
A Location Model for Ambient Intelligence

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

E-mail: ichiro@nii.ac.jp

Abstract
We present a world model for location-aware and user-aware
services in ubiquitous computing environments. It can be dy-
namically organized like a tree based on geographical contain-
ment, such as in that a user-room-floor-building hierarchy and
each node in the tree can be constructed as an executable soft-
ware component. The model is unique to existing approaches
because it enables location-aware services to be managed with-
out databases, can be managed by multiple computers, and pro-
vides a unified view of the locations of not only physical enti-
ties and spaces, including users and objects, but also computing
devices and services. A prototype implementation of this ap-
proach was constructed on a Java-based mobile agent system.
This paper presents the rationale, design, implementation, and
applications of the prototype system.

1. Introduction
A variety of context-aware services, in particular location-based
services, have been investigated, but most existing services have
been constructed in an ad-hoc manner in that they have been de-
signed for particular sensing systems. Furthermore, they have
inherently focused on particular application-specific services,
e.g., user navigation for visualizing locations on maps and data
providing information relevant to the user’s current location.
Therefore, it is difficult for existing approaches to offer services
that they have not initially supported.

A solution to this problem is to provide a general location
model, which is independent of application-specific services
and particular sensors. In fact, many location models for ubiq-
uitous computing environments have been explored. However,
most existing models assume that they will be maintained in
centralized database systems, whereas the environments are of-
ten managed in an ad-hoc manner without any database servers.
Although they have only been aimed at maintaining the loca-
tions of people and objects in the physical world, the locations
of computing devices and software that define services are often
required in ubiquitous computing. To solve these problems, this
paper proposes a new general location model. The model pro-
vides a foundation for ambient intelligence and smart objects.

In the remainder of this paper, we outline related work (Sec-
tion 2) and present our location model (Section 3). We present
the design of our framework (Section 4), and an implementa-
tion of it (Section 5). We then describe our experience with the
model and (Section 5) and provide a summary (Section 6).

2. Background
Many researchers have explored location models. Existing
models can be classified into two types: physical-location and
symbolic-location. The former represents the position of peo-

ple and objects as geometric information, e.g., NEXUS [5, 1],
GUIDE [3], and Cooltown [6]. A few applications like moving-
map navigation can easily be constructed on a physical-location
model with GPS systems. However, most emerging applica-
tions require a more symbolic notion: place. Generically, place
is the human-readable labeling of positions. A more rigorous
definition is an evolving set of both communal and personal la-
bels for potentially overlapping geometric volumes, e.g., names
of rooms, and buildings. An object contained in a volume is
reported to be in that place. For example, ParcTab [13], Sen-
tient Computing [4], and RAUM [2] offer symbolic models as
a set of names or references to places and maintain their mod-
els in centralized database servers. However, such centralized
management systems cannot be used in ubiquitous computing
environments. Therefore, our model should be managed in a de-
centralized way and be dynamically organized in an ad-hoc and
peer-to-peer way. Virtual Counterpart [7] supports RFID-based
tracking systems and provides objects attached to RFID-tags
with Jini-based services. Since it enables objects attached to
RFID-tags to have their counterparts, it is similar to our model.
However, it only supports physical entities except for comput-
ing devices and places. Our model should not distinguish be-
tween physical entities, places, and software-based services so
that it can provide a unified view of ubiquitous computing envi-
ronments, where not only physical entities are mobile but also
the computing devices and spaces themselves.

The framework presented in this paper was inspired by our
previous work, called SpatialAgents [10], which is an infras-
tructure that enables services to be dynamically deployed at
computing devices according to the positions of people, objects,
and places that are attached to RFID tags. The previous frame-
work lacked any general-purpose location model and specified
the positions for physical entities according to just the coverage
areas of the RFID readers so that it could not represent any con-
tainment relationship of physical spaces, e.g., rooms and build-
ings. Moreover, we presented another location model, called
M-Space [12], which was aimed at integrating software-based
services running on introducing computing devices and service-
provider computing devices, whereas the model presented in the
paper aims at modeling the containment relationship between
physical and logical entities, including computing devices and
software for defining services.

