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Abstract

We propose a theoretical framework for the per-

formance analysis and optimization of parallel pro-

grams through an algebraic relation on expressions

in a time-extended process calculus. The relation is

an extension of bisimulation and is characterized by

having the ability to order behaviorally equivalent

communicating processes with respect to their rel-

ative speeds, and have some useful algebraic prop-

erties. This abstract outlines the calculus and the

relation and gives some views on the framework.

1 Introduction

In parallel computing systems, including dis-

tributed ones, interactions among processes, such

as communication and synchronization strongly af-

fect the performance of these systems. Therefore,

to minimize the overheads of such interactions and

to optimize the timings of them are important and

necessary. Therefore, there have been many op-

timization techniques for communication and syn-

chronization. However, unfortunately most of them

often lack qualitative and quantitative investigation

about their e�ectiveness and validation. Moreover,

parallel and distributed computation is far more

complex than sequential one. We need a theoretical

framework to reason about optimization techniques

for parallel computation.

On the other hand, over the last few years, many

researchers have explored time-extended process

calculi for example see [3, 4, 9, 13]. The calculi pro-

vides widely studied frameworks for modeling and

verifying real-time systems. Such theories typically

consist of a simple language with time-dependent

behaviors that have a well-de�ned operational se-

mantics given in terms of labeled transition systems.

They also have time-sensitive equivalence relations

that are used to relate implementations and speci-

�cations, which are both given as terms in the lan-

guage. However, the relations equate two real-time

processes when both their functionally behavioral

properties and their temporal properties are com-

pletelymatched with each other. However, the main

goal of the relations is to provide the veri�cation of

real time systems, instead of analyzing optimization

techniques for parallel computation.

This extended abstract outlines our basic ideas

in constructing a theoretical framework for qual-

itatively and quantitatively verifying timing opti-

mization for communications among processes. The

framework is formulated through a new process cal-

culus with an algebraic order relation over pro-

cesses. The relation order behaviorally equivalent

processes with respect to their relative speeds.

We here present the organization of this extended

abstract: 1 In the next section we brie
y present

our basic ideas concerning the process calculi and

then de�ne their syntax and semantics. In Section

3 we de�ne a speed-sensitive order relation on com-

municating processes and study their basic proper-

ties. In Section 4 we compare with related work and

give some concluding remarks.

2 Description Language

This section constructs a process calculus for rea-

soning about temporal costs in computing and com-

munication, for example execution time and syn-

chronization time. The calculus is de�ned by incor-

porating many common features of existing process

calculi and is characterized by having the ability to

express time.

Before de�ning the syntax of the calculus, we give

the basic idea on time and the notations of time val-

ues. We assume that time is interval between events

instead of any absolute time, and is continuous, in-

stead of discrete time.

De�nition 2.1 Let T denote the set of the posi-

tive real numbers including 0. ut
1This abstract summarizes our previous work presented

in [11] but we plan to present some notable results of our

current work at the meeting.
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Time values are often denoted as positive real num-

bers including zero.

We de�ne symbols to present the events of pro-

cesses.

De�nition 2.2

� Let A be an in�nite set of names denoting com-

munication actions. Its elements are denoted

as a,b,: : :

� Let A be an in�nite set of co-names. Its ele-

ments are denoted as a,b,: : :

� Let L � A [ A be a set of communication ac-

tion names. Elements of the set are written as

`; `
0
; : : :.

� Let � denote an internal action.

� Let � be the set of actions corresponding the

amount of the passage of time. Elements

of the set are denoted as ht1i; ht2i; : : :, where
t1; t2; : : : 2 T .

� Let Act � L [ f�g be the set of operational

actions. Its elements are denoted as �,�,: : :.

ut

a is the complementary action of a. � -action repre-

sents all handshake communications and is consid-

ered to be unobservable from outside environments.

