
A Mobile Agent-Based Framework for Active Networks

Ichiro Satoh

Department of Information Sciences, Ochanomizu University
2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610, Japan

E-mail: ichiro@is.ocha.ac.jp

IEEE Systems, Man, and

Cybernetics Conference (SMC’99)

October, 1999

Abstract

This paper presents a framework for active networks.
The framework is unique among other existing active
networks in being based on mobile agents. It allows
protocols to be implemented within mobile agents
and dynamically deployed at end systems. More-
over, it can dispatch networked applications, includ-
ing client/server programs built on TCP/IP, to re-
mote computers. In this paper, we outline an imple-
mentation of the framework which is built on a new
Java-based mobile agent system designed for active
networks. In order to demonstrate the utility of the
framework, we illustrate how several networked ser-
vices to support human activities are dynamically
introduced into a network that initially lacks them.

1 Introduction

The innovation of network services to support human
activities is unrelenting and new network services are
always being wanted and developed. However, the
spread of these services has been much slow. This is
because these services often need their own network
protocols designed for the services, and the current
process of changing and deploying network protocols
are both lengthy and difficult. The process often re-
quires standardization, which takes some years to be
consented. Furthermore, once the new protocols have
been accepted, their deployment is difficult, because
there is not any automatic mechanism for dispatching
programs for new protocols to remote computers. In
addition, networked applications designed for these
new protocols often have to be deployed at remote
computers.

This paper addresses these problems. We present
a new active network which allows new network pro-
tocols to be automatically deployed and operated
at end systems. Our framework is characterized in
being based on a mobile agent system, where mo-
bile agents are autonomous programs that can travel

from computer to computer in their control. The
framework helps us to implement network protocols
within mobile agents. By using the mobility of mo-
bile agents, it can transfer not only the code of a
protocol program but also its state, including vari-
ous parameters which must be customized before es-
tablishing its communication sessions. Furthermore,
since it can deploy networked applications support-
ing user interface in addition to network protocols at
remote computers. Hence, it can provide a practi-
cal infrastructure to support new networked services
for human activities, such as communication among
humans, remote manipulation, and multimedia com-
munication.

We constructed an implementation of the frame-
work. It is built on a new mobile agent system, which
is optimized to support active networks. The sys-
tem is built on the Java virtual machine and mobile
agents are written in the Java language. Although
the framework is inherently independent of any un-
derlying network, it offers several mechanisms and
libraries for constructing application level protocols
built on TCP/IP, because TCP/IP is widely used in
present day network.

In the next section of this paper, we provide a
background on mobile agents and active networks. In
Section 3 we present our mobile agent system, called
AgentSpace, which allows agents to be migrated to
other computers. In Section 4, we present the archi-
tecture of our active network framework. In Section
5 we demonstrate two examples of the framework.
Finally, conclusions and future work are presented in
Section 6.

2 Background

In this section, we provide background on active net-
works and mobile agents.

1

2.1 Active Networks

There are two approaches to the realization of active
networks (for example see [13]). The programmable
packet approach replaces destination addresses in the
packets of present day architectures by miniature
programs interpreted at nodes on arrival. A typi-
cal example of the approach is SwitchWare [3]. It
introduces active packets, which can carry programs
consisting of both code and data. The approach en-
ables the routing and behavior of each packet to be
customized at its own control, but its performance is
unfortunately unreasonable.

On the other hand, the active node approach al-
lows new protocols to be dynamically deployed at in-
termediate and end nodes by using mobile code tech-
niques. Typical examples of the approach are ANTS
[14] and NetScript [16]. ANTS is an active network
toolkit to support the deployment and cache of net-
work protocols. Each packet has a reference to the
forwarding routine to be used to process the packet
at each active node. When a routine for processing
specific packets does not reside at its arriving node,
the routine can be transferred to the node before the
packets can be processed. Netscript proposes a lan-
guage which a dynamic dataflow language for build-
ing network software on a programmable network. It
is designed for introducing new services for network
management and control rather than data transfer
purposes.

Most of existing attempts on active networks in-
tend to dispatch miniature programs to remote hosts
in order to change the way of communications, and
thus cannot deal with any networked applications,
for example server programs and client programs in-
cluding user interfaces.

