APPLICATIONS AND SERVICES FOR THE B3G/4G Era

To construct correct
software fo run in
mobile terminals for
4G wireless networks
and wireless LANs, it
must be tested in all
the networks to
which the terminal
could be moved and
connected to. This
arficle presents a
new approach, called
Flying Emulator, to
fest software
designed fo run on
mobile terminals.

SOFTWARE TESTING FOR
WIRELESS MOBILE COMPUTING

ICHIRO SATOH, NATIONAL INSTITUTE OF INFORMATICS

ABSTRACT

4G wireless networks make it increasingly dif-
ficult to develop and test application software
for mobile terminals in comparison with 3G or
earlier generations. These 4G networks will
incorporate wireless LAN technologies, and
mobile terminals can access the services provid-
ed by LANs as well as global network services.
Therefore, software running on mobile terminals
may depend on not only its application logic but
also on services within the LANs to which the
terminals are connected. To construct correct
software to run in mobile terminals for 4G wire-
less networks and wireless LANSs, it must be test-
ed in all the networks to which the terminal
could be moved and be connected. This article
presents a new approach, called Flying Emula-
tor, to testing software designed to run on mobile
terminals. Like existing approaches, the
approach provides software-based emulators of
its mobile terminals for software designed to run
the terminals. It is unique because it constructs
emulators as mobile agents that can travel
between computers. These emulators can carry
the target software to the networks to which the
terminals are connected and allow it to access
services provided by the networks in the same
way as if it was moved with and executed on the
terminals connected to the networks. This article
describes the idea of the approach, its imple-
mentation, and our experience with a typical
application.

INTRODUCTION

The development and testing of software for
fourth generation (4G)-enabled mobile terminals
may become more difficult than for third gener-
ation (3G) or earlier generations. 4G wireless
networks will incorporate wireless LAN (WLAN)
technologies in addition to cellular networks and
satellite-based network technologies. Then
WLANS will not only provide high-speed wire-
less connectivity for mobile terminals, including
smart mobile phones, notebook PCs, tablet PCs,
and PDAs, but will also see a shift in the nature
of mobile terminal applications. At present, the
goal of most WLANS is still to connect mobile
terminals to wide area networks, such as the
Internet. However, WLANSs can have servers
within WLAN:Ss. In fact, several recent commer-

cial and noncommercial WLAN hotspots have
offered printing services and database services
about resident information (e.g., restaurants and
maps) that are available only within their cover-
age areas. As WLANSs and 4G wireless networks
expand and develop, such location- or network-
dependent services will become more common-
place.

However, it is very difficult to develop and
test software designed to run on mobile termi-
nals for 4G mobile networks and WLANSs. To
motivate the development of mobile terminal
software for 4G wireless networks, it is helpful
to have a single example scenario in WLANSs.
For example, a user will visit an office building
and have a terminal equipped with a short-range
wireless link (e.g., IEEE802.11x or Bluetooth).
Each floor in the building has a subnetwork with
WLAN access points and can provide different
resources, such as database servers, for location-
dependent navigation information on each floor.
As a user moves from floor to floor with his or
her terminal, some new servers will become
available from software running on the terminal,
or it may no longer be able to access previous
servers. As a result, such software depends not
only its aonpplication logic but also on the ser-
vices available on the current subnetworks. To
construct correct software, the developer must
test the software using the services available on
each of the subnetworks to which the terminal
might be connected. This is troublesome for the
developer because nobody wants to run up and
down stairs, physically carrying a terminal to test
whether it can successfully access contents from
appropriate databases in the current subnet-
works and properly display the contents on the
terminal. This is a serious obstacle to the growth
of 4G mobile networks that incorporate WLANS.
Nevertheless, the task of testing network- or
location-dependent software has attracted little
attention.

To overcome this problem, we need a soft-
ware testing approach suitable for 4G-enabled
mobile terminals. Indeed, have we introduced an
approach, called Flying Emulator, to developing
software that runs on smart mobile terminals
such as notebook PCs, tablet PCs, and PDAs.!

1 The reader can find detailed information about this
approach in our previous paper [1] .

58

1536-1284/04/$20.00 © 2004 IEEE

IEEE Wireless Communications * October 2004

The key idea of the approach is to provide a
mobile-agent-based emulator of a mobile termi-
nal, where a mobile agent is autonomous soft-
ware that can travel from computer to computer.
Like other software-based emulators, the emula-
tor performs application-transparent emulations
of its target terminal for application software.
Since it is implemented as a mobile agent, it can
also carry its target software to LANs to which
its target device may connect and test the soft-
ware inside the environments of LANs. That is,
it emulates the physical mobility of terminals by
using its own logical mobility over LANs.