In the calculus, we describe communications of

parallel programs by means of the language de�ned

below. The syntax of the calculus is coincide with

all the construction of some existing process cal-

culi, for example CCS[6], except for a new pre�x

operator whose contents are dependent on the pas-

sage of time, called delay operator. This operator

suspends a process for a speci�ed period, written as
hti, where t is the amount of the suspension. For in-

stance, hti:P means a process which is idle for t time

units and then behaves as P . On the other hand,

to preserve the pleasant properties of the original

process calculi, all communication and internal ac-

tions are assumed to be instantaneous. Instead, we

introduce the new operator for expressing temporal

costs of computation and communication, for ex-

ample execution time and communication latency.

De�nition 2.3 The set P of TSCS expressions

ranged over by P; P1; P2; : : : is de�ned recursively

by the following abstract syntax:

P ::= 0 (Terminate Process)

j �:P (Action Pre�x)

j P1 + P2 (Summation)

j P1 jP2 (Composition)

j P n L (Action Restriction)

j hti:P (Delay Pre�x)

j A
def

= P (Recursive De�nition)

where t is an element of T and L is a subset of L.
A is a process variable in set K. We assume that

in A
def

= P , P is always closed, and each occurrence

of A in P is only within some subexpressions �:A

where � is not empty, or hti:A where t > 0. ut

The informal meaning of each process constructor

is as follows:

� 0 is a terminate process that can perform no

internal nor communication action.

� �:P is a process to perform action � and then

behaves like P , where � is an input, output, or

internal action.

� P1 + P2 represents a process which may behave

as either P1 or P2.

� P1 jP2 represents that process P1 and P2 may

run in parallel.

� P nL behaves like P but it is prohibited to com-

municate with external processes at actions in

L [ �L.

� A
def

= P means that A is de�ned as P , where P

may include A.

� hti:P represents a process which is suspended

for t time units and then behaves like P .

We need the notion of action sort later.

De�nition 2.4 The syntactic sort of each pro-

cess, L(P ), is de�ned inductively by:

L(0) = ;
L(a:P ) = fag [ L(P )
L(a:P ) = fag [ L(P )
L(�:P ) = L(P )

L(P1 + P2) = L(P1) [ L(P2)
L(P1jP2) = L(P1) [ L(P2)

L(P n L) = L(P )� (L [ L)

L(hdi:P ) = L(P )

when A
def

= P , we have L(P ) � L(A). We often call

sort simply. ut

Next, we give the semantics of the calculus. How-

ever, before doing this, we here should explain our

basic ideas on the passage of time. Time passes

in all processes at the same speed. Also, all pro-

cesses follow the same clock, or di�erent ones but

well-synchronized clocks.

The operational semantics of the calculus can

computationally encompass that of CCS and em-

body the notion of time. The semantics is de�ned

as two tiers of labeled transition rules. One of them

de�nes the semantics of functional behaviors of pro-

cesses, called behavioral transition, written as
�

��!
(��! � P � Act �P) and the another de�nes the

passage of time on processes, called temporal tran-

sition, written as
hti

��! (��! � P � � � P). The
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advance of time is modeled as the latter transition.

It is labeled by a quantity of time to indicate the

amount of the advance, for example P
hti

��! P
0. It

means that process P become P 0 after t time units.

De�nition 2.5 The calculus is a labeled transi-

tion system h P ; Act [ � ; f
�

��! � P � E j � 2
Act [� g i. The transition relation ��! is de�ned

by two kinds of structural induction rules given in

Figure 1 and 2. ut

In giving the rules, we adopt the convention that the

transition below the horizontal line may be inferred

from the transitions above the line.
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Figure 1: Inference Rules for Behavioral Transition
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Figure 2: Inference Rules for Temporal Transition

We brie
y explain some important transitions

shown in De�nition 2.5. The semantics assumes

that when an internal or communication action is

enabled, processes must perform the action imme-

diately without imposing unnecessary idling.2 This

2On the contrary, we can assume that when an internal or

assumption is the same as the notion of maximal

progress shown in [4, 13]. It lets us exactly measure

necessary time for synchronization among parallel

processes, and enables the calculus to preserve the

observation properties of many existing non-timed

process calculus.

