
Application-Specific Routing for Mobile Agents

Ichiro Satoh�

National Institute of Informatics /
Japan Science and Technology Corporation

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
Tel: +81-3-4212-2546 Fax: +81-3-3556-1916

Abstract

An approach for building application-specific protocols for
migrating mobile agents over a network is presented. The
approach has two key ideas. One is to introduce mobile
agents as first-class objects. The other is to build and
deploy network protocols for agent migration as mobile
agents, which allows network protocols for agent migra-
tion to be naturally implemented within mobile agents and
then dynamically deployed at network nodes by migrating
the agents that carry them. A prototype implementation
was built on a hierarchical mobile agent system, and sev-
eral practical protocols for agent migration were designed
and implemented. These protocols can customize network
processing for agent migration. This paper also demon-
strates the utility of this framework by describing mobile
agent-based routing protocols for migrating agents.

1 Introduction

Over the past several years, there has been a lot of work in
the area of mobile agents. Mobile agents are autonomous
programs that can travel from computer to computer under
their own control. They can provide a convenient, efficient,
and robust framework for implementing distributed applica-
tions including mobile applications. Several mobile agent
systems have been released over the last few years (for ex-
ample [7, 8, 12, 14]). Mobile agents have been used in the
development of various networked applications. These ap-
plications often need application-specific network process-
ing for agent migration. For example, a typical application
of mobile agent technology is a task for monitoring the sys-
tem, in which an agent travels to multiple nodes in a net-
work to observe the components locally. The itinerary of a
monitoring agent seriously affects the achievement and ef-
ficiency of their tasks. Also a mobile agent may be able to

�E-mail: ichiro@is.ocha.ac.jp

roam over multiple hosts or may have to return to its home
server after each hop, instead of proceeding to another des-
tination. However, such an itinerary is statically embed-
ded inside the agent and is often designed dependently on
the topology of a particular network. Therefore, it is nearly
impossible for a mobile agent to dynamically configure its
itinerary in response to changes in its network environments
and its goals and be reused in another network.

This paper addresses the dynamic customization of net-
work processing for agent migration, rather than for data
transmission. I describe a new framework for dynamically
deploying and changing network protocols for agent migra-
tion. My framework is characterized by two key ideas. The
first is to apply active network technology to a network in-
frastructure for mobile agents. The second is to construct
network protocols for agent migration within the agents
themselves. That is, my mobile agent-based protocols can
transmit mobile agents as first-class objects to their destina-
tions. Also, the dynamic deployment of the mobile agent-
based protocols can be naturally and easily performed by
the migration of the agents that support them. Therefore,
my framework allows network processing for mobile agents
to be adapted to the requirements of visiting agents and to
changes in the environment. The framework is built on a
hierarchical mobile agent system called MobileSpaces [9].
This system can hierarchically organize more than one mo-
bile agent and introduce mobile agents as service providers
for other mobile agents. The notion of hierarchical mo-
bile agents in MobileSpaces also allows active networks to
be constructed based on a layered architecture, in which
current active networks are often designed for application
to particular layers. I also design several novel protocols.
Although these are designed for agent migration in Mo-
bileSpaces, they can be easily applied to other active net-
work frameworks.

This paper is organized as follows. Section 2 surveys
related work, and Section 3 explains my approach to cus-
tomizable network processing for agent migration. Section
4 briefly reviews MobileSpaces. Section 5 presents sev-



eral mobile agent-based protocols running on the system,
and Section 6 shows the usability of my framework based
on three real-world examples. Section 7 is a summary and
mentions future issues.

2 Basic Framework

The framework presented in this paper provides a self-
configuring infrastructure for mobile agents. It can deploy
and configure network protocols for agent migration ac-
cording to the requirements of visiting agents and changes
in the network environment. This section outlines the over-
all architecture of the framework and describes the basic
idea of network protocols based on the framework.