2.2 Mobile Agents

A mobile agent is an active program that acts on
behalf of a user or another program under its own
control. That is, an agent can choose when and to
where it will migrate itself to another computer and
continue its execution in the destination.

As recently as a few years ago, many mobile agent
systems have been released. Telescript [15] is the
first commercial implementation of the mobile agent
paradigm, and AgentTcl [2] is a mobile agent based
on an extended Tcl interpreter that executes the Tcl
agents. Like ours, most of them have been imple-
mented in the Java language, for example see Aglets
[6], MOA [7], Odyssey [1], Voyager [8], and so on.

Mobile agents are very close to active networks.
This is because a mobile agent may be regarded as a
specific type of an active packet, and an agent plat-

form in traditional networks can be regarded as a
specific type of an active node. However, most of
existing mobile agent systems are not unfortunately
available as a framework for constructing active net-
works, because they lack any resource management
and thus cannot always discover and acquire the re-
sources which an agent needs to accomplish its task.
Among them, there are a few attempts to incorpo-
rate the mobile agent technology with the active net-
work technology (for example see [4]). For example,
TINA [5] and Tempset intend to develop a future net-
work architecture of broadband ATM. The purpose
of existing attempts is to apply mobile agents to net-
work management and control. On the other hand,
our framework is designed for the deployment of new
network protocols (and their applications) for data
transfer purposes rather than network management
and control.

2.3 Our Active Network Framework

The goal of our framework is to construct a practical
infrastructure for active networks, and thus a mech-
anism is needed for effciently propagating program
definitions to where they are needed. Therefore, the
framework addresses the dynamic deployment of pro-
tocols at a coarse granularity, i.e., per communication
session rather than per packet. The framework is also
characterized in that it is based on a mobile agent
technology, instead of any mobile code technologies.
It allows new protocols and networked applications
to be constructed within mobile agents. By the mi-
gration of these mobile agents, it can dynamically
deploy and automatically operate the protocols and
the applications at remote computers. Since each
mobile agent can autonomously migrate itself to its
destination under its own control, a policy of deploy-
ing programs for handling protocols is defined in the
agents offering the protocols, instead of any underly-
ing systems, including any active nodes.

An active network is often expected to be used in
various networks, and thus it should be constructed
independently of its underlying network. Therefore,
the agent deployment mechanism of our framework
can be abstracted from the underlying network and
can be dynamically changed and adapted.

In addition, our framework provides a prac-
tical mechanism designed for the deployment of
application level protocols on TCP/IP, including
client/server programs, although it is inherently in-
dependent of any underlying protocol. This is be-
cause TCP/IP is available in most current computer
networks, including the Internet, and various appli-
cation level protocols on TCP/IP are widely used

2

and being developed unrelentingly.

3 The AgentSpace System

This section presents our mobile agent system,
named AgentSpace, and its mobile agents. The sys-
tem is implemented on top of the Java virtual ma-
chine, without any modifications to it. We chose the
language because of allowing agents to be compiled
and executed in platform-neutral byte code and the
likely emergence of higher performance compilers and
runtime systems. Also, the powerful expressiveness
of the language, for example object orientation, li-
braries for communication , multithreading, and dy-
namic linking/loading allows us to easily construct
programs for handling application-specific protocols
and their applications within mobile agents.

Agent Program

OS/Hardware

AgentSpace Runtime

Java VM

OS/Hardware

AgentSpace Runtime

Java VM

code
data

code
data

code
data

migration

network

Mobile Agent Mobile Agent

sender
computer

receiver
computer

Figure 1: Architecture of AgentSpace

3.1 Mobile Agent Platform

The runtime system is introduced as a platform for
mobile agents. It can create/destroy mobile agents,
and send/receive mobile agents to/from a runtime
system running on another computer. Also, it is
characterized in being designed for a distribution
mechanism of network protocols and applications.

Agent Migration

The runtime system permits the migration of not
only the code but also the values of the instance vari-
ables included in the agent. Hence, after migrating
the agent, the values are restored in the agent again,
and then its execution starts from a given method.
The current implementation of the system uses the
Java object serialization package in order to marshal
and unmarshal agents. The package does not support

capturing the stack frames of threads. However, this
limitation is not serious in the development of most
distributed applications based on mobile agents, as
discussed in [12].