Example 2.6 We show some basic examples of

processes in Ps as follows:

(1) h2i:a:P1 is a process which performs output ac-

tion a after 2 time units and then behaves like

P1.

h2i:a:P1
h2i

��! a:P1

a

��! P1

(2) h3i:(a:P2 + b:P3) is a process which can receive

either input action a or b after 3 time units,

and then behaves like P2 or P3.
(3) After three time units, h2i:a:P1 j h3i:(a:P2 +

b:P3) performs a communicate between h2i:a:P1
and h3i:(a:P2 + b:P3) at action name a.

h2i:a:P1 j h3i:(a:P2 + b:P3)

h3i

��! a:P1 j (a:P2 + b:P3)
�

��! P1 jP2

The transition relation ��! does not distinguish

between observable and unobservable actions. We

de�ne two transition relations due to the non-

observationability of � .

De�nition 2.7

(i) P
�

==)P
0 is de�ned as P (

�

��!)�
�

��!(
�

��!)�P 0

(ii) P
b�

=) P
0 is

de�ned as P (
�

��!)�
�

��!(
�

��!)�P 0 if � 6= �

and otherwise P (
�

��!)�P 0

(iii) P
hti
==)P

0 is de�ned as

P (
�

��!)�
ht1i

��!(
�

��!)� � � � (
�

��!)�
htni

��!(
�

��!)�P 0

(t = t1 + � � �+ tn). ut
where + is a mathematical addition over two

numbers.

In the following section, we present an algebraic in-

equality over process expressions in the calculus.

However, in order to give a rational theory, we need

to impose some certain syntactic restrictions on pro-

cesses.

De�nition 2.8

(1) (�1j � � � j�n):P is de�ned as
P

1�i�n
�i, where

(�):P � �:P . (�1j � � � j�i�1j�i+1j � � � j�nj):P is

called con
uent summation.

communication action is enabled, processes may not perform

the action soon. We leave further details of this alternative

model to another paper [10].
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(2) P1jjLP2 is de�ned as (P1jP2) n L. P1jjLP2 is

con
uent composition if L(P1)\L(P1) = ; and
L(P1) \ L(P1) � L [ L.

ut

De�nition 2.9 P 2 Ps is time-stable if P is

built using only terminate process, action pre�x,

delay pre�x, action restriction, con
uent composi-

tion, con
uent summation, and recursion given in

De�nition 2.3. ut

Interprocess communication in real communicat-

ing systems is often realized by means of asyn-

chronous style as well as synchronous one. The

word asynchrony here means that sender processes

can send messages without synchronizing any pro-

cesses. However, most of existing process calculi,

including this calculus are formulated based on syn-

chronous communication. However, the calculus

can essentially have the expressive power of asyn-

chronous communication. A way to express asyn-

chronous communication is to restrict the forma-

tion of a term, a:P , in the original calculus to the

case where P is a terminate process, written as 0.

That is, an asynchronous output, a, followed by a

process, P , is the same as the parallel composition

a:0jP . We leave this extension to another paper

[11].

3 Speed-Sensitive Prebisimu-

lation

Based on time-extended process calculi, several re-

searchers have explored time-sensitive equivalence

relations that are based on trace equivalence, fail-

ure equivalence, testing equivalence, and bisimula-

tion equivalence like ours, for example see [4, 9, 13].

These equivalence relations equate two processes if

they cannot be distinguished from each other in

their temporal properties as well as their behav-

ioral one. However, the relations may often be too

strict in the analysis of most time-dependent sys-

tems, including non-strict real-time systems. This

is because most systems have various temporal un-

certainties, for example unpredictable transmission

delays in communication, and unexpected interrup-

tions in processors. Therefore, the temporal prop-

erties of implementations in the real world are never

the same as those of their speci�cation exactly.