2.1 Hierarchical Mobile Agents

Mobile agents are autonomous programs, which can travel
between different computers. My mobile agents are compu-
tational entities like other mobile agents. When each agent
migrates, not only the code of the agent but also its state can
be transferred to the destination. Furthermore, my frame-
work is built on MobileSpaces [9], which is characterized
by two novel concepts: agent hierarchy and inter-agent
migration. The former means that one mobile agent can
be contained within another mobile agent. That is, mobile
agents are organized in a tree structure. The latter means
that each mobile agent can migrate to other mobile agents
as a whole, with all its inner agents. Each agent can freely
move into any agent in the same agent hierarchy except into
itself or its inner agents, as long as the destination agent ac-
cepts it. A container agent is responsible for automatically
offering its own services and resources to its inner agents
and can subordinate its inner agents. Therefore, an agent
can directly instruct its inner agents to move to another lo-
cation. My protocols for agent migration transmit other mo-
bile agents as first-class objects [4], in the sense that mo-
bile agents can be passed to and returned from other mobile
agents as values. A container agent is still mobile and also
can migrate its inner agents to their destinations. There-
fore, mobile agents are introduced as the only constituent
of my network architecture and my network protocols for
agent migration can be implemented within mobile agents.
Such protocols can be dynamically and easily changed by
migrating agents that implement the protocols to nodes.

2.2 Application-Specific Routing for Agent Mi-
gration

The achievement and efficiency of a moving agent depends
on the routing of its migration. My framework allows rout-
ing protocols for agent migration to be performed by mobile
agents. The protocols are classified into two approaches, in

migration

Agent C
Agent D

Agent B

Agent E

Agent A

step 1

step 2

Agent C

Agent A

Agent D

Agent B

Agent E

Figure 1. Agent hierarchy and inter-agent mi-
gration.

contrast with data transmission. The first approach provides
a function similar to that of routers. I introduce the notion
of forwarder agents, which are responsible for forwarding
their inner agents. These agents stay at nodes and redirect
other agents to new destinations through suitable data com-
munication among multiple nodes. They hold tables de-
scribing part of the structure of the network. The second
approach is similar to the notion of an active packet (also
called a programmable capsule) in active network technol-
ogy. Existing mobile agents can move from one node to
another under their own control in the same way that active
packets can define their own routing. I propose a navigat-
ing agent, which migrates itself and its inner agents to their
destinations. Such a navigating agent can be designed to
suit the topology of a particular network. Since the two
approaches can hide the description of an agent’s itinerary
from its behavior, mobile agents become independent of
the network structure and the modularity and reusability of
application-specific mobile agents are promoted.

3 MobileSpaces

Here I briefly review MobileSpaces, which provides an in-
frastructure for building and executing mobile agents for
network processing in addition to mobile agent based-
applications. It supports mobile agents incorporating the
notions of agent hierarchy and inter-agent migration pre-
sented in the previous section.

3.1 Runtime System

Each runtime system running on a computer can be re-
garded as an active node in active networking technology
and corresponds to the root node of an agent hierarchy. It
offers only three facilities.

Agent Hierarchy Management: The agent hierarchy is
maintained as a tree structure in which each node contains a
mobile agent and its attributes. Agent migration in an agent



hierarchy is performed simply as a transformation of the
tree structure of the hierarchy. A container agent is intro-
duced as a service provider for its inner agents. Each agent
offers a collection of service methods that can be accessed
by its inner agents. Each agent is active but subordinate to
its container agent. That is, a container agent can instruct its
inner agents to move to other agents or computers, marshal
them, and terminate them.

Agent Execution Management: Each agent can have
more than one active thread under the control of the system.
The core system maintains the life-cycle state of agents.
When the life-cycle state of an agent is changed, for ex-
ample creation, termination, or migration, the core system
issues events to invoke certain methods in the agent and its
containing agents. The core system can explicitly limit the
length of an agent’s visit and the number of visiting agents.
When the time limit of a staying agent is reached, it can
automatically terminate the agent. This limitation offers a
mechanism for caching network protocols.