Agent Cloning

The runtime system offers a mechanism to create a
copy of an existing agent including all instance vari-
ables. The cloned agent has the same state as the
original agent has, but its identity is different from
that of the original one. If the original agent has a
reference to resources, the runtime system protects
the resources appropriately.

Agent Caching

The runtime system can load the code of each agent
on demand and cache it in order to improve perfor-
mance when particular protocols are sometimes used.
The cache is managed in a least used order. When
the state of an agent arrives at a remote node, the
runtime system on the remote note checks a cache
of codes. If the required code is not found at the
cache, it sends a load request to the previous node or
certain code base nodes. Furthermore, the runtime
system ensures that mobile agents can be automati-
cally and dynamically transferred to the nodes which
are needed.

3.2 Mobile Agents

Every agent is an instance of a subclass of the base
class for mobile agents, called Agent. The class de-
fines fundamental callback methods invoked when
the life cycles of a mobile agent changes, such as
creation, suspension, marshaling, unmarshaling, and
destroy, like event delegation event model in Aglets
[6]. An agent can migrate itself to the destination
specified as dst by invoking the go(AgentURL dst)
method. An agent can create a copy of the agent
at the location specified as url by means of the
duplicate(AgentURL dst) method.

public abstract class Agent implements Serializable {

// methods to hook the change of

// its state in the life-time

void create(); // after creation

void destroy();// before termination

void arrive(); // after accepted a child

void leave(URL dst); // before dispatched to dst

void clone(); // before duplication

void parent(); // after duplication at the original

void child(); // after duplication at the copy

....

// APIs for Mobile Agents

void go(URL dst) throws

NoSuchLocationException ... { ...}

3

URL duplicate(URL dst) throws

NoSuchLocationException ... {...}

void setTimeout(int time) // the life-span

....

}

List 1: Agent class

4 Active Network Framework

Our framework allows each protocol and its appli-
cations to be implemented in mobile agents and de-
ployed to remote computers through the migration
of agents supporting the protocol.

code
data

Mobile Agent

code
data

Clone
Agent

code
data

duplication

code
data

Clone
Agent

code
data

code
data

migration

parameters for
communication

Step 1

Step 2

Step 3

code
data

Clone
Agent

code
data

communication through
its own protocol

Step 4

Original
Agent

Computer 1 Computer 2

Computer 1 Computer 2

Computer 1 Computer 2

Computer 1 Computer 2

AgentSpace RuntimeAgentSpace Runtime

AgentSpace RuntimeAgentSpace Runtime

AgentSpace RuntimeAgentSpace Runtime

AgentSpace RuntimeAgentSpace Runtime

Figure 2: Protocol Deployment

4.1 Active Nodes

Our active network is managed in a decentralized
manner and consists of an interconnected group of
active nodes that are built on the AgentSpace run-
time systems. The runtime system can pull and push
the code of an agent and its state separately to re-
mote nodes, and can automatically cache the codes

of visiting agents in order to improve performance
when particular protocols are often used.

4.2 Protocols

The goal of our framework is to simplify the develop-
ment and deployment of programs for handling pro-
tocols and application programs designed for them.
Also, it provides several mechanisms and libraries for
constructing network protocols within mobile agents
and migrating them to the nodes which must com-
municate through the protocols.

Next, we present how to deploy a protocol and its
applications as follows:

(1) The runtime system loads a mobile agent which
implements the protocol and its application.

(2) The user or other agents customize parameters
whose values included in the the mobile agent.

(3) The runtime system creates a copy of the cus-
tomized mobile agent and migrates the original
agent and the clone agent to the nodes where
the communication session will be established.

(4) When the agents include application programs
for the protocol, the programs are autonomously
operated and then communicate with each other
through the protocol.

Note that new protocols can be dynamically injected
into nodes that initially lack them. Also, the new
protocols do not have to agree with other nodes, and
thus a peculiar protocol can be used without any
agreement among other nodes.

