
A Process Calculus for Asynchronously
Communication with Transmission Delay

Ichiro Satoh
satoh@mt.cs.keio.ac.jp

Department of Computer Science, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Tel: +81-45-560-1150 Fax: +81-45-560-1151

1 Introduction

Distributed systems consist of multiple processors which corporate with one another by
sending messages over communication networks. These communication networks often
have transmission delay which results in a physical and logical function of geographical
distance, communication bandwidth, and communication protocol overhead. The delay
essentially characterizes distributed systems and one of the most difficulty in developing
correct distributed systems. For example, the delay often affects the arrival time of mes-
sages and thus causes inexpectabel causalities among events on different processors. From
the reason of efficency, in distributd systems communication among processors is often
realized as an asynchronous form in order to reduce synchronization cost including com-
munication delay between a sender processor and a receiver one. In order to construct and
verify programs for distributed systems, we must take this delay into consideration. The
objective of this paper is to propose a framework for describing quantitatively communi-
cation delay and analyzing the influence of the delay upon interactions among distributed
processes. The framework is formulated based on a process algebra, for example ACP [1],
CCS [10], π-calculus [11].

There have indeed been some process algebras for distributed systems. Most of them
are extensions of existing process algebras with some natures of distributed computing:
process locations [4, 9], port passing [7, 10, ?], and local time, i.e., the inexistence of global
time information [?], and not communication delay. In this paper, we dare to not intro-
duce these natures, including process location in order to concentrating on investigating
communication delay and its influence. 1 . The framework proposed in this paper is an
extension of a timed process algebra [15] with the ability of expressing parallelism, com-
munication delay, and asynchronous communication. Through its expressiveness power,
we try to strictly analyze the influence of the delay upon the behavioral and temporal
properties of interactions among distributed real-time processes.

1 We leave some relationships between process location and communication delay to our other paper
[?]

1

Moreover, in this paper we develop a verification technique for distributed real-time
systems by means of a prebisimulation relation which can relate two distributed processes
with respect to their relative speeds. If two processes are behaviorally equivalent and if the
first process can execute its behaviors faster than the second one, the equality presents the
first is faster than the second. We often have a chance to replace an old fashioned computer
(i.e., a slower subsystem) of a (working) system with its latest fashioned computer (i.e.,
its faster one). We need to garantee the first computer can substitute for the second
computer in the whole systems and can perform faster than the second one. Therefore,
such a relation with respect to speed provides a powerful method construct and improve
real distributed systems.

The organization of this paper: In the next section we present the basic idea of our
formalism and then define the formalism. In Section 3 we define a timed prebisimulation
which can relate processes according to their speeds. In Section 4 we present some ex-
amples to demonstrate the usefulness of the formalism. The final section briefly surveys
some related work and contains some concluding remarks. Some proofs are given only in
outline for lack of space. For details please consult [?].

2 Definition

This section first gives an informal exposition of our formalism and then defines its syntax
and its transitional semantics. Our formalism is formulated by extending of CCS [10] with
the ability of expressing communication delay, delaying processing, and asynchronous
message. Its syntax and semantics are essentially the same as those of CCS, except for
these extensions.

2.1 Basic Framework

Before formally defining the formalism, we summarize our basic idea of modeling commu-
nication delay and asynchronous comunicaion. Parallel processes communicate each other
via asynchronous one-way message passing, Each message has its name and is received by
a process which has an input port with the same name. The sender process can send a
message and continue its execution without without waiting the reception of the message
by another process. Communication delay for a message is assumed to be known before
2 and the order of arrival of messeages are indeterminate.

Communication Delay Communication delay is a minimum time which a message
takes to be possible to be received after the message is sent out from its output port (or
channel). In our formalims, delay time for each message sending is specified in the output
port for the message. For example, a message whose name is a and delay is t1 time units
is described as: a↑t1. Besides, it is often convenient to specify communication delay for a
message at the input port. We introduce the description of communication delay in input
ports (or channels) to be specified. For example, a↓t2 shows at least t2 time units pass
before a message named a is received at port a. At a result, the communicaton delay of a

2 We here assume the delay can easily extend the formalism to deal with non-determinsitc delay.

2

message is the total amount of the delay time specifed in an output port for the message
and that in an input one.