3. Location Model

The model presented in this paper manages the locations of
physical entities and spaces through symbolic names.

3.1. Containment Relationship Model

Our model consists of elements, called components, which are
just computing devices or software, or which are implemented
as virtual counterpart objects of physical entities or places. The
model represents facts about entities or places in terms of the
semantic or spatial containment relationships between compo-
nents associated with these entities or places.

• Virtual counterpart: Each component is a virtual coun-
terpart of a physical entity or place, including the cov-
erage area of the sensor, computing device, or service-
provider software.

• Component structure: Each component can be con-
tained within at most one component according to con-
tainment relationships in the physical world and cy-
berspace. It can move between components as a whole
with all its inner components.

When a component contains other components, the former com-
ponent is called a parent and the latter children. When physical
entities, spaces, and computing devices move from location to
location in the physical world, the model detects their move-
ments through location-sensing systems and changes the con-
tainment relationships of components corresponding to moving
entities, their source, and destination. Each component is a vir-
tual counterpart of its target in the world model and maintains
the target’s attributes. Figure 1 shows the correlation between
spaces and entities in the physical world and their counterpart
components. The model also offers at least two basic events, en-
tering and leaving, which enable application-specific services
to react to actions in the physical world. Readers may think
that this hierarchical model is similar to the notion of hierarchi-
cal mobile agents presented in our previous paper [8]. How-
ever, that enabled a large-scale mobile applications to be com-
posed from multiple mobile agents, whereas the present model
is aimed at modeling the physical world.

3.2. Component

The model is unique to existing location models because it not
only maintains the location of physical entities, such as people
and objects, but also the locations of computing devices and
services in a unified manner. As we can see from Figure 2,
components can be classified into three types.

• Virtual counterpart Component (VCC) is a digital
representation of a physical entity, such as a person
or object, except for the computing device, or physical
place, such as a building or room,

• Proxy Component (PC) is a proxy component that
bridges the model and computing device, and maintains
a subtree of the model or executes services located in a
VCC.

• Service Component (SC) is software that defines
application-specific services dependent on physical en-
tities or places.

For example, a car carries two people and moves from location
to location with its occupants. The car is mapped into a VCC
on the model and this contains two VCCs that correspond to the
two people. The movement of the car is mapped into the VCC
migration corresponding to the car from the VCC correspond-
ing to the source to the VCC corresponding to the destination.
Also, when a person has a computer for executing services, his

room 1

room 2
room 3

computer A

floor

computer B person

PDA

VC (floor)

VC (room 1)

VC
(room 2) VC (room 3)

PC

(computer B)

PC (computer A)

VC (person)
PC (PDA)

SC

(service)
SC

(service)

corelation

Figure 1: Rooms on floor in physical world and counterpart
components in location model.

or her VCC has a PC, which represents the computer and runs
SCs to define the services.

Furthermore, the model also classifies PCs into three sub-
types, PCM (PC for Model manager), PCS (PC for Service
provider), and PCL (PC for Legacy device), according to the
functions of the devices. Our model can be maintained by not
only the server but also multiple computing devices in ubiqui-
tous computing environments. The first component, i.e., PCM,
is a proxy of a computing device maintaining a subtree of the
components in the model (Figure 2(a)). It attaches the subtree
of its target device to a tree maintained by another computing
device. Some computing devices can provide runtime systems
to execute services defined as SCs. The second component, i.e.,
PCS, is a proxy of the computing device that can execute SCs
(Figure 2(b)). If such a device is in a space, its proxy is con-
tained by the VCC corresponding to the space. When a PCS
receives SCs, it forwards these to the device that it refers to.
The third component, called PCL (PC for Legacy device), is a
proxy of the computing device that cannot execute SCs (Figure
2(c)). If such a device is in a space, its proxy is contained by the
VCC corresponding to the space and it communicates with the
device through the device’s favorite protocols. For example, a
television, which does not have any computing capabilities, can
have an SC in the VCC corresponding to the physical space that
it is contained in and can be controlled in, and the SC can send
infrared signals to it. A computing device can have different
PCs whereby it can provide computing capabilities to them.