Agent Serialization and Security Management: The
runtime system provides a facility for marshaling agents
into bit streams and unmarshaling them later. The current
implementation of the system uses the Java object serializa-
tion package for marshaling the states of agents, so agents
are transmitted based on the notion of weak mobility [5].
The runtime system itself is designed to be independent of
the environment, including the network infrastructure, so
network processing for agent migration between neighbor-
ing computers, which corresponds to data-link layered pro-
tocols, can be performed by special mobile agents. More-
over, the current implementation has a built-in mechanism
for transmitting agents over the network by using an exten-
sion of the HTTP running on TCP/IP. The runtime system
verifies whether a marshaled agent is valid or not to protect
the system against invalid or malicious agents, by means of
Java’s security mechanism.

3.2 Mobile Agent Program

Our mobile agents are programmable entities like other mo-
bile agents. Each agent consists of three parts: a body pro-
gram, context objects, and inner agents, as shown in Fig.
2. The body program is an instance of a subclass of ab-
stract class Agent.1 This class defines fundamental call-
back methods invoked when the life-cycle of a mobile agent
changes due to creation, suspension, marshaling, unmar-
shaling, destruction etc., like the delegation event model
in Aglets [7]. It also provides a command for agent mi-
gration in an agent hierarchy, written as go(AgentURL
destination). When an agent performs the command,

1Examples of mobile agent programs are given in the Appendix.

it migrates itself to the destination agent specified by the
argument of the command. An inner agent cannot access
any methods defined in its container agent. Instead, each
container is equipped with a context object that offers ser-
vice methods in a subclass of the Context class, like the
AppletContext class of Java’s Applet. These methods
can be indirectly accessed by its inner agents to get infor-
mation about and to interact with the environment, such as
with their container, their sibling agents, and the underlying
computer system. Each inner agent can invoke the public
methods defined in the context of its container via several
built-in application programming interfaces.

Child Agent A

an event from the parent agent

method 1
method 2
method 3

state

service method 1
service method 2

callback

getService()

Child Agent B

Agent

agent
context

agent
program

Figure 2. Hierarchical mobile agent.

Each agent is associated with a resource limit that func-
tions as a generalized Time-To-Live field. This limit is
carried with the agent and is decremented by nodes as re-
sources are consumed when the agent arrives at a new place.
Nodes can discard agents when their limit reaches zero. To
restrict the total resource bounds, when one agent creates
another inside the network, the resources allocated to the
created agent must be strictly less than those of the creating
agent.

4 Application-Specific Protocols for Agent
Migration

Since our framework can treat mobile agents as first-class
objects, various types of network processing for mobile
agents can be implemented as special mobile agents, called
service agents, running on the MobileSpaces runtime sys-
tem and can also handle and transfer other agents as data
packets.

� Each mobile agent is designed to provide its service to
its inner mobile agents. When a mobile agent is prepar-
ing for a trip over a network, the agent migrates itself
into a service agent that is suitable for providing appro-
priate network processing in the same agent hierarchy
and then the service agent automatically transfers the
visiting agent or migrates itself to its destination, or



delegates other service agents in the same agent hier-
archy.

� A runtime system permits one service to be provided
by one or more service agents. That is, different net-
work protocols for agent migration can be supported
by different service agents. Also, an agent can dy-
namically select a suitable service agent in the current
execution environment and move itself to the selected
agent to access its required service.

� Since network protocols are performed by mobile
agents, the protocols can be dynamically and au-
tonomously deployed at nodes by migrating the cor-
responding agents to the nodes.

Hereafter, we present two basic protocols for agent migra-
tion. Since these protocols are given as abstract classes in
the Java language, we can easily define further application-
specific protocols by extending the basic protocols.