Moreover, the original agent and the clone agent
can share the same values in their instance variables.
This is important and practical. This is because a
protocol often contain parameters which must be cus-
tomized as the common values among entities associ-
ated with establishing a communication session, such
as buffer size, expiration due to timeout, bandwidth.
On the other hand, our framework allows these pa-
rameters to be stored as values in the instance vari-
ables of mobile agents which implement the protocol
and its application. Therefore, the original agent and
the clone agent can share the same customized val-
ues for the protocol and its applications without any
communication between them. Consequently, we can
improve the startup performance of a communication
session.

This framework can also facilitate short-lived pro-
tocols because mobile agents are explicitly imposed
on their survival periods. Such agents are automati-
cally destroyed and are discarded from the caches of
the nodes after elapsing their survival periods.

4

4.3 Protocols for Agent Migration

Our framework is unique among other existing mo-
bile agent systems and active networks in that its
agent migration can be abstracted from the under-
lying networks. Instead, our framework introduces
special mobile agents, called transmitter agents, that
can migrate other mobile agents around networks
by means of through their favorite network proto-
cols. We have already implemented several transmit-
ter agents incorporated with TCP, UDP, and IrDA.
Transmitter agents are mobile agents and can be dy-
namically allocated on hosts. Therefore, the runtime
system can dynamically add and revise its agent mi-
gration mechanisms by migrating transmitter agents
implementing a new agent migration protocol to the
system. Also, these transmitter agents offer meth-
ods for creating agents at remote hosts, tracking the
trails of moving agents, and caching agents, in addi-
tion to transferring agents.

4.4 Active Networks on TCP/IP

This framework is inherently independent of any
underlying networks and protocols. On the other
hand, TCP/IP is one of the most popular protocols
in current computer networks, including the Inter-
net. A lot of application level protocols on TCP/IP
have been wanted and developed unrelentingly. The
framework offers practical mechanisms and libraries
for constructing application level protocols built on
TCP and UDP, in order to simplify the deployment
of the protocols and their applications. The libraries
consist of builtin classes. For example, TCPAgent is
such a built-in subclass. It allows us to easily deploy
a server program for application level protocols built
on the TCP socket and its client programs at remote
nodes and automatically communicate between the
original program and the clone program through the
protocols.

TCP and UDP must to be identified by a port
number as well as an IP address. However, a mobile
agent may not be able to process their communi-
cation through TCP/IP, when the ports which the
agent tries to acquire are already assigned to other
communications. We introduce the concept of vir-
tual port which is an additional port between socket
and TCP port. A virtual port acts as a TCP port
from the viewpoint of a socket. When an application
binds a socket to a TCP port, the runtime creates a
virtual port, and binds the socket to it accordingly.
The TCP association is established between two such
virtual ports. All code above the virtual port is the
same as used in the current socket code such as the
Socket class and the SocketServer class provided by

the Java language.

5 Examples

In order to demonstrate how we intend our frame-
work to be used, we present two protocols that in-
troduce chat and smart mail services into a network
that initially lacks them.1 We chose these examples
because they are typical services to support human
activities in the Internet and need to be innovated.

5.1 Chat System

There have been chat systems, which allows people
over networks to talk to one another in real-time,
for example talk in Unix, IRC, and ICQ. However,
there is no standardization for chat protocols that
can be agreed among all the interested parties. Con-
sequently, if a user wants to talk his/her friends
through a chat protocol, their computers cannot of-
ten operate the protocol.

Therefore, we develop a new chat system based on
mobile agents. The system consists of mobile agents
corresponding to a chat server and clients, including
programs for handling its chat protocol. It can dy-
namically migrate these chat server/client agents to
the computers, which initially lacks any chat protocol
and its applications but can execute the AgentSpace
runtime, according to the deployment process of pro-
tocols presented in the previous section. The pro-
cess is as follows: When the user loads a chat agent
through the runtime and then the loaded agent shows
a window to input the address of the chat partner.
The agent asks the runtime system to create its clone
at the same node. Next, the clone agent asks the run-
time system to migrate itself to the node specified as
the address. After the deployment of them, the origi-
nal agent and the clone agent can autonomously start
to communicate with each other through its own pro-
tocol, because they are active programs. Once com-
munication is established, the two users can type si-
multaneously, with their output displayed in separate
regions of the screen.

