visual compo-
nents in documents.
Even though our current implementation was not built

for performance, we evaluated some basics of the frame-
work.

Component migration

We conducted a basic experiment on component migra-
tion with computers (Pentium III 1.2-GHz with Windows
XP and SUN JDK 1.4.2). The time for component mi-
gration measured from one container to another container
in the same hierarchy was 10 ms, including the cost of
drawing the visible content of the moving component and
checking whether the component was permitted to enter
the destination component. The cost of component migra-
tion measured between two computers connected through
a Fast-Ethernet was measured at 64 ms. The cost was the
sum of marshaling, compression, opening a TCP connec-
tion, transmission, acknowledgment, decompression, se-
curity and consistency verification, unmarshaling, visual
space layout, and drawing of content. The moving com-
ponent was a simple text viewer and its size (sum of code
and data) was about 9 KB (zip-compressed). The latency of
component migration was reasonable for a Java-based vi-
sual environment for exchanging compound documents be-
tween computers.

Component size

Since each component in this framework not only contains
its content but also program code, documents or compo-
nents transmitted over a network or stored on secondary
storage tends to be large. We compared the sizes of doc-

uments in this framework and the size of documents cre-
ated with MS-Word, which is the most typical office appli-
cation.5 The sizes of two typical kinds of content were as
follows:

• The first content was plain text. The size of the com-
ponent for viewing and editing the text was 5.6 Kbytes
(0), 6.3 Kbytes (1,000), 9.9 Kbytes (10,000), and
19.5 Kbytes (100,000), whereas the size of the docu-
ment created with MS-Word was 19.5 Kbytes (0)21.0
Kbytes (1,000) 47.1 Kbytes (10,000), and 306.2KB
(100,000), where the numbers in parentheses represent
the length of the text where the text-content was a part
of this paper.

• The second is image content within the dotted box in
Figure 9. The content is composed of three compo-
nents: box, text, and image-viewer components, where
the first contains the second and third components. The
content was 68 Kbytes, where the document corre-
sponding to the content created with MS-Word was 24
Kbytes.

The size of the text component was not proportional to
the length of the text because our components were mi-
grated over a network or stored in secondary storage and
they were compressed in JAR-format, which was ZIP-based
compression. This means that our components were not al-
ways larger than documents created with commercial appli-
cations, e.g., MS-Word. We also found that the size of our
components greatly depended on the kind of content and the
complexity of their codes. When various types of compo-
nents were embedded into a document, the size of the docu-
ment tended to be large, because each type needed to embed
its code for the content type into the document. Otherwise,
the size was often smaller than that of corresponding docu-
ments created by existing applications, when the document
contain a few types of components. The size of our compo-
nents was reasonable because network bandwidth and the
capacity for storage have recently increased.

7 Experiences

We developed a variety of components based on this frame-
work. This section introduces several components and their
uses.

7.1 Compound document letter

Although documents are often sent to their destinations
through electronic mail systems, it is difficult for such sys-
tems to send the documents to multiple destinations along
specified itineraries. To solve this problem, this framework

5Note that the sizes of documents, which contain multimedia content,
created with MS-Word may vary for no reason, so that we could not com-
pare the sizes of our documents and MS-Word documents systematically.
The results presented in this section are not always generalized but focused
on several samples.

8

Step 1 Step 2

Drag-and-drop image viewer component

Letter component Text component

Spreadsheet component

Figure 10. Letter document

provides carrier components that can travel between multi-
ple computers under their own control. Figure 10 shows a
letter constructed as a compound document. It consist of
three components: carrier, image viewer, and text compo-
nents. The carrier component has a graphical user interface
corresponding to the header part of an electronic mail and
it can migrate with its inner components, i.e., the text and
spreadsheet components, to its destination. We can easily
add new components to the letter compound document by
dragging them from the palette and dropping them on the
document. Since not only the content but also the codes
for viewing and editing the content of the components are
transferred to the destination, the letter document can be
viewed at the destination with no applications necessary for
the content. The spread-sheet component has its own pro-
file because it can automatically record when it has been
(un)marshaled and where it has visited.
Most electronic mail systems disallow letters from

traveling among multiple destinations along their own
itineraries. We developed a legacy decision-making system,
called ringi, for group decision-making, which has been
widely used throughout Japan. When an employee proposes
something to his/her company, he/she describes the propo-
sition on a workflow document, called a ringi-sho. The doc-
ument must be handed over to all sections involved with the
proposed issue. When the managers of the sections deem
the proposal to be worthy, they give it their hanko, or right
computer (Windows PC) through its carrier component and
has then resumed its animation at the right of the computer.