Time Passing and Delaying Processing: In our formalism time is discrete, in-
stead of continuous. The passage of time is represented as a special transition which
synchronously proceed in all processes. Also, many real distributed systems have several
behaviors dependent on time. We introduce a delaying operation which explicitlry sus-
pends execution for a specified number of units of time, similarly to the delay command
in Ada.

Asynchronous Communication In synchronous communication, the sender need to
wait an acknowledge message from the receiver and thus it must be idle at least for the
round trip communication delay. Therefore, in distributed systems, communication is
often realized as an asynchronous one. However, most of process algebras are essentially
based on synchrnous communication and thus we need extensions of them with the expres-
siveness of asynchronous communication. We express a asynchronous message sending by
creating a process which can engage only in an input action with the same name of the
message. This is the way taken in [2, 7, 9].

Definition

Here we present the syntax and the semantics of the formalism. The syntax is an extension
of Milner’s CCS [10] by introducing asynchronous output action, delaying. first define
notation conventions which we will follow hereafter.

Definition 2.1

• Let M be an infinite multiple set of message names, ranged over by a,b,. . ..

• Let T denote the set of the integers. ut

In our formalism, distributed processes are described by means of expressions as defined
below.

Definition 2.2 The set P∑ of expressions, ranged over by P, P1, P2, . . . is the smallest

set which contains the following expressions. When we assume I
def
= {0, 1} in

∑
i∈I ai↓ti.Pi

(I is an index set), P∑ is especially denoted as P.

P ::= a↑t.P (Message Sending)
| ∑

i∈I ai↓ti.Pi (Alternatively Message Receiving)
| (t)P (Delaying Process)
| P |P (Parallel Execution)
| P \ L (Message Restriction)

| A
def
= P (Recursive Definition)

where
∑

i∈∅ ai↓ti .Pi is 0, t is an element of T . L is a subset of M, and A is an element
of the process constant set C, ranged over A, B, We shall often use the more simple
notation a↑tinstead of a↑t, and a0↓t0.P0 + · · ·+ai↓ti.Pi + · · · instead of

∑
i∈{0,...i,... ai↓ti.Pi. ut

3

Remark 2.3 Intuitively, the meaning of constructors on P∑ are as follows:

• 0 presents a terminated and deadlocked process.

• a↑t.P sends a message with name a and can continue to execute P without blocking
before the message is received by another process. t represents the minimum time
which message a takes to be receivable, that is, t corresponds to the sending cost of
message a on the sender.

• ∑
i∈I ai ↓ti .Pi can receive a message, named ai and then behaves as Pi. ti is the

minimum time which the message takes to be received by the message input port
ai↓.

• (t)P presents a process which is idle for t time units and then behaves as P .

• P1|P2 allows P1 and P2 to execute in parallel.

• P \ L encapsulates all messages in a set L.

• A
def
= P represents that A is defined equation as P . We allow P to include A, that

is, a recursive definition.

The operational semantics of our language is here strucutually given by two kinds of state
transition relations: →⊆ P∑ × P∑ (called behavioral transition) and ;⊆ P∑ × P∑
(called temporal transition). Notice that the first transtions are not labeled by any action
names, although most of CCS-like process calculi are formulated as labeled transition
systems. This is because it was essentially convenient for CCS to use labeled transions
to record the possible input or output actions of processes in CCS’s handshake commu-
nication, but in our formalism the process communication is materialized by a message
passing mechanism instead of any handshake one.

Moreover, in order to concentrate on investiaging an inequality between processes in the
following section, we beforehand provide a syntactically equivalent formulation for some
process expressions which can be treated as the same evidently. The formulation is givend
by defining a structural congrucence ≡ as below. This way is the way taken by Milner in
[11] to deal with π-calculus.3

Definition 2.4 ≡ is the smallest structural congruence which contains the following
relations:

P1|P2 ≡ P2|P1 P1|(P2|P3) ≡ (P1|P2)|P3 P |0 ≡ P

P1 + P2 ≡ P2 + P1 P1 + (P2 + P3) ≡ (P1 + P2) + P3 P + P ≡ P P + 0 ≡ P

(a↑t.0|P) \ L ≡ a↑t.0|P \ L where a 6∈ L P \ L1 \ L2 ≡ P \ L2 \ L1 0 \ L ≡ 0

(t1)(t2)P ≡ (t1 + t2)P (0)P ≡ P (t)0 ≡ 0 ut

Now we present the operational rules for our language.