BACKGROUND

The approach aims at testing network-dependent
application software designed to run on mobile
terminals that access services available on
WLANSs. Emulating the performance of wireless
networks (i.e., bandwidth and connectivity laten-
cy) cannot be addressed.

REQUIREMENTS

To test software for mobile terminals using
WLANSs and 4G wireless networks, our approach
should satisfy the following requirements.

Mobility and Network Dependency — Cooperation
among mobile terminals and servers within a
domestic or office network is indispensable
because such cooperation will offset various fea-
tures missing in the terminals. As terminals
move, they may be disconnected from the cur-
rent network and then reconnected to another
network. A change in network and location may
indicate movement away from the servers cur-
rently in use toward new ones. A lot of work has
been proposed to transparently mask variations
in mobility. For example, mobile IP technology
may be useful for maintaining a terminal’s con-
nections to services in the source networks even
if the terminal moves across LANs. On the other
hand, terminals are often required to link up
local services provided by the current LANs to
access information available at the current loca-
tions as well as remote servers. As a result,
application-level software running on moving
terminals must treat the differences between the
services available in the source networks and
those available in the destination networks.

Spontaneous and Plug-and-Play Management — Mobile
terminals are often managed by using service
discovery mechanisms that use multicast commu-
nications to find their servers and terminals to
be managed, such as Universal Plug and Play
(UPnP) [2] and Sun’s Jini [3]. These multicast
messages can only be transmitted to the hosts
within specified subnetworks. Therefore, to test
the target software designed to run on the termi-
nal, we must execute and test it inside a subnet-
work to which the terminal can be connected.

Ease of Use — The approach needs to avoid the
movement of the developer in the testing of soft-
ware. It also should be simple enough for end
users to use in testing. It must be able to run on
servers without requiring custom hardware.
Application software often has its own graphical

user interface (GUI), so the approach should
enable the developer to test his or her target
software, including its GUI. All applications suc-
cessfully tested in the emulator should be per-
formed in the same way without being modified
or recompiled.

Supports to Content Creators/Designers — The cre-
ation of location- or network-dependent con-
tents, (e.g., museum guides on portable
terminals) is as difficult as the development of
location- or network-dependent software,
because the creators must test their content,
which is designed for being displayed on termi-
nals, whether or not the content is valid at the
locations to which the terminals move. The
approach should display and operate visual con-
tent for terminals.

EXISTING APPROACHES

There have been several approaches to testing
software that will run on mobile terminals. We
can classify these approaches into four types, as
follows.

The first approach is to carry the target ter-
minal to the LANs to which the terminal may
move and connect, and test the target software
running on the terminal with the servers. How-
ever, compared to desktop/notebook computers,
typical mobile terminals have only limited com-
putational resources (e.g., restricted levels of
processing power and memory capacities) and
poor user interface devices (e.g., clamped key-
boards and small screens). Therefore, it is diffi-
cult to debug and monitor software within the
terminal itself. This should only be resorted to in
the final phases of software development. In
other approaches software-based emulators are
useful on behalf of the target terminals to solve
this problem. In fact, many commercial mobile
terminals, such as palm-sized PDAs and smart
mobile phones, provide software-based emula-
tors that can run on workstations and simulate
terminal execution environments. However, most
existing emulators simulate only the internal exe-
cution environments of their target terminals.
On the other hand, the correctness of the soft-
ware running on the terminal depends on its
internal execution environment and also the
external environments provided by the network
to which it connects.

The second approach is for the developer to
physically carry the workstation that runs an
emulator corresponding to the target terminal
and connect it to LANs to which the terminal
might move. It can also inherit the advantages
from software-based emulators, including fast
turnaround time, source-level debugging, and
fast execution. Like the first approach. its target
software is executed within the LANSs, so it can
directly access the servers provided by the LANs.
However, this is difficult to actually carry the
workstation to another location and connect it to
the LANSs in that location, even when the work-
station is a portable notebook PC.

The third approach is to simulate the termi-
nal’s external environments inside local worksta-
tions. For example, Nokia provides a network
server interface simulator, called Nokia Mobile

Compared to
desktop,/notebook
computers, typical

mobile terminals
have only limited
computational
resources. Therefore,
it is difficult o debug
and monitor
software within the
terminal itself.