4. Design and Implementation
To evaluate the model described in this section, we implemented
a prototype system that was built it. The model itself is indepen-
dent of programming languages but the current implementation

VCC

PC VCC

VCC

VCC

VCC VCC VCC VCC

mountcomputer 1 for

managing space model 1

computer 2 for managing space model 2

VCC

PC VCC

SCSCforwarding

computer 1 for

managing space model 1

computer 2 for managing space model 2

SC
migration

VCC

PC VCC

SC

communcation

computer 1 for

executing its program
 computer 2 for managing space model 2

interaction

black

box

(a)

(b)

(c)

SC

bilateral

link

Figure 2: Three types of proxy components

uses Java (J2SE or later versions) as an implementation lan-
guage for components.

4.1. Virtual Counterpart Component (VCC)

In the current implementation, each VCC is defined as a sub-
class of abstract class VirtualComponent, which has some
built-in methods that are used to control its mobility and life-
cycle. It is bound to at least one entity or space in the physical
world and is located at the VCC that spatially contains the entity
or place.

class VirtualComponent extends
Component {
void setIdentity(String name) { ... }
void setAttribute(String attribute,
String value){ ... }

String getAttribute(String attribute) {..}
ComponentInfo getParentComponent() { ... }
ComponentInfo[] getChildren() { ... }
ServiceInfo[] getParentServices(
String name) { ... }

ServiceInfo[] getAncestorServices(
String name) { ... }

Object execService(ServiceInfo si,
Message m)

throws NoSuchServiceException
{ ... }

....
}

By invoking setIdentity, a VCC can assign the symbolic
name of the physical entity or space that it represents. For ex-
ample, a VCC refers to the coverage area of an RFID reader and
it has the identify of the reader. By invoking setAttribute,
a VCC can record attributes about its entity or space inside it.
e.g., owner and size. Each VCC can provide its inner compo-
nents with services defined inside it as a service provider. Fur-
thermore, it allows them to access the service methods provided
by the SCs contained within it. When a component invokes
getAncestorServices with a keyword, the runtime sys-
tem searches suitable services in the direction of the route of a
component tree structure from the component’s parent. If an-
cestral components or ancestral component SCs have service

methods that match the keyword, it returns a list of suitable ser-
vice methods to the component. The component can access one
of the methods by invoking execServices with an instance
of the Message class, which can specify the kind of message,
arbitrary objects as arguments, and deadlines for timeout excep-
tions. Some readers may feel that such a keyword-based search
for services may be too simple. However, the model itself sup-
ports a lightweight mechanism for discovering services because
it needs to be available for less powerful computing devices.
The keyword-based mechanism is lightweight and useful in op-
erating many applications, including the examples presented in
Section 5, because these need a mechanism for enabling com-
ponents to detect suitable services from their ancestor compo-
nents. Furthermore, our model can easily be extended by defin-
ing subclasses for components. For example, the model allows
services to be specified with their attributes in XML-form and
detected according to these attributes.

4.2. Proxy Component (PC)

PCs are key elements in the model. According to the types of
computing devices, PCs can be classified into three classes, i.e.,
PCM, PCS, and PCL. Note that a computing device can have
different PCs.

4.2.1. Proxy Component for Model Manager (PCM)

Each component hierarchy is maintained as a tree structure
where each node contains a component and its attributes in
PCMs. Each node in a tree has attributes that specify its meta
information, e.g., its name, identifier, category, owner, and real
time, in XML-based notations. Each PCM attaches a subtree
maintained by its target computing device to a tree maintained
by another computing device. It forwards its visiting compo-
nents or control messages to its target device from the device
that it is located at, and vice versa, by using the component
migration mechanism. For example, when it receives SCs and
VCCs, it transmits its target device to deploy them at appropri-
ate nodes of the subtree maintained by the device. The con-
tainment relationship between components in this model can be
explicitly configured by users by deploying PCMs at another
PCM.