4.1 Protocol Distribution

Given a dynamic network infrastructure, a mechanism
is needed for propagating mobile agents that support proto-
cols to where they are needed. The current implementation
of our framework provides the following three mechanisms:
(1) mobile agent-based protocols autonomously migrate to
nodes at which the protocols may be needed and remain at
the nodes in a decentralized manner; (2) mobile agent-based
protocols are passively deployed at nodes that may require
them by using forwarder agents prior to using the protocols
as distributors of protocols; and (3) moving agents can carry
mobile agent-based protocols inside themselves and deploy
the protocols at nodes that the agents traverse. This mech-
anism can improve performance in the expected common
case of agent migration, i.e., a sequence of agents that fol-
low the same path and require the same processing. All the
mechanisms are managed by mobile agents, instead of by
the runtime system. As a result, the deployment of trans-
mitter agents needs to be performed by other transmitter
agents.

4.2 Routing Mechanisms for Agent Migration

Application-specific mobile agents often need to travel to
multiple nodes to perform their tasks. However, it is diffi-
cult to determine the itinerary at the time the agent is de-
signed or instantiated. Therefore, we introduce two ap-
proaches for determining and managing the itinerary of
agents. These approaches are built on transmitter agents
running on nodes and correspond to kinds of application-
specific routing protocols.

4.2.1 Navigator Agent Approach

The first approach offers a service provider agent, called a
navigator, for conveying inner agents over a network, as
shown in Figure 3. Each navigator agent is a container
of other agents and travels with them in accordance with a
list of nodes statically or algorithmically determined, or dy-
namically based on the agent’s previous computations and
the current environment. That is, a navigator agent can mi-
grate itself to the next place as a whole with all its inner
agents. Each navigator has a routing mechanism for man-
aging a routing table consisting of nodes the navigator agent
needs to visit. It maintains a list of nodes to be visited and
provides methods for dynamically adding and removing el-
ements from this list. Whenever a navigator agent moves
to a new place, it accesses a local SNMP agent in order
to update its own routing table and then evaluates the table
to determine what the next hop should be. The interaction
between a navigator agent and its inner agents is based on
event-based communication. Upon arrival at a place, the
navigator propagates certain events to its inner agents, in-
structing them to do something during a given time period.
After the events have been processed by the inner agents,
the navigator continues with its itinerary.

Navigator Agent

Navigator Agent

Monitor Agent

Monitor Agent

migration

migration
migration

migration

migration

navigation
route navigation route

navigation route

navigation
route

node 1

node 3

node 2

Step 1

Step 2

Figure 3. Navigator agent for traveling among
nodes with its inner agent.

4.2.2 Forwarder Agent Approach

The second approach is based on a service provider, called a
forwarder agent, for redirecting moving agents to new des-
tinations. Each forwarder agent is a mobile agent and is
designed to stay at nodes and automatically transfer its in-
ner agents to specified nodes through appropriate transmit-
ter agents as shown in Figure 4. Consequently, a forwarder
agent can be regarded as a programmable router for mobile
agents.

The use of forwarder agents allows various routing
schemes used in wired and wireless networks to be eas-



ily performed and evaluated. Such forwarder agents are
dynamically deployed at nodes and coordinate with each
other to redirect moving agents to their destinations. That
is, when an agent requests a forwarder agent to migrate to its
destination, the forwarder agent makes an effort to transfer
the moving agent to the destination. However, if the desti-
nation is not reachable, it tries to transfer the moving agent
to another forwarder agent running on an intermediate node
as near to the destination as possible. Each forwarder agent
will repeat the entire process in the same way until the agent
arrives at the destination.

Step 1

Step 2

node 2
Mobile Agent

forwardingforwarding

forwarding

node 1

node 3

node 2

node 1

node 3

Mobile Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Forwarder Agent

Figure 4. Routing agents for forwarding agent
the next nodes.

4.3 Current Status

MobileSpaces has been implemented in the Java language
(JDK1.1 or later version). The core system is constructed
independently of the underlying system and can run on any
computer with a 1.1-compatible Java runtime system. I pro-
vided several useful libraries for constructing network pro-
tocols within mobile agents. I have also developed vari-
ous mobile agent-based protocols, for example transmitter
agents for TCP, UDP, and SMTP, forwarder agents, and nav-
igator agents for traveling among multiple active nodes, as
presented in this paper. These protocols were written in Java
and tested using MobileSpaces.