IEEE Wireless Communications ¢ October 2004

59

When an emulator
migrates between
APHs, its target
software is
transformed info @
bitstream along with
the states and codes
of the target
software with the
emulator. Then the
software and
emulator are
fransferred fo the
destination APH.

Server Services, in addition to terminal emula-
tors for their terminals. The simulator enables
messages to be sent from server-side applica-
tions to a terminal emulator, and forwards mes-
sages from the terminal emulator to server-side
applications. Also, several integrated develop-
ment environments (IDEs), such as Microsoft
Visual Studio and Eclipse, can be opened to
provide tiny database servers and directory
servers inside local workstations. However, it is
almost impossible to exactly simulate all the ser-
vices and content available in each of the actual
LANSs to which the target terminal may connect
to inside local workstations.

The fourth approach enables software
designed for mobile terminals to run in software-
based emulators on local workstations and
remotely access actual servers, instead of pseudo
ones, through networks (e.g., the InfoPad pro-
ject at Berkeley [4] and Lancaster University’s
network emulator [5]). However, accomplishing
this in a responsive and reliable manner is diffi-
cult, and the emulators may not be capable of
remotely accessing all the services within the
LANSs because of security protection. Moreover,
the approach is not suitable for testing software
using multicast communications, including ser-
vice discovery mechanisms such as Jini and
UPnP, and some ad hoc networking protocols,
because the reachable domains are limited with-
in specified subnetworks to reduce network traf-
fic. It is almost impossible to forward a large
quantity of multicast packets, which will spill
over into subnetworks, to the target software
running on an emulator in other networks via
the Internet.

THE FLYING EMULATOR APPROACH

The existing approaches described above have

their own strengths and weaknesses. This article

proposes an innovative approach to testing net-
work-dependent software on mobile terminals.

The goal of this approach is not to compete with

the existing approaches but to complement them

and solve some of their problems. Like the three
other approaches, our approach provides soft-
ware-based emulators for terminals. The key
idea of this approach is to implement emulators
as mobile agents that can travel from computer

to computer under their own control (e.g., [6,

7]). When an agent moves to another location,

the agent transfers its state, as well as its code,

to the destination. After arriving at the destina-
tion, it can still continue its execution. There-
fore, our mobile agent emulators can carry the
code and the state of their target software to the
destinations, so the carried software can basical-
ly continue its processing after arriving at the
new host in the same way as if it had been physi-
cally moved with the target terminal.

This approach consists of the following three
components:

* A mobile-agent-based emulator that provides
the target software with the internal execution
environment of its target terminal, and also
carries the software to specified access point
hosts on remote networks on behalf of the ter-
minal

* Access point hosts (APHs) that are allocated to

each network and enable the software carried
by the emulator to connect with various ser-
vices running on the network
* A remote control server (RCS) that is the front-
end to the whole system and enables the mov-
ing emulator and its target software to be
monitored and operated, by remotely display-
ing their GUIs on the screen
As we can see from Fig. 1, the physical move-
ment of a mobile computing computer from one
LAN to another is simulated by the logical
mobility of a mobile-agent-based emulator with
the target software moving from an APH in the
source LAN to another APH in the destination
LAN. Each emulator permits the target software
to access servers and multicast-based services
provided in current networks and have its own
itinerary that corresponds to the physical move-
ment pattern of its target terminal. Each APH is
a server offering a runtime system for the execu-
tion and migration of mobile agents, including
mobile-agent-based emulators. Additionally, it is
lightweight and does not need any custom hard-
ware.

MOBILE TERMINAL EMULATION

Each mobile-agent-based emulator can carry and
test software designed to run on its target termi-
nal. Figure 2 shows the structure of a mobile-
agent-based emulator running on an APH. The
current implementation of the approach is built
on Java and provides mobile-agent-based emula-
tors for typical notebook PCs, PDAs, tablet PCs,
and smart phones. Although the approach itself
can support native software, hereafter we
describe mobile emulators for testing software
written in Java (J2SE, JDK 1.1, Personal Java,
or J2ME CDC) to illustrate how to emulate the
mobility and connectivity of terminals rather
than the terminals’ execution environments.

EMULATION OF TERMINAL MoOBILITY

When an emulator migrates between APHs, its
target software is transformed into a bitstream
along with the states and codes of the target
software with the emulator. Then the software
and emulator are transferred to the destination
APH. The destination APH retrieves the soft-
ware and emulator from the bitstream. The cur-
rent implementation uses Java’s standard JAR
file format, which can support digital signatures
for authentication, to pass them. The developer
can control the movement of the emulator inter-
actively through the RCS. Also, each emulator
can have its own itinerary, a list of APHs that
corresponds to the physical movement pattern of
the target terminal.