4.2.2. Proxy Component for Service Provider (PCS)

Each PCS is a representation of the computing device that can
execute SCs. It automatically forwards its visiting SCs to its tar-
get device by using the component migration mechanism. Each
SC can have one or more activities that are implemented by us-
ing the Java thread library. PCSs can control all SCs inside them
under the protection of Java’s security manager. Furthermore,
PCSs maintain the life-cycle of SCs: i.e., initialization, execu-
tion, suspension, and termination. When the life-cycle state of
an SC is changed, the runtime system issues certain events to
the SC and the SC’s descendent components (and the SC’s par-
ent component).

4.2.3. Proxy Component for Legacy Device (PCL)

Each PCL supports a legacy computing device that cannot exe-
cute SCs due to limitations with its computational resources. It
is located at a VCC corresponding to the space that contains its
target device. It establishes communication with its target de-
vice through its favorite approach, e.g., serial communications
and infrared signals. For example, a television, which does not
have any computing capabilities, can have an SC in the VCC

corresponding to the physical space that it is contained in and
can be controlled in, and the SC can send infrared signals to it.

4.3. Service Component (SC)

Many computing devices in ubiquitous computing environ-
ments only have a small amount of memory and slower proces-
sors. They cannot always support all services. Here, we intro-
duce an approach to dynamically installing upgraded software
that is immediately required in computing devices that may be
running. SCs are mobile software that can travel from com-
puting device to computing device achieved by using mobile
agent technology. The current implementation assumes SCs to
be Java programs. They can be dynamically deployed at com-
puting devices. Each SC consists of service methods and is de-
fined as a subclass of the abstract class ServiceComponent.
Most serializable JavaBeans can be used as SCs.

class ServiceComponent extends Component {
void setName(String name)
Host getCurrentHost() { ... }
void follow(ComponentID id) throws
NoComponentException { ... }

void setComponentProfile(
ComponentProfile cpf) { ... }

Hosts[] getNeighboringHosts() { ... }
Host[] getCandidateHosts(Host[] hosts) {..}
....

}

When an SC migrates to another computer, not only the pro-
gram code but also its state are transferred to the destination.
For example, if an SC is included in a VCC corresponding
to a user, when the user moves to another location, it is mi-
grated with the VCC to a VCC corresponding to the location.
The model allows each SC to specify the minimal (and prefer-
able) capabilities of PCSs that it may visit, e.g., vendor and
model class of the device (i.e, PC, PDA, or phone), its screen
size, number of colors, CPU, memory, input devices, and sec-
ondary storage, in CC/PP (composite capability/preference pro-
files) form [14]. Each SC can register such capabilities by in-
voking setComponentProfile().

4.4. Component Management System

Components can be dynamically deployed at computing de-
vices according to changes in the locations of physical entities,
spaces, and other components.

4.4.1. Distributed Model Management

Our model can be maintained not only by centralized database
servers but also by more than one computing device. The key
idea is to enable the model to manage the computing devices
that maintain it. This is because a PCM is a proxy for the sub-
tree that its target computing device maintains and is located
in the subtree that another computing device maintains. As a
result, it can attach the former subtree to the latter. When it re-
ceives other components and control messages, it automatically
forwards the visiting components or messages to the device that
it refers to (and vice versa) by using a component migration
mechanism, like PCSs. Therefore, even when the model con-
sists of subtrees that multiple computing devices maintain, it
can be treated as a single tree. Note that a computing device can
maintain more than one subtree. Since the model does not dis-
tinguish between computing devices that maintain subtrees and
computing devices that can execute services, the former can be
the latter.

4.4.2. Component Migration

Component migration in a component hierarchy is done merely
as a transformation of the tree structure of the hierarchy (Fig-
ure 3). When a component is moved to another component, a
subtree, whose root corresponds to the component and branches
correspond to its descendent component is moved to a subtree
representing the destination. When a component is transferred
over a network, the runtime system stores the state and the code
of the component, including the components embedded within
it, into a bit-stream formed in Java’s JAR file format that can
support digital signatures for authentication. The system has
a built-in mechanism for transmitting the bit-stream over the
network through an extension of the HTTP protocol. The cur-
rent system basically uses the Java object serialization package
for marshaling components. The package does not support the
stack frames of threads being captured. Instead, when a compo-
nent is serialized, the system propagates certain events within
its embedded components to instruct the agent to stop its active
threads.