5.2 File Sharing System

One of typical method of sharing information among
remote computers is file sharing, for example Net-
work File System and World Wide Web, which allows
to access files on remote hosts. There have been vari-
ous file sharing protocols are suggested and are used.
In order to share files on a remote computer through

1Note that we do not intend to present new and better
solutions to these protocols.

5

a file sharing protocol which a client can deal with,
a server designed for the protocol must be running
in the computer. However, such a file server must be
installed on the computer in manual and off-line.

Therefore, we develop a new approach to automat-
ically install and operate a file sharing server at the
computers whose files are wanted to be accessed. The
approach introduces a file sharing agent which imple-
ments a file sharing protocol and its server within a
mobile agent. By migrating the agent to a remote
computer, we can share files on the computer. The
current implementation of the file sharing agent is
based on an extended protocol of HTTP server with
several operations to write files and to operate file
directory.

6 Conclusion

We developed a new framework for constructing
active networks. This framework is built on a
mobile agent system and thus can transfer not
only the code of a program for handling protocols
and their applications but also its state, including
various parameters which must be customized before
establishing each communication session. Therefore,
It can dynamically deploy protocols and their
applications to remote computers and automatically
operate them by the migration of mobile agents to
implement them. We believe that our framework can
provide a practical infrastructure to support new
networked and cybernetic applications for human
activities, such as communication among humans,
remote manipulation, and multimedia communi-
cation. An implementation of the framework and
the examples presented in this paper is available from
http://islab.is.ocha.ac.jp/agent/index.html.

Acknowledgements

We would like to thank to K. Tanahashi for her help-
ing the implementation of the chat system.

References
[1] General Magic, Inc. Introduction to the Odyssey,

http://www.genmagic.com/agents, 1997.

[2] R. S. Gray, Agent Tcl: A Transportable Agent System,
CIKM Workshop on Intelligent Information Agents, 1995.

[3] C. A. Gunter, S. M. Nettles, and J. M. Smith, The
SwitchWare Active Network Architecture, IEEE Net-
work, special issue on Active and Programmable Net-
works, vol. 12, no. 3, 1998.

[4] A. Karmouch, Mobile Software Agents for Telecommuni-
cations, IEEE Communication Magazine, vol. 36 no. 7,
1998.

[5] S. Krause, and T. Megadantz, Mobile Serivce Agents En-
abling Intelligence on Demand in Telecommunications,
Proceedings of Addison-Wesley, 1998.

[6] B. D. Lange and M. Oshima, Programming and Deploy-
ing Java Mobile Agents with Aglets, Addison-Wesley,
1998.

[7] D. S. Milojicic, W. LaForge, and D. Chauhan, Mobile Ob-
jects and Agents (MOA), USENIX Conference on Object
Oriented Technologies and Systems, April 1998.

[8] ObjectSpace Inc, ObjectSpace Voyager Technical
Overview, ObjectSpace, Inc. 1997.

[9] Object Management Group, The Common Object Re-
quest Broker: Architecture and Specification, Revision
2.0, OMG formal document 97-02-25, 1997.

[10] I. Satoh, AgentSpace, http://islab.is.ocha.ac.jp/
agent/index.html, 1997.

[11] I. Satoh, Hierarchically Structured Mobile Agents and
their Migration, to appear in ECOOP Workshop on Mo-
bile Object Systems (MOS’99), June, 1999. also available
in http://islab.is.ocha.ac.jp/download/satoh-mos99.pdf.

[12] M. Strasser and J. Baumann, and F. Hole, Mole: A Java
Based Mobile Agent System, Proceedings of ECOOP
Workshop on Mobile Objects, 1996.

[13] D. L. Tennenhouse et al., A Survey of Active Network
Research, IEEE Communication Magazine, vol. 35, no.
1, 1997.

[14] D. J. Wetherall, J. V. Guttag, and D. L.Tennenhouse,
ANTS: A Toolkit for Building and Dynamically Deploy-
ing Network Protocols, in Proceedings of International
Conference on Open Architectures and Network Pro-
gramming, April 1998.

[15] J. E. White, Telescript Technology: Mobile Agents, Gen-
eral Magic, 1995.

[16] Y. Yemini, and S. da Silva, Towards Programmable Net-
works in Proceedings of FIP/IEEE International Work-
shop on Distributed Systems, October, 1996.

6