3 Please note that the semantics can be easily reformulated in the style of Plotkin’s SOS [?] without
the use of the structural congruence.

4

Definition 2.5 Behavioral Transition Rules are given by the least relations →⊆ P ×P
as follows:

a↑t.P → a↑t.0 | P (P is not 0)∑
i∈I ai↓ti.Pi | ai↑t.P → Pi | P (t + ti ≤ 0)

P1 → P ′
1 implies P1 | P2 → P ′

1 | P2

P → P ′ implies P \ L → P ′ \ L

P → P ′ implies A → P ′ (A
def
= P)

P1 ≡ P ′
1, P1 → P2, P2 ≡ P ′

2 implies P ′
1 → P ′

2

where we shall often simply written (≡)∗ → (≡)∗ as →. ut

Definition 2.6 Temporal Transition Rules are given by the least relations ;⊆ P × P
as follows:

0 ;̇ 0
(t)P ;̇ (t − 1)P (t ≥ 0)
a↑t.0 ;̇ a↑t−1.0∑

i∈I ai↓ti.Pi ;̇
∑

i∈I ai↓ti.Pi

P1 ;̇ P ′
1, P2 ;̇ P ′

2 implies P1|P2 ;̇ P ′
1|P ′

2

P ;̇ P ′ implies P \ L ;̇ P ′ \ L

P ;̇ P ′ implies A ;̇ P ′ (A
def
= P)

P1 ≡ P ′
1, P1 ;̇ P2, P2 ≡ P ′

2 implies P ′
1 ;̇ P ′

2

P ;̇ P ′, P 6→ implies P ; P ′

where we shall often simply written (≡)∗ ; (≡)∗ as ;. ut

Notice that these rules directly respect the informal expositions of the constructs given
proviously. We here give some technical remarks on the semantics.

Remark 2.7

(1) According to the rule: a↑t.P → a↑t.0 | P , sending an asynchronous message with
delay t time units is represented by creating a process which can engage only in
an input action with the same name of the message after t time units. The rule:
a↑t.0 ; a↑t−1.0 decreases t in a↑t.0 by one, when one time unit passes. t in a↑t.0
is more than 0, message a cannot be recevied.

(2) A message, ai ↑t .0, can be engaged by only a process with the same input port,
ai↓ti .Pi according to the rule:

∑
i∈I ai↓ti.Pi | ai↑t.P → Pi | P (where t + ti ≤ 0).

The condition t1 + t2 ≤ 0 represents that, in order to be received by ai↓ti .Pi, the
message needs to be idle for at least t1 + t2 time units after it is sent out. As a
result, t1 + t2 corresponds to the minimum communication delay of the message
transmission.

In order to illustrate how to describe distributed processes in our formalism we present
some simple examples.

5

Example 2.8 We suppose interaction between two processes: (1)a↑2.c↓4.0 and (2)(a↓1

.P1 + b↓3.P2). The former process is idle for 1 time unit and then sends message a with 3
time units communication delay and waits message b at an input port with 4 time units
delay. The latter is idle for 2 time units and then waits message a an input port with 1 time
units communication delay, or message c at one with 3 time units communication delay.
The interaction between these processes is described as the following parallel composition:

(1)a↑2.b↓4.0 | (2)(a↓1.P1 + c↓3.P2) ; a↑2.b↓4.0 | (1)(a↓1.P1 + c↓3.P2)

→ a↑2.0 | b↓4.0 | (1)(a↓1.P1 + c↓3.P2)

; a↑1.0 | b↓4.0 | a↓1.P1 + c↓3.P2

; a↑0.0 | b↓4.0 | a↓1.P1 + c↓3.P2

; a↑−1.0 | b↓4.0 | a↓1.P1 + c↓3.P2

→ b↓4.0 | P1

Notice that message a can be received after four time units.