Component A

migration
Component D

Comp-

onent E

Component C

Component F

Component A

step 1 step 2

Component D

Component B

Component E

Component C

Component F

Component A

Component B

Component B

Component EComponent D

Component F

Component C

Component A

Component B Component C

Component E

Component F

migration
Component D

mapping migration

Figure 3: Component containment and migration

4.4.3. Inter-component Management

As ubiquitous computers have limited computational resources
for various services, services must not be bound to them but
should run on computers that can satisfy what the services re-
quire. For example, a mobile user may also want to constantly
change the computers with which he or she interacts. That is,
services should move from computer to computer to follow the
user. However, when SCs follows the migration of the VCC
corresponding to the user, the destination PC of the VCC can-
not always satisfy the requirements of the SCs. To solve this, the
model enables each SC to explicitly specify a policy for com-
ponent migration, called a hook.1 The current implementation
provides two types of hooks. Moreover, each reference defines
two migration policies for two components, an attachment hook
and follow hook, as follows:

• When an SC declares an attachment hook for a VCC, if
the VCC migrates to another VCC, which can satisfy the
requirements of the SC and can execute the SC, the VCC
instructs the SC to migrate to the destination VCC.

• When an SC declares a follow hook for a VCC, if the
VCC migrates to another VCC, the VCC instructs the
SC to migrate to a nearby PC, where the PC is contained
by the destination VCC that can satisfy the requirements
of the SC and can execute the SC.

1The policy mechanism was presented in our previous paper [11].

When there is no suitable destination, which can satisfy the re-
quirements of the SC, the model informs what capabilities are
required to the PCs within the destination VCC of the moving
VCC, because each SC is an autonomous entity so that it can
migrate to another computer under its own control.

4.4.4. Location-sensor Management

The model offers an automatic configuration mechanism to de-
ploy components by using location-sensing systems. To bridge
PCMs and location-sensors, the model introduces location-
management systems, called LCMs, outside the PCMs. Each
LCMmanages location sensors and maintains a database where
it stores bindings between references of physical entities in sen-
sors, e.g., the identifiers of RFID tags attached to the entities
and the identifiers of VCCs corresponding to the entities. Each
LCM is responsible for discovering VCCs bound to entities or
PCs bound to computing devices within the coverage areas of
the sensors that it manages. When an entity (or device) attached
to an RFID-tag and an LCM detect the presence of the entity
(or device) within the coverage area of an RFID reader man-
aged by the LCM, the LCM searches its database for VCCs
(or PCs) bound to the entity (or device) and informs computing
devices that maintain the VCCs (or PCs) about the VCC cor-
responding to the reader. Then the VCCs (or PCs) migrate to
the reader’s VCC. If the LCM’s database does not have any in-
formation about the the entity (or device), it multicasts query
messages to other LCMs. If other LCMs have any information
about the entity, the LCM creates a default VCC as a new en-
tity. When the tag is attached to an unknown device that can
maintain a subtree or execute SCs, the LCM instructs the VCC
that contains the device to create a default PCM or PCS for the
device.

4.5. Current Status

A prototype implementation of this model was built with Sun’s
J2SE version 1.4 or later versions. It uses the Mobilespaces
mobile agent system to provide mobile components and sup-
ports three commercial locating systems: Elpas’s system (in-
frared tag sensing system), RF Code’s Spider (active RF-tag
system), and Alien Technology’s UHF-RFID tag (passive RF-
tag system). Although the current implementation was not built
for performance, we measured the cost of migrating a 4-Kbyte
component (zip-compressed) from the source to the destination
recommended by an LSM over a network. The latency of com-
ponent migration to the destination after the LSM had detected
the presence of the component’s tag was 390 msec and the cost
of component migration between two hosts over a TCP connec-
tion was 41 msec. This experiment was done with two comput-
ing devices that maintained the component tree, and source and
destination computing devices, each of which was running on
one of six computers (Pentium-M 1.6 GHz with Windows XP
and J2SE ver. 5) connected through a Fast Ethernet network.
We believe that this latency is acceptable for a location-aware
system used in rooms or buildings.