7.2 Distributed Presentation System

This system is unique to other existing presentation sys-
tems because it can exchange slides or its visual parts, e.g.,
text and images, between different computers. We con-
structed a slide-presentation compound document that can
containmore than one slide component inside it, where each
slide component corresponds to one slide and can contain
and view one or more visual components. It stacks its slides
by using the java.awt.CardLayout class as a layout
manager. It enables us to change the order of the stack and
exchange slides with other slide-presentation compound
documents running on different computers through a GUI-
based control panel at the bottom of its window. The center

Text viewer (read-only) components

Multiple destination table Stamp (hanko) component
Ringo-sho component

Figure 11. Ringi-sho compound document.

image is a GIF-animation-viewer component contained in a
carrier component. When the carrier component is made ac-
tive by clicking the mouse within its estate, it migrates to its
specified component or computer. Figure 12 shows that the
animation-viewer component has migrated between slides
from the left (Macintosh) to the right computer (Windows
PC) through its carrier component and has then resumed its
animation at the right of the computer.

Step 1 Step 2

Slide componentSlide component Animation componentAnimation component

Figure 12. Migration of components between
slide components running on different com-
puters

7.3 Application-specific document distri-
bution

The third example is an editing system for an in-house
newsletter. Each newsletter is edited by automatically com-
piling one or more text parts, which are written by differ-
ent people as we can see from Figure 13. A newsletter
compound document has one page component, which can
contain editor components for visual content, e.g., text and
images. When the newsletter is being edited, it forwards
the page component to a duplicator component to make as
many replicas of the component as the number of writers.
The duplicator component then migrates the replicas to for-
warder components so that each of the page components is
forwarded to a window component on its writer’s computer.
When it arrives at the destination, it displays a window for

9

its editor program on the screen of the computer to assist
the writer. Also, the writer can add his/her visual compo-
nents to the page component. It goes back to the document
after the writer has finished writing his/her text and then the
document arranges the arriving components as a bound set.
Since the newsletter document, duplicator, and forwarder
components are still mobile, they can be easily deployed
and coordinated according to the requirements of applica-
tions.

migration

step 1

Computer A

Editor Components

Computer C

Computer B

migration

migration

step 2

Computer A

Computer B

Editor components

Computer

Editor
component

Forwarding
components

Duplicator
component

duplications

Editor components

Forwarding
components

migration

migration

migration

Duplicator component

Computer C

Newsletter component

Newsletter
component

Figure 13. Newsletter editing system.

8 Conclusion

We presented a compound document framework for
document-centric network processing. The framework
made three contributions. The first introduced the notion
of component hierarchy and mobile components. This no-
tion enabled an enriched document to be composed of vari-
ous components and migrate between components, which
may run on different computers, under its own control.
The framework provided several value-added mechanisms
for visually manipulating components embedded in a com-
pound document and for seamlessly combining multiple
visible components into one. The second made the content
of each component and its codes inseparable. It allowed us
to view or modify components without the need for any ap-
plications. It was also useful in protecting digital content
because it prevented the content of components from be-
ing accessing from the external systems. The third enabled
documents to pass other documents from/to other compo-
nents or computers. Components were introduced as the
only constituent of our network processing for documents
or components. It also offered several basic operations for
network processing, e.g., forwarding, duplication, and syn-
chronization. Since the operations were implemented as
document components, they could be dynamically deployed
at local or remote computers through GUI-based manipula-
tions. It therefore allowed an end-user to easily and rapidly
configure network processing in the same way as if he/she