Also, we can often say that an implementation is

able to satisfy its speci�cation, only when the im-

plementation can perform the behavioral proper-

ties given in its speci�cation at earlier timings than

those given in the speci�cation. It is convenient

to construct a framework that can decide whether

two processes can perform the same behaviors and

whether one of them (e.g. an implementation of a

system) can perform the behaviors faster than the

other (e.g. the speci�cation of the system).

This section develops such an algebraic order re-

lation on processes with respect to their speeds

based on the bisimulation concept.

De�nition 3.1 A binary relationR� (P�P)�T
is a t-prebisimulation over communicating processes

if (P1; P2) 2 Rt (t � 0) implies, for all � 2 Act ;

(i) 8d 8P1
0: P1

hdi
==)

�

==) P1
0

then 9d0 9P2
0:

P2
hdi
==)

hd
0
i

==)
b�

=) P2
0
and (P1

0
; P2

0) 2 Rt+d0

(ii) 8d 8P2
0: P2

hdi
==)

�

==) P2
0

then 9P1
0:

P1
hdi
==)

hti
==)

b�
=) P1

0
and (P1

0
; P2

0) 2 R0 ut

In the above de�nition, Rt is a family of relations

indexed by a non-negative time value t. Intuitively,

t is the relative di�erence between the time of P1
and that of P2; that is, it means that P1 precedes P2
by t time units.3 The following order relation starts

with a prebisimulation indexed by t (i.e., RL

t
) and

can change t as the bisimulation proceeds only if

t � 0.

De�nition 3.2 We let P1 �
t
P2 if there exists

some t-prebisimulation such that (P1; P2) 2 Rt. We

call �t
speed-sensitive order on communicating pro-

cesses. We shall often abbreviate �0 as �. ut

Hereafter, we usually consider� only. We show sev-

eral algebraic properties of the order relation below.

Proposition 3.3 Let P; P1; P2; P3 2 P . Then,

(1) P � P

(2) P1 � P2 and P2 � P3 then P1 � P3

ut

From these results, we see that � is a preorder re-

lation. We also have P1 �
t1+t2 P3 if P1 �

t1 P2 and

P2 �
t2 P3.

Proposition 3.4 Let P1; P2 2 P , t1; t2 2 T such

that t1 � t2. Then,

ht1i:P � ht2i:P ut

The above proposition shows an important charac-

teristic of �.

Example 3.5 We show some basic examples of

� as follows:

(1) a:P � h1i:a:P

3This means that the performance of P1 is at most t time

units faster than that of P2.
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(2) h1i:a:h2i:b:P � h1i:a:h3i:b:P

(3) a:P1jh1i:b:P2 � h1i:a:P1jh1i:b:P2

(4) h1i:(a:P1 + b:P2)jh2i:a:P3 � h2i:(a:P1 +

b:P2)jh2i:a:P3 ut

Proposition 3.6 Let P1; P2; Q 2 P such that

P1 � P2. Then

(1) �:P1 � �:P2

(2) P1 n L � P2 n L

(3) hti:P1 � hti:P2 ut

It is convenient to develop a precongruence with

respect to speeds in order to guarantee the substi-

tutability between two ordered processes in any par-

allel context. However, there is an undesirable prob-

lem in de�ning such a pre-congruence with temporal

inequality. Suppose three objects: A1

def

= h2i:a:0,

A2

def

= h4i:a:0, and B
def

= a:P1 + b:P2jh3i:b:0. We

clearly have A1 � A2 but cannot expect that

A1jB � A2jB, because A1jB
h2i
!

�

! P1jh1i:b:0 and

A2jB
h3i
!

�

! h1i:a:0jP2. This anomaly is traced to

contexts that restrict the capability to execute a

particular computation due to the passage of time,

for example timeout handling in B. However, when

we restricted processes to be included in the time-

stable process set given in the previous section, they

can perform executable actions in any order and

thus the order relation is preserved in parallel con-

text.