5. Experience
We gained a lot of experience with this model in developing and
operating several typical applications for location-based and
personalized services. Some of this has been presented in our
previous papers [9, 10] independent of the model. Therefore,
this section briefly discusses how the model represents and im-
plements typical applications and what advantages the model

has.

5.1. Follow-Me Applications

Follow-me services are a typical application in ubiquitous com-
puting environments. For example, Cambridge University’s
Sentient Computing project [4] enabled applications to provide
a location-aware platform using infrared-based or ultrasonic-
based locating systems in a building.2 While a user is moving
around, the platform can track his or her movement so that the
graphical user interfaces of the user’s applications follow him
or her. The model presented in this paper, on the other hand,
enables moving users to be naturally represented independently
of location-sensing systems. Unlike previous studies on the ap-
plications, it can also migrate such applications themselves to
computers near the moving users. That is, the model provides
each user with more than one VCC and can migrate this VCC
to a VCC corresponding to the destination. For example, we
developed a mobile window manager, which is a mobile agent,
and could carry its desktop applications as a whole to another
computer and control the size, position, and overlap in the win-
dows of the applications. Using the model presented in this
paper, the window manager could be easily and naturally im-
plemented as a VCC bound to the user and desktop applications
as SCs. They could be automatically moved to a VCC corre-
sponding to the computer that was in the current location of the
user by an LCM and could then continue processing at the com-
puter, as outlined in Figure 4.

movement

component migration

computer 1 computer 1computer 2 computer 2

left

RFID-

reader

right

RFID-

reader

left

RFID-

reader

right

RFID-

reader

step 1 step 2

Figure 4: Follow-me desktop applications between two com-
puters.

5.2. Software Testing for Location-based Services

It is difficult to test and develop software for location-based ser-
vices, because the developer often has to carry the device to
locations that his/her target portable device may have to move
to and test whether the software, which is designed to run on the
device, can execute appropriate services required at the location
or not. We developed a novel approach to test location-aware
software running on portable computing devices [9]. The ap-
proach involves a mobile emulator for portable computing de-
vices that can travel between computers, and emulates the phys-
ical mobility and reconnection of a device to sub-networks us-
ing the logical mobility of the emulator between sub-networks.
In this model, such an emulator can be naturally implemented
as a PC, which provides application-level software, with the in-
ternal execution environments of its target portable computing
devices and target software as SCs. As we can see from Figure
5 the emulator carries the software from a VCC that is running
on a computer on the source-side sub-network to another VCC

2The project does not report their model but their systems seem to
model the position of people and things through lower-level results from
underlying location-sensing systems.

that is running on another computer on the destination-side sub-
network. After migrating to the destination VCC, it enables
its inner SCs to access network resources provided within the
destination-side sub-network. Furthermore, SCs, which were
successfully tested in the emulator, can run on target computing
devices without modifying or recompiling the SCs. This is be-
cause this model provides a unified view of computing devices
and software and enables SCs to be executed in both VCCs and
PCs. We developed an extended system for the approach with
the model.

migration

SC-based emulatorcomputer for

storing services

location-dependent

services in destination

location-dependent

services in source

VC (source) VC (destination)

migration

server for storing

idle services

Figure 5: Testing location-aware map-viewer service.

6. Conclusion
We presented a location model to develop and manage context-
aware services, e.g., location-aware and personalized informa-
tion services, in ubiquitous computing environments. Like ex-
isting related models, it can be dynamically organized like a
tree based on geographical containment, such as that in a user-
room-floor-building hierarchy and each node in the tree can be
constructed as an executable software component. It also has
several advantages in that it can be used to model not only sta-
tionary but also moving spaces, e.g., cars. It enables context-
aware services to be managed without databases and can be
managed with multiple computers. It can provide a unified view
of the locations of not only physical entities and spaces, includ-
ing users and objects, but also computing devices and services.
We also designed and implemented a prototype system based on
the model and demonstrated its effectiveness in several practical
applications.