My current implementation was not built for perfor-
mance. However, in order to compared two routing proto-
cols, the forwarder agent approach and the navigator agent
approach I measured the per-hop latency in microseconds
and the throughput of a single node in agents per second
in a network, which consisted of PCs (Intel Pentium III-
500 MHz with Windows2000 and JDK 1.3) connected by
100Mbps Ethernet via a switching hub. The per-hop latency
of migrating agents using simple forwarder agents running
on the computers was 38 ms per hop and the throughput was
9.2 agents per second. The forwarder agent determines the

computer that their inner agents will visit at the next hop;
its routing tables are maintained by periodically polling the
routing table of the SNMP agent. In contrast, the per-hop
latency of migrating agents using a simple navigator agent
running on the computers was 42 msec per hop and the
throughput was 8.3 agents per second. The navigator agent
migrated itself and its inner agents to the nodes sequentially.
In both cases, I migrated minimal-size agents, which consist
of only the common callback methods invoked at changes
in their life-cycle states by the runtime system, by using
a built-in mechanism based on the PUT method of HTTP.
The cost of an agent migration between two neighboring
computers was measured to be 31 ms and the cost of an
agent migration in an agent hierarchy was measured to be
5 ms, including the cost for checking whether the visiting
agent was permitted to enter the destination agent. This re-
sults from the cost of agent hierarchy management in Mo-
bileSpaces and thus is basically dependent on the speed of
the CPU.

I compared the two routing approaches. In this prelim-
inary experiment, the former was better than the latter, be-
cause the navigator agent needs to migrate not only the
target agent but also itself. Also, when both approaches
migrated more than one mobile agent in a network, the
congestion of each computer was occasionally unbalanced,
because my agent-based protocols are performed asyn-
chronously. All the above experiences were measured in
a trial without any optimization of performance and thus
I could not strictly evaluate them yet. However, the over-
head of my mobile agent-based protocols in the latency of
each agent migration is reasonable for a high-level proto-
type of application-specific protocols for agent migration,
instead of data communication. The throughput of each
agent migration is limited by the security mechanism of the
MobileSpaces system rather than by the protocols. We be-
lieve that the current throughputs are fast enough for the
deployment of mobile agent-based applications.

5 Examples

This section describes two practical examples of our frame-
work in order to demonstrate how it can be exploited.

5.1 Agent Migration for Network Management

As mentioned, a typical application of mobile agents is as a
monitoring system for network management. A discussion
of the suitability of mobile agents in network management
can be found in [3, 6]. Using navigator agents presented in
the previous section, we constructed a system for monitor-
ing a set of equipment located at nodes in a network and
reacting to certain behavioral patterns. A monitoring agent
collects the network traffic load by accessing SNMP data



from the management information base. However, it has
no mechanism for its own itinerary and thus is not depen-
dent on a particular network. On the other hand, a navigator
agent is responsible for periodically traveling among nodes
in a network. It can be designed for navigating in a par-
ticular network. And it can guide monitoring agents inside
itself through its itinerary over the network.

When a monitoring agent is preparing to monitor a net-
work, it enters a navigator agent designed for that network.
The navigator then generates an efficient travel plan for vis-
iting certain nodes in the network. Next, it migrates itself
and the monitoring agent to those nodes sequentially. When
it arrives at each destination, it dispatches certain events
to its inner agents at specific timings. A navigator agent
can handle exceptions such as inactive hosts on behalf of
monitoring agents while trying to migrate itself and its in-
ner agent to new destinations. When the agent has to travel
over a network more than one time, it can reflect the result
of its previous itinerary, such as reachable nodes and arrival
timings, in the next itinerary.