Definition 2.9 Let transitive translations denoted as follows:

P→→P ′ def
= P → · · · → P ′

P;→nP ′ def
= P →→ ; →→ · · ·→→ ; →→︸ ︷︷ ︸

n times

P ′

where we will sometimes abbreviate P;→1P ′ as P;→P ′.

We show a notable relation between the passage of time and the delay time of messages.

Lemma 2.10 We assume ∀l,m: P;→mb↑−l.0|P ′:

(i) If ∀n: m − l ≤ n ≤ m then, for some Ṗ such that P;→nb ↑−l+m−n .0|Ṗ and
Ṗ;→m−nP ′.

(ii) If ∀n: m ≤ n then, for some Ṗ such that P;→nb↑−l+m−n.0|Ṗ and P ′;→n−mṖ .

Proof. From Definition 2.5 and 2.6. ut

Now we are ready to define an inequality relation beteewn processes with respect to

their relative speeds. For example, we first suppose two processes: A1
def
= (1)a↑0 .P and

A2
def
= (3)a ↑0 .P . We would consider to the process A1 to be fster than the process

A2, because A1 can send message a faster than A2. However, there is an underiable
problem in further providing a precongruence with respect to speeds, in order to specify

substitutability between these ordered processes. We suppose a process: B
def
= a↓.b↑.0+c↓

.d↑.0 | (2)c↑.0. Unfortunately, we cannot gurantee that corporations between the faster
process (A1) and B is always faster than one between the slower process (A2) and B,
because of A1|B;→2b↑.0 but A1|B 6 ;→nb↑.0 (n ≥ 2). This problem arises due to the
existance of timeout context in B. Timeout handling is to restrict its desired computation
at first and proceed an alternative computation, if the specified time passes without the
desired computation are performed. That is to say, timeout handling is an operation to
lose the capability of lose the ability to do other input port (a↓) due to the passing of
time. In order to define a rational precongruence with respect to speeds, we here adopt
an approach to subtlely weaken the expressive power of our language in order to restrict
the expressiveness of the above undesirable timeout context.

6

3 Compositionability among Distributed Processes

In this section we propose a verification method to analyze corprationability among dis-
tributed processes with asynchronous message passing. There are a lot of timed equiva-
lence relation over processes. The relations equate two processes only when their temporal
and behavioral properties completely match. However, such equivalence relations are of-
ten too strict because distributed systems have a lot of nondeterministic properties. We
here propose a order relation between two processes by extending the notion of bisimula-
tion [?, 10]. The relation shows that they are behavioral equivalent and one of them can
execute its behaviors faster than the another. Next, we show such a order relation is very
useful for proving substitutability between two remote processes.

We first the notation of messages.

Definition 3.1

∏

i∈I

ai↑ti def
= a1↑t1.0 | · · · | ai↑ti.0 | · · · (i ∈ I)

Definition 3.2 A binary relation R[t1,t2] (⊆ (P × T) × (P × T)) is a [t1, t2]-timed
prebisimulation if (P1, P2) ∈ R[t1,t2] (where t1 ≤ t2) implies, for all M ⊂ (M∪ {ε}) and
for all k1

a, k
2
a ∈ T such that 0 ≤ k1

a + t1 ≤ k2
a + t2,

(i) ∀l1b∀m1∀P ′
1: Πa∈Ma↑k1

a |P1 ;→m1 Πb∈Nb↑−l1b |P ′
1 then ∃l2b∃m2∃P ′

2: Πa∈Ma↑k2
a

|P2 ;→m2 Πb∈Nb↑−l2
b |P ′

2 and l2b ≤ l2b and (P ′
1, P

′
2) ∈ R[t1+m1,t2+m2]

(ii) ∀l2b∀m2∀P ′
2: Πa∈Ma↑k2

a |P2 ;→m2 Πb∈Nb↑−l2b |P ′
2 then ∃l1b∃m1∃P ′

1: Πa∈Ma↑k1
a

|P1 ;→m1 Πb∈Nb↑−l1
b |P ′

1 and l1b ≤ l1b and (P ′
1, P

′
2) ∈ R[t1+m1,t2+m2]

where we assume m1, m2, l
1
b , l

2
b ∈ T≥0.