Finally, we would like to point out further issues that need
to be resolved. Since the model presented in this paper is
general-purpose, we need to apply it to a variety of services
in future work. The prototype implementation presented in this
paper is built on Java but the model itself is independent of pro-
gramming languages. We are interested in extending the model
to other languages. We plan to design more elegant and flexible
APIs for the model by incorporating existing spatial database
technologies.

7. References
[1] M. Bauer, C. Becker, and K. Rothermel Location Models

from the Perspective of Context-Aware Applications and
Mobile Ad Hoc Networks, Personal and Ubiquitous Com-
puting, vol. 6, Issue 5-6, pp. 322-328, Springer, 2002.

[2] M. Beigl, T. Zimmer, C. Decker, A Location Model for
Communicating and Processing of Context, Personal and
Ubiquitous Computing, vol. 6 Issue 5-6, pp. 341-357,
Springer, 2002

[3] K. Cheverst, N. Davis, K. Mitchell, and A. Friday, Ex-
periences of Developing and Deploying a Context-Aware

Tourist Guide: The GUIDE Project, Proceedings of Con-
ference on Mobile Computing and Networking (MOBI-
COM’2000), pp. 20-31, ACM Press, 2000.

[4] A. Harter, A. Hopper, P. Steggeles, A. Ward, and P. Web-
ster, The Anatomy of a Context-Aware Application, Pro-
ceedings of Conference on Mobile Computing and Net-
working (MOBICOM’99), pp. 59-68, ACM Press, 1999.

[5] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and
M. Schwehm, Next Century Challenges: Nexus - An
Open Global Infrastructure for Spatial-Aware Applica-
tions, Proceedings of Conference on Mobile Computing
and Networking (MOBICOM’99), pp. 249-255, ACM
Press, 1999).

[6] T. Kindberg, et al, People, Places, Things: Web Presence
for the Real World, Technical Report HPL-2000-16, In-
ternet and Mobile Systems Laboratory, HP Laboratories,
2000.

[7] K. Romer, T. Schoch, F. Mattern, and T. Dubendorfer,
Smart Identification Frameworks for Ubiquitous Com-
puting Applications, IEEE International Conference on
Pervasive Computing and Communications (PerCom’03),
pp.253-262, IEEE Computer Society, March 2003.

[8] I. Satoh, MobileSpaces: A Framework for Building Adap-
tive Distributed Applications Using a Hierarchical Mobile
Agent System, Proceedings of IEEE International Confer-
ence on Distributed Computing Systems (ICDCS’2000),
pp.161-168, April 2000.

[9] I. Satoh, A Testing Framework for Mobile Computing
Software, IEEE Transactions on Software Engineering,
vol. 29, no. 12, pp.1112-1121, December 2003.

[10] I. Satoh, Linking Physical Worlds to Logical Worlds with
Mobile Agents, Proceedings of International Conference
on Mobile Data Management (MDM’2004), IEEE Com-
puter Society, January 2004.

[11] I. Satoh, Dynamic Deployment of Pervasive Services,
to appear in IEEE International Conference on Perva-
sive Services (ICPS’2005), IEEE Computer Society, July
2005.

[12] I. Satoh, Dynamic Federation of Partitioned Applications
in Ubiquitous Computing Environments, to appear in Pro-
ceedings of 3rd International Conference on Pervasive
Computing and Communications (PerCom’2005), IEEE
Computer Society, March 2005.

[13] R. Want, B. Schilit, A. Norman, R. Gold, D. Goldberg,
K. Petersen, J. Ellis, and M. Weiser, An Overview of
the Parctab Ubiquitous Computing Experiment, IEEE Per-
sonal Communications, Vol 2. No.6, pp28-43, December
1995.

[14] World Wide Web Consortium (W3C), Composite Ca-
pability/Preference Profiles (CC/PP), http://www.w3.org/
TR/NOTE-CCPP, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