5.2 Disconnection-Tolerant Agent Migration

Mobile agent technology has the potential to mask discon-
nections in mobile computing. This is because once a mo-
bile agent has completely transferred to a new location, it
can continue its execution there, even if the new location is
disconnected from the source location. However, the tech-
nology often cannot solve network failures during the pro-
cess of agent migration. That is, agents can be migrated
from the source to the destination, when all the links from
the source to the destination are established at the same
time. However, mobile computers do not have a permanent
connection to a network and are often disconnected for long
periods of time. When a mobile agent on a mobile com-
puter wants to move to another mobile computer through
a local-area network, both computers must be connected to
the network at the same time.

To overcome this problem, we introduce relay agents,
which are an extension of the forwarder agent with the no-
tion of store-and-forward migration, as shown in Figure 5.
This notion is similar to the process of transmitting elec-
tronic mail using SMTP. When an agent requests a relay
agent on the source node to migrate to its destination, the re-
lay agent makes an effort to transmit the moving agent to the
destination through transmitter agents. If the destination is
not reachable, the relay agent automatically stores the mov-
ing agent in its queue and then periodically tries to transmit
the waiting agent to either the destination or a reachable in-
termediate node as close to the destination as possible. The
relay agent to which the moving agent is transferred will
repeat the process in the same way until the agent arrives
at the destination. When the next node on a route to the
destination is disconnected, the agent is stored in the cur-

rent place until the node is reconnected. When a mobile
computer is attached to a network, its relay agent multicasts
a message to relay agents on the other connected comput-
ers. After receiving a reply message from relay agents at the
destinations of agents stored in its queue, it tries to transfer
those agents to their destinations.

6 Related Work

Many mobile agent systems have been released over the last
few years, for example, Aglets [7], Mole [12], Telescript
[14], and Voyager [8]. To my knowledge, none can extend
and adapt their functions to the requirements of their visit-
ing agents and applications while they are running, whereas
this framework can. Although mobile agents need to be
used in heterogeneous environments, for example, mobile
computers, information appliances, and wireless networks,
existing systems explicitly and implicitly assume a particu-
lar network infrastructure.

An application-specific mobile agent must make a
network-dependent itinerary in order to travel to multiple
hosts and perform its task at those hosts. Most existing
mobile agent systems assume that each mobile agent em-
beds such an itinerary inside itself. However, it is diffi-
cult to determine the itinerary at the time the agent is de-
signed or instantiated because the network topology cannot
always be known. Therefore, such a mobile agent cannot
be used in another network. To overcome this problem,
Aglets introduces the notion of traveling patterns [1], like
design patterns studied in software engineering. This notion
allows us to design application-specific itineraries indepen-
dent of the logical behaviors of mobile agents. However, the
itinerary patterns must to be statically and manually embed-
ded in their mobile agents. Consequently, the agents cannot
dynamically change their itineraries and thus cannot travel
beyond familiar networks. MobileSpaces can dynamically
adapt itself to changes to dynamic environments. How-
ever, my previous papers lacked any approach for building
application-specific protocols for agent migration, although
it presented the preliminary notion of mobile agent-based
channels for agent migration between neighboring comput-
ers, called transmitter agents, which corresponds to a data-
link layered protocol.

My framework is similar to active network technologies
[13] and also makes several contributions to the technolo-
gies. Mobile agent technology has been used for proto-
type implementations of active networks. For example there
have been many attempts to apply mobile agent technol-
ogy to the development of active networks [2, 6], since mo-
bile agents can be regarded as a special case of mobile code
technology, which is the basis of most existing active net-
work technologies. In contrast, the goal of this paper is to
apply active network technology to mobile agent technol-



forwardingstep 1

step 2

DisconnectionComputer A Computer B

Relay Agent

Relay Agent

Relay Agent

Mobile Agent
Stored Mobile Agent

Computer C
(Mobile Compouter)

Mobile Agent

Computer A Computer B

Relay Agent Relay Agent

Relay Agent
Stored Mobile Agent forwarding

Computer C
(Mobile Computer)

Reconnection

network

network

Figure 5. Relay agent for disconnection-tolerant network.

ogy. In fact, my framework can introduce mobile agents
as first-class objects so it allows existing network protocols
based on the two approaches to be easily implemented by
mobile agents.