We state the informal meaning of R[t1,t2]. We assume that t1 time units passes in P1

and t2 time units passes in P2.
4 In Definition 3.2 (i), a conceptual observer sends P1

messages which can be sent since the begining of the experiment, that is, t1 time units
ago. It waits messages which P1 returns. Also, the observer sends the same messages to
P2 after the timings of its sending them to P1 and then waits messages which P2 return.
If the messages from P1 and those from P2 are coincide in their message contents and the
timings of the messages from P1 are earlier than those from P2, P2 can simulate P1 even
more slowly. In Definition 3.2 (ii), we analyze P1 can simulate P2 even faster. Note that
the observer sends messages which can be sent to the processes even at their pasts.

From Definition 3.2, we can easily show the following properties.

Proposition 3.3 Let P, P1, P2 ∈ P then,

(1) (P, P) ∈ R[t,t] (2) (P1, P2) ∈ R[t1,t2] and (P2, P3) ∈ R[t2,t3] then (P1, P3) ∈ R[t1,t3]

(3) If R[t1,t2] is a timed prebisimulation,
⋃

i∈I R[t1,t2] is a timed prebisimulation.

4 Note that t1 is always smaller than t2.

7

Note that P∑ cannot preserve (1) in the above propostion. We show a countexample:

let A
def
= a1 ↓ .b1 ↓ .0 + a2 ↓ .b2 ↓ .P2|(1)a2 ↑ .0, then a1 ↑ .0|A;→2b2 ↓ .0|a2 ↑−1 but (2)a1 ↑

.0|A;→2a1↑ .0|b2↓ .0. This is because
∑

ai↓ti .Pi (i ≥ 2) in P∑ can often restrict the
alternative input ports which has not recevied any messages yet. However, a process
expresson including

∑
ai ↓ti .Pi (i ≥ 2) can preserve (1) of the above propostion, only

if input ports which has not recevied any messages are always possible, for example∑
ai∈M ai↓ti.(P |∏aj∈M−{ai} aj↓tj).

Definition 3.4 P1 and P2 are [t1, t2] timed order, written P1 �[t1,t2] P2, if (P1, P2) ∈
R[t1,t2] (⊆ P × T) × (P × T)) for some timed prebisimulation. That is,

�[t1,t2]
def
=

⋃{R[t1,t2] : R[t1,t2] is [t1, t2] timed prebisimulation. }

where we abbrave �[0,0] as �.

From Propostion 3.3, we can easily show the following basic properties.

Proposition 3.5

(1) P �[t,t] P (2) If P1 �[t1,t2] P2 and P2 �[t2,t3] P3 then P1 �[t1,t3] P3

Let P � P、P1 � P2 and P2 � P3 then P1 � P3. Hence, � is a preorder relation.

Proposition 3.6 We assume t′1 ≤ t1, t′2 ≤ t2 and t′1 ≤ t′2:

P1 �[t1,t2] P2 then P1 �[t′1,t′2] P2

This proposition shows that, if the first process with messages which can be sent t1 time
units before, is faster than the second one with messages which can be sent t2 time units
before, the first process with messages t′1 time units before is faster than the second process
with messages after t′2 time units before.

We show a useful fact for proving substitutability between two behaviorally equivalent
processes with different speeds.

Theorem 3.7

P1 �[t1,t2] P2 and Q1 �[t1,t2] Q2 then P1|Q1 �[t1,t2] P2|Q2

From Proposition 3.6 we have that if P1 � P2 and Q1 � Q2 then, P1|Q1 � P2|Q2. We
show some notable points on the above result.

(1) From the above result, if two processes (or two group of paralle processes) are
behaviorally equivalent and the first process can perform its behaviors faster than
the second process, we can gurantee that a system embadding the faster process the
same (or slower) system embadding the slower process are behaviorally equivalent
each other and the system embadding the faster process can peform faster than
the system embadding the slower one. Since distributed computing is based on
interactions among processes executing in parallel, the following substitutability for
parallel composition provides a poweful method to analyze and verify the temporal
and behaviroal prorperties of interactions among distributed processes.

8

(2) We do not always hold that if t1 < t′1, At2 < t′2, if P1 �[t1,t2] P2, and Q1 �[t1,t2] Q2,
then P1|Q1 �[t′1,t′2] P2|Q2. To show that a faster process can substitute for its slower
one used as a component of a system, the faster process need to perform faster than
the slower one, allowing for all messages can be sent after the beginning time of the
system.