Proposition 3.7 Let P1; P2; Q 2 P be time-

stable processes. Then,

P1 � P2 then P1 jQ � P2 jQ ut

In order to prove the above result, we need some

lemmas, including a fact that any time-stable pro-

cesses are con
uent. However, for lack of space, we

leave its detail proof to another paper.

Intuitively, the above result tells that a parallel

composition between the faster processes can really

perform faster than one between the slower ones.

That is, a system when embedding the faster pro-

cesses can still perform faster than when embedding

the slower ones.

4 Discussion

Related Work

We brie
y survey related work. There have indeed

been many process calculi for reasoning about tem-

poral properties of communicating systems, for ex-

ample see [3, 4, 7, 9, 12, 13]. Most of the calculi

have been equipped with time-sensitive equivalence

relations as veri�cation methods. However, only a

few of them intend to analyze and compare tempo-

ral costs of communicating processes, for example

[5, 7, 10, 12].

Among them, Moller and Tofts in [7] proposed

a preorder relation over processes with respect to

their relative speeds, based on the bisimulation

technique. Unlike ours, their calculus assumes to

permit an executable communication to be sus-

pended for arbitrary periods of time. As a re-

sult, the relation shows only that a process may

possibly execute faster than the other. Recently,

Vogler in [12] and Jenner and Vogler in [5] pre-

sented speed-sensitive preorder relations based on

testing equivalence. The relation can relate asyn-

chronously communicating processes according to

their relative speeds, but its semantics is formu-

lated based on causality between events on the as-

sumption that actions are not instantaneous, unlike

ours. Also, some researchers have explored the per-

formance analysis by means of process algebras, for

example see [2]. However, most of them are based

on non-instantaneous actions. The other assumes

that every process proceeds in lockstep and at ev-

ery instant performs a single action. Arun-Kumar

and Hennessy in [1] Natarajan and Cleaveland [8]

propose approaches to relate processes with respect

to their relative eÆciencies according to the number

of necessary internal actions, � -actions through the

same communication. However, it is very diÆcult

to re
ect the execution cost of real systems upon

the number of � -actions exactly in the description

of the systems.

Concluding Remarks

This abstract outlines a theoretical framework for

the performance analysis and optimization of com-

municating processes, based on the process calculus

and its algebraic theories. It gives only a start-

ing point for formulating such a framework. There

are many issues that we leave in this abstract.

This paper studied a speed-sensitive order relation

for end-to-end synchronous communication. How-

ever, in real communicating systems, interprocess

communication is often realized by means of asyn-

chronous style as well as synchronous one. In asyn-

chronous communication settings, the sender of a

message cannot know when the message is actu-

ally consumed as opposed to synchronous ones. We

are interested in formulating a speed-sensitive or-

der relation for asynchronously communicating pro-

cesses. In synchronous communication settings,

processes must be blocked until their partner pro-

cesses are ready to communicate. The order re-

lation presented in this paper can order two syn-
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chronously communicating processes when a con-

ceptual observer cannot distinguish between them

in their communications, and when the timings of

the communications with one of them are earlier

than those with the another. On the other hand,

in asynchronous communication settings, the ob-

server cannot exactly know when the messages that

it sends are received by processes. This di�erence

between synchrony and asynchrony in communica-

tion means that a suitable speed-sensitive order re-

lation corresponding to asynchronous communica-

tion is needed.4 The relation has to be able to

know only the arrival timings of return messages.

An observer sends arbitrary messages to processes

and waits for return messages from them. It orders

the two processes when the return messages cannot

be distinguished from each other, and when the ar-

rival timings of the messages from one of them are

earlier than those from the another. The relation

can reveal essential di�erences between synchrony

and asynchrony in interactions among processes in

time-sensitive contexts.
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