had edited the documents. We constructed a prototype im-
plementation of this infrastructure and its applications.
To conclude, we would like to point out further issues

that need to be resolved. Resource management and secu-
rity mechanisms in the current system were incorporated
in a relatively straightforward manner. These should now
be designed to incorporate compound documents. When
a component migrates to another component or computer,
its visual resources, i.e., the size of its estate and colors, in
the destination may not be the same as those in the source.
It must adapt its visibility to the resources available in the
current location, but the current implementation relies on
Java’s layout manager. We need a sophisticated and flexible
mechanism to enable adaptation.

References

[1] Apple Computer Inc. (1994) OpenDoc: White Paper, Apple Computer Inc.

[2] K. Brockschmidt, Inside OLE 2, Microsoft Press, 1995.

[3] Cable, L. (1997) Extensible Runtime Containment and Server Protocol for Jav-
aBeans, Sun Microsystems, http://java.sun.com/beans.

[4] P. Dourish et al, A Programming Model for Active Documents, Proceedings
of 13th Symposium on User Interface Software and Technology (UIST’2000),
pp.41 - 50, ACM Press, 2000.

[5] D. P. Friedman, M. Wand, and C. T. Haynes, Essentials of Programming Lan-
guages, MIT Press, 1992.

[6] The GNOME Project, Bonobo, http://developer.gnome.org/ arch/component/
bonobo.html, 2002.

[7] Y. Goldberg, M. Safran, and E. Shapiro, Active Mail - A Framework for Imple-
menting Groupware, Proceedings of ACM CSCW’92, pp. 75-83, ACM Press,
1992.

[8] Hamilton G. (1997) The JavaBeans Specification, Sun Microsystems,
http://java.sun.com/beans.

[9] R. Litiu and A. Parakash, Developing Adaptive Groupware Applications Using
a Mobile Component Framework, Proceedings of ACM conference on Com-
puter Supported Cooperative Work (CSCW’2000) , pp.107 - 116, ACM Press,
2000.

[10] J. Morin, HyperNews, a Hypermedia Electronic-Newspaper Environment
based on Agents, Proceedings of HICSS-31, pp.58-67, 1998.

[11] M. Potel and S. Cotter Inside Taligent Technology, Addison-Wesley, 1995.

[12] D. Rogerson, Inside COM, Microsoft Press, 1997.

[13] I. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Ap-
plications Using a Hierarchical Mobile Agent System, Proceedings of Interna-
tional Conference on Distributed Computing Systems (ICDCS’2000), pp.161-
168, IEEE Computer Society, April 2000.

[14] I. Satoh, Building Reusable Mobile Agents for Network Management, IEEE
Transactions on Systems, Man and Cybernetics, vol. 33, no.3, part-C, pp.350-
357, August 2003.

[15] I. Satoh, Configurable Network Processing for Mobile Agents on the Internet,
Cluster Computing, vol. 7, no.1, pp.73-83, Kluwer, January 2004.

[16] I. Satoh, Selection of Mobile Agents, Proceedings of IEEE International Con-
ference on Distributed Computing Systems (ICDCS’2004), pp.484-493, IEEE
Computer Society, March 2004.

[17] I. Satoh, Network Processing of Documents, for Documents, by Documents
Proceedings of ACM/IFIP/USENIX 6th International Middleware Conference
(Middleware’2005), Lecture Notes in Computer Science (LNCS), December
2005.

[18] I. Satoh, A Document-centric Component Framework for Document Distribu-
tions, to appear in Proceedings of 8th International Symposium on Distributed
Objects and Applications (DOA’2006), Lecture Notes in Computer Science
(LNCS), October 2006.

[19] Sun Microsystems, Inc., Enterprise JavaBeans Technology (EJB)
http://java.sun.com/products/ejb, 2002.

[20] D. L. Tennenhouse et al., A Survey of Active Network Research, IEEE Com-
munication Magazine, vol. 35, no. 1, 1997.

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