Proposition 3.8

P1 �[t1+k1,t2+k2] P2 iff (k1)P1 �[t1,t2] (k2)P2

The delay operation means that supends the following execution for its specifed time
units. (k1)P1 �[t1,t2] (k2)P2 corresponds that P1 can perform faster than P2, allowing for
messages which can be sent k1 + t1 (or k2 + t2) time units before.

Proposition 3.9 Let P1 �[t1,t2] P2, then

(1) k1 + t1 ≤ k2 + t2 then a↑k1.P1 �[t1,t2] a↑k2.P2

(2) P1 \ L �[t1,t2] P2 \ L

This shows that the order relation is preserved in message sending and restriction. How-
ever, a↓k1 .P1 �[t1,t2] a↓k2 .P2) is not deduced from P1 �[t1,t2] P2, and thus the relation is
a precongruence over P expressions. This is because a↓k1 .P1 (or a↓k2 .P2) can received
messages t1 (or t2) before.

Remarks

In this paper, we dealed with only communication delay between an observer and ports of
processers. However we can explicitly add communication delay between an observer and
processes themselves by slightly changing Definition 3.2. For example, we first assume d1

time units is communication delay between the observer and d2 time units is communica-
tion delay between the observer and process P2. (i) of Definition 3.2 is refomulated below:
Πa∈Ma↑k1

a+d1 |P1 ;→m1 Πb∈Nb↑−l1b−d1 |P ′
1 then Πa∈Ma↑k2

a+d2 |P2 ;→m2 Πb∈Nb↑−l2b−d2 |P ′
2

and l2b ≤ l2b and (P ′
1, P

′
2) ∈ R[t1+m1,t2+m2]. For (ii) we can define in the same way. More-

over, we have a notable fact that when the above relatin is written as P1 �(d1,d2)
[t1,t2]

, we have

that if P1 �(d1,d2)
[t1,t2] then, P1 �(d′1,d′2)

[t1,t2]
where d′

1 ≥ d1 and d′
2 ≥ d2.

4 Discussion

Related Work

This section presents an overview of related work. There have been a number of computing
models for reasoning about distributed (real-time) systems, in particular communication
delay and asynchronous communication. Most of existing works assume communication
delay is inherently arbitary, i.e., from zero to forever. Thus, they can analyze causality
between message sending and receiving by using time-stamps (for example see [?]) and
partial order semantics (for example see [6]), but they lose real-time duration between
actions.

9

Recently, a lot of researchers have explored real-time extensions of process algebras
for synchournous communication, for example, see [12, 13, 15]. There is a notable work
by Moller and Tofts in [12]. The authors studied a preorder relating timed processes with
respect speed based on the bisimulation concept, like ours. Moreover, they pointed out
the existance of anormaly in defining such a relation which is a precongruence. However,
the order relation is seriously dependent on synchronous communication and it is not
preserved in the parallel operator only when the number of parallel processes never change
and thus it cannot apply to dynamic systems with process creation.

On the otherhand, there are some process algebras with the ability of expressing
asynchronous communication [7, 9, 5]. However, there is a few framework to deal with
both delay and asynchrony in communication. Among [3, 8], asynchronous communication
in process algebras inheretly based on sysnchronous one can be modeled by introducing
auxiliary meachnisms; buffering meachisms and auxiliary operators, often called state
operators. Their extensions are always not suitable with computational aspects of process
algebras. Also, in [2] the authors proposed a process algebra with the ability of expressing
asynchronous communication with delay. It is based on an timed extended calculus of
ACP [1]. Like ours, it represents asynchronous message transmission as a creation of a
process which corresponds to the message in the way taken in [7, 9] and it represents
communication delay by suspending the created process for the amount of the delay.
Therefore, it is very similar to ours. However, the process algebra in [2] just provides just
a language to describe systems with asynchronous communication with delay and failure,
and it does not provide any verification for these systems.

Concluding Remarks

In this paper we proposed a formalism for the specification and verification of distributed
real-time processes which interact with one another through asynchronous message pass-
ing with transmission delay. It is an extension of a process algebra with the ability of
expressing communicaiton delay, asynchrnous communication.