Typical mobile terminals assign execution
modes, which stationary computers may not
have, on their application-level software. Accord-
ingly, we divide the life cycle states of the target
software into three phases: networked-running,
isolated-running, and suspended. Networked-
running mode refers to the target software run-
ning and connecting to a LAN in the current
location. In this mode the software running in
the emulator is allowed to link to servers on the
LAN through the current APH. Isolated-running
mode means that the terminal is still running but

60

IEEE Wireless Communications * October 2004

Disconnection
and moement

Target
software

Pl

Disconnection
and moement

Physical mob(ilié\rlof teminal
with target sdfvare

Wireless network
N

Servers

A

t Emulation

Target
software

Mohile-agent-
based emuldor

.-

Target
software

Mobile-agent-
based emuldor

Logical mobiliy of emulaor
with target safvare

LAN A

Y Servers

M Figure 1. Emulation of physical mobility through logical mobility.

disconnected from the LAN. In this mode the
software still runs in the emulator, but is prohib-
ited from communicating with any servers on the
current LAN. Suspended mode corresponds to
that of a terminal that is sleeping to save battery
life, and avoids the risk of accidental damage
while moving. In this mode the emulator stops
the target software.

This approach assumes that each terminal
can connect to at most one LAN through a wired
or wireless network. When a terminal is moved
and reconnected to a different LAN, the soft-
ware running on the moving terminal goes into
suspended mode and then enters the networked-
or isolated-running mode. The emulator can dis-
patch certain events to the target software to
explicitly restart (or stop) its activities and
acquire (or release) the computational resources
of the current APH when the life cycle state of
the software is changed.

EMULATION OF COMPUTATIONAL RESOURCES

The emulation of the internal execution environ-
ments of terminals is basically the same as that
of other existing software-based emulators. Since
each mobile agent is a general program, the
approach can embed a processor-instruction
interpreter, which can execute software for the
processor in the same way as if it were being
executed by the processor, in a mobile agent. If
its target software is written in Java, the Java vir-
tual machine can shield the target software from

many features of the hardware and operating
systems of mobile terminals. As a result, mobile
emulators for Java software can be simple. They
permit their target software to have access to the
standard Java classes commonly supported by
the Java virtual machine as long as their target
terminals offer the classes.

Each emulator offers its target terminal’s typ-
ical computational resources (e.g., file storage
and I/O ports). To store and access files, the
emulator maintains a database as a pair consist-
ing of its file/directory path name pattern and
the content inside it. The emulator provides
basic primitives for file operation, such as cre-
ation, reading, writing, and deletion; it allows
developers to insert files into itself through the
RCS. Furthermore, the approach offers a mecha-
nism that enables its target software to access
equipment running on remote computers via
serial ports. The mechanism consists of proxies
whose interfaces are compatible with Java’s com-
munication application programming interfaces
(APIs) and can forward the port’s signals
between the emulator and the RCS.

EMULATION OF NETWORKING

The target software running in a mobile-agent-
based emulator can interact with servers and
other software running on the same or different
emulators on the current LAN, and the Internet
when the LAN is connected to the Internet. The

Since each mobile
agent is a general
program, the
approach can embed
0 processor-
instruction
interpreter, which
can execute software
for the processor in
the same way as

if it were being
executed by the
processor, info a
mobile agent.

IEEE Wireless Communications ¢ October 2004

61

Multicast-based
services

APH

Servers

Mohile-agent-based emulior

Migration
Target softvare L)
A A Event
handler
User Network |File Execution
interfae |interface |system| control

Mokile agent untime sytem

Java VM

rdware/OS

TCP/UDP Local-area netvork

UDP multicast

Developer/
content creaor

RCS

M Figure 2. The mobile-agent-based emulator.

current implementation simply maps the termi-
nal’s TCP/IP stack onto the TCP/IP stack pro-
vided in the current APHs to simulate IP
connectivity. Mobile-agent-based emulators for
Java software inherit most network resources,
including the current APH’s IP address and
TCP/UDP ports, through Java classes for net-
working, such as java.net and java.rmi pack-
ages. An emulator cannot have its own network
identifier, but this is not a serious problem as
long as the target software is client-side.