7 Conclusion

I have presented a framework for building application-
specific routing for mobile agents. In this framework, net-
work protocols for agent migration can be naturally imple-
mented within mobile agents and thus can be dynamically
added to and removed from the system by migrating the
corresponding agents, according to the requirements of vis-
iting agents and changes in the environment. The frame-
work is also significant and practical as a powerful testbed
for building and evaluating various algorithms for mobile
entities over a network. My prototype implementation built
on a Java-based mobile agent system, called MobileSpaces,
allowed us to experiment with the construction and deploy-
ment of these protocols.

Finally, I would like to mention further issues. My
early performance measurements indicate that the perfor-
mance of my mobile agent-based protocols is reasonable
for a high-level prototype and fast enough for experiment-
ing with application-specific protocols for agent migration.
However, the performance of the current implementation is
not yet satisfactory and thus further measurements and op-
timizations are needed. I have constructed various mobile
agent-based applications, such as workflow management,
CSCW, distributed information retrieval, active networks,
and compound documents [10]. I are interested in develop-
ing mobile agent-based system for further particular appli-
cations.

References

[1] Y. Aridor, and D.B. Lange, “Agent Design Patterns: Elements of
Agent Application Design”, in Proc. Second International Confer-

ence on Autonomous Agents (Agents ’98), ACM Press, 1998, pp.
108-115.

[2] C. Baumer, and T. Magedanz, “The Grasshopper Mobile Agent Plat-
form Enabling Short-Term Active Broadband Intelligent Network
Implementation”, in Proc. of Intenral Working Conference on Active
Networks, LNCS, Vol.1653, Springer, 1999. pp.109–116.

[3] A. Bieszczad, B. Pagurek, and T. White, “Mobile Agents for Net-
work Management”, IEEE Communications Surveys, Vol. 1, No. 1,
Fourth Quarter 1998.

[4] D. P. Friedman, M. Wand, and C. T. Haynes, “Essentials of Program-
ming Languages”, MIT Press, 1992.

[5] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobil-
ity”, IEEE Transactions on Software Engineering, 24(5), 1998. pp.
352-361.

[6] A. Karmouch, “Mobile Software Agents for Telecommunications”,
IEEE Communication Magazine, vol. 36 no. 7, 1998.

[7] B. D. Lange and M. Oshima, “Programming and Deploying Java
Mobile Agents with Aglets”, Addison-Wesley, 1998.

[8] ObjectSpace Inc, “ObjectSpace Voyager Technical Overview”, Ob-
jectSpace, Inc. 1997.

[9] I. Satoh, “MobileSpaces: A Framework for Building Adaptive Dis-
tributed Applications Using a Hierarchical Mobile Agent System”,
in Proc. International Conference on Distributed Computing Systems
(ICDCS’2000), IEEE Computer Society, April, 2000, pp.161-168.

[10] I. Satoh, “MobiDoc: A Framework for Building Mobile Compound
Documents from Hierarchical Mobile Agents”, in Proc. Symposium
on Agent Systems and Applications / Symposium on Mobile Agents
(ASA/MA’2000), Lecture Notes in Computer Science, Vol.1882,
Springer, 2000, pp.113-125.

[11] I. Satoh, “Adaptive Protocols for Agent Migration”, in Proc.
IEEE International Conference on Distributed Computing Systems
(ICDCS’2001), IEEE Computer Society, 2001, pp.711-714.

[12] M. Strasser and J. Baumann, and F. Hole, “Mole: A Java Based Mo-
bile Agent System”, in Proc. ECOOP Workshop on Mobile Objects,
1996.

[13] D. L. Tennenhouse et al., “A Survey of Active Network Research”,
IEEE Communication Magazine, vol. 35, no. 1, 1997.

[14] J. E. White, “Telescript Technology: Mobile Agents”, General Magic,
1995.



Appendix: Agent Programs

Suppose an agent migrates between two nodes by using
transmitter agents as described in Section 6. The following
code fragment is the TCPTransmitter class that defines
simple transmitter agents on these nodes. TCPTransmit-
ter agents can exchange agents with each other via their
own communication protocol. Since these TCPTrans-
mitter agents are mobile agents, we can create and al-
locate them on nodes dynamically.