Based on the formalism, we also developed a substitutionality for distributed processes
with respect to their speed. It is formulated as a prebisimulation relation which can
distinguish between behaviourally equivalent processes which peform the behaviours at
different speed. In defining this relation, we needed to restrict the expressive power of
the language. This fact shows that a faster process with timeout handling cannot always
substituted for its slower one and reveals an impotant problem in constructing soft real-
time systems.

Finally, we would like to point out some further issues. The study of relating asyn-
chronously communicating processes has just started. We have many problems to be
solved. As mentioned previously, there is an anomaly in defining a substitutive notion of
such a speed relation. This anomaly is not essentially dependent on our formalism. We
believe it is a general problem in defining relating processes with respect to speed. We
plan to investigate this problem in various asynchronous interactions. Also, we are inter-
ested in a contrast to existing order relations by Moller and Tofts in [12]. Besides, one
purpose of the formalism was to investigate a process algebra for reasioning asynchronous
communication among remote processes without introducing the concept of process loca-
tion. There are some important relationships between communicaton delay and process
location. We are interested in developing a process algebra with the ability of experssing

10

communiation delay depending on distance between the sender and the receiver.

References

[1] Baeten, J. C. M, and Bergstra, J. A, Process Algebra, Cambridge University Press 1990.

[2] Baeten, J. C. M, and Bergstra, J. A, Asynchronous Communication in Real Space Process
Algebra, Formal Techniques in Real-Time and Fault-Tolerant System, LNCS 591, p473-491,
1991.

[3] Bergstra, J. A, and Klop, J. W., Process Algebra with Asynchronous Communication Mach-
nisms, Seminar on Concurrency, LNCS 197, p76-95, 1985.

[4] Boudol, G., Castellani, I., Hennessy, M., and Kiehn, A., A Theory of Processes with Local-
ities, Proceedings of CONCUR’92, LNCS 630, p108-122, August, 1992.

[5] de Bore, F.S., Klop, J.W., and Palamidessi, Asynchronous Communication in Process Al-
gebra, Proceedings of LICS’92, p137-147, 1992.

[6] Degano, P, deNicola, R. D., and Montanari, U., A Distributed Operational Semantics for
CCS Based on Condition / Event Systems, Acta Infomatica, Vol.26, p59-91, 1988.

[7] Honda, K., and Tokoro, M., An Object Calculus for Asynchronous Communication, Pro-
ceedings of ECOOP’91, LNCS 512, p133-147, June, 1991.

[8] Jifeng, M. B, and Hoare, C. A. R., A Theory of Synchrony and Asynchrony, Proceedings
of IFIP WG2.2/2.3 Programming Concepts and Methods, p459-478, 1990

[9] Krishnan, P., Distributed CCS, Proceedings of CONCUR’91, LNCS 527, p393-407, August,
1991.

[10] Milner, R., Communication and Concurrency, Prentice Hall, 1989.
[11] Milner, R., Parrow. J., Walker, D., A Calculus of Mobile Processes, Information and Com-

putation, Vol.100, p1-77, 1992.
[12] Moller, F., and Tofts, C., Relating Processes with Respect to Speed, Proceedings of CON-

CUR’91, LNCS 527, Springer-Verlag, 1991.

[13] Nicollin. X., and Sifakis, J., An Overview and Synthesis on Timed Process Algebras, Pro-
ceedings of Computer Aided Verification, LNCS 575, p376-398, Springer-Verlag, 1991.

[14] Plotkin, G.D., A Structural Approach to Operational Semantics, Technical Report, Depart-
ment of Computer Science, Arhus University, 1981.

[15] Satoh, I., and Tokoro, M., A Formalism for Real-Time Concurrent Object-Oriented Com-
puting, Proceedings of 7th ACM Object Oriented Programming Systems and Languages,
and Applications, p315-326, 1992.

[16] Satoh, I., and Tokoro, M., A Timed Calculus for Distributed Objects with Clocks, Proceed-
ings of 8th European Conference on Object Oriented Programming, LNCS 707, p326-345,
Springer-Verlag, 1993.

[17] Satoh, I., and Tokoro, M., A Process Calculus with Communication Delay and Locality, to
appear as Keio CS Technical Report.

11