1: public class TCPTransmitter extends
2: TransmitterAgent implements AgentEventListener {
3: public TCPTransmitter() {
4: // registering itself as a listener
5: addAgentListener(this);
6: // offering a context
7: addChildrenContext(new BaseContext());
8: // registering itself as one of transmitters
9: registryAs("transmitter");

10: }
11: // invoked when an agent arriving
12: public void add(AgentEvent evt) {
13: Message msg = new Message("serialize");
14: msg.setArg(evt.getSourceURL());
15: // serializing the arriving agent
16: byte[] data = (byte[])getService(msg);
17: // dst specifies the original destination
18: AgentURL dst = url.getTarget();
19: // transmitting the serialized agent to dst
20: send_agent(data, dst);
21: }
22: void send_agent(byte[] data, AgentURL dst) {
23: // sending the serialized agent (data)
24: // to the destination (dst)
25: ...
26: }
27: void receive_agent(byte[] data, AgentURL dst){
28: // invoked at receiving data
29: // for a remote Transfer
30: Message msg = new Message("deserialize");
31: // data is a serialized agent
32: msg.setArg(data);
33: // dst specifies the destination agent
34: msg.setArg(dst);
35: // deserializing data at dst
36: AgentURL url = (byte[])getService(msg);
37: ...
38: }
39: ...
40: }

Our system has an event mechanism based on the
delegation-based event model introduced in the Abstract
Window Toolkit of JDK 1.1 or later, so each agent must
be informed of lifecycle state changes so that they can re-
lease various resources, such as files, windows, and sock-
ets, which are captured by the agent. To hook these events,
each agent can have one or more listener objects. A lis-
tener object implements a specific listener interface ex-
tended from the generic AgentEventListener inter-
face, which defines callback methods that should be invoked
by the core system before or after the lifecycle state of the
agent changes. For example, the create() method is in-
voked after creation, the destroy() method is invoked
before termination, the add() method is invoked after ac-
cepting an inner agent, the remove() method is invoked

before removing an inner agent, the arrive() method is
invoked after arriving at the destination, and the remove()
method is invoked before moving to the destination. The
following code fragment defines the SimpleNavigator
class, which is a simple implementation of the navigator
agent presented in Section 5.

1: public class SimpleNavigator extends
2: NavigatorAgent implements AgentEventListener {
3: Vector route;
4: int i = 0;
5: public SimpleNavigator() {
6: // offering a context
7: addChildrenContext(new BaseContext());
8: // registering itself as a listener
9: addDefaultListener(this);

10: // making a list structure
11: route = new Vector();
12: // the 1st destination
13: route.addElement("first.place.com");
14: // the 2nd destination
15: route.addElement("second.place.com");
16: // the 3rd destination
17: route.addElement("third.place.com");
18: }
19: // invoked after creation
20: public void create(AgentEvent evt) {...}
21: // invoked after arriving
22: public void arrive(AgentEvent evt) {
23: // making a message named "do"
24: Message = new Message("do");
25: // its argument is the current address
26: msg.setArg(evt.getCurrentURL());
27: // invoking the method of its inner agents
28: dispatch(msg);
29: System.out.println("moving to the next place");
30: // trying to move to the next place
31: moveToNextHop();
32: }
33: // invoked before migration
34: public void leave(AgentURL url) {...}
35: // invoked after accepting an agent
36: public void add(AgentEvent evt) {
37: moveToNextHop();
38: }
39: // invoked before removing an agent
40: public void remove(AgentEvent evt) {...}
41: private void moveToNextHop() {
42: // i-th element of the route list
43: String host = route.elementAt(i++);
44: try {
45: // requesting a tranmitter to migrate to "host"
46: go(new AgentURL("transmitter://"+host));
47: } catch (MalformedURLException e) {...}
48: }
49: ...
50: }