This approach also has a mechanism for sim-
ulating many basic characteristics of wireless net-
works, such as disconnection and reconnection.
This mechanism overrides Java’s classes for net-
work operations (e.g., java.net.Socket and
java.net.ServerSocket) with customized
classes that emulate those characteristics of wire-
less networks by using bytecode rewriting tech-
niques. Our bytecode rewriting tool is based on
Apache Software Foundation’s byte code engi-
neering library (BCEL) [8], which enables byte-
code manipulations of Java classes, entirely
written in Java, and does not have to extend the
Java virtual machine. This mechanism detects
certain classes in target software and transforms
them into the corresponding customized classes
when the original classes are loaded. The current
implementation of this approach provides cus-
tomized TCP socket classes and can be explicitly
disconnected and reconnected by the RCS.

EMULATION OF USER INTERFACES

The displays and keyboards with which most
mobile terminals are equipped are limited. Each
emulator can explicitly constrain such user inter-
faces available through the target software by
using a set of its customized Java AWT classes.
It can also provide pictures of the target termi-
nal’s physical user interface as it would appear
to the end user. A typical mobile terminal will
include a screen that may allow the content to
be displayed. Therefore, the screen is seamlessly
embedded into the terminal pictures, and the
basic controls of the terminal can be simulated
through mouse-clickable buttons. We can display
the user interface of the target software with the
pictures of the terminal on the RCS’s screen and

operate it from the RCS’s standard input
devices, such as a keyboard and mouse.

SOFTWARE TESTING

Figure 3a shows the RCS’s screen. To save the
developer the trouble of testing the target soft-
ware running in an emulator, our approach
allows the developer to sit in front of the RCS.
The developer can control the migration of each
emulator and the execution mode of its target
software through the GUI displayed on the RCS
(the right window in Fig. 3a). The RCS can run
on standard workstations without any custom
hardware. It is responsible for managing the
whole system. It can always track the locations
of all the emulators, because each APH sends
certain messages to the RCS whenever a moving
emulator arrives or leaves. It can also monitor
the status of all APHs by periodically multicast-
ing query messages to them. Software successful-
ly tested in the emulator could still be run in the
same way on the device, without modifying or
recompiling it.

Each APH provides a runtime system for exe-
cuting the mobile-agent-based emulator and
migrating it to another APH. The current imple-
mentation uses our Java-based mobile agent sys-
tem, called MobileSpaces [9], but the approach
itself is independent of the system and can be
easily built on other mobile agent platforms. The
MobileSpaces runtime system supports a built-in
mechanism for transmitting the bitstream over
networks by using an extension of the HTTP
protocol. In almost all intranets there is a fire-
wall that prevents users from opening a direct
socket connection to a node across administra-
tive boundaries. Since this mechanism is based
on a technique called HTTP tunneling, emula-
tors can be sent outside a firewall as HTTP
POST requests, and responses can be retrieved
as HTTP responses.

The left window of Fig. 3a is the picture of a
terminal in which the user interface of the target
software tested in an emulator on a remote APH
is embedded.? To test the user interface of the

2 The target software is a map-viewer application men-
tioned in the following section.

62

IEEE Wireless Communications * October 2004

1908

izl 1913

1900 | 191 J] 1m

National Institute of Informatics

19F

l'u& ' 15

A
« >
A4

Back

1003 1904

st | sup | voee |
Dhconcwal|_cornect |
VR[5 Trpe-u =l

W Figure 3. A screenshot of the RCS when a map viewer application runs in the mobile-agent-based emulator on an APH.

target software running on remote APHs, we
used existing remote desktop systems. The cur-
rent implementation uses the Remote Abstract
Window Toolkit (RAWT) developed by IBM
[10].3 This toolkit enables Java programs that
run on a remote host to display GUI data on a
local host and receive GUI data from it. The
toolkit can be incorporated into each APH, thus
enabling the GUIs of application software run-
ning in a visiting emulator to be displayed on the
RCS’s screen, and operated using the RCS’s
keyboard and mouse. Therefore, the developer
can always test his or her target software, includ-
ing their GUIs, within the RCS, and the APHs
do not have to offer user-input and user-output
devices, or any graphics services.

REMARKS

The current implementation uses Java’s object
serialization mechanism as a mechanism for
transforming the emulator for Java software and
the target software into bitstreams that can mar-
shal the heap blocks of a program into bitstreams
but not stack frames. Therefore, it is impossible
for any active threads to migrate from one virtu-
al machine to another while preserving its execu-
tion state. This problem can be solved when
APHS supports persistent Java virtual machines
(e.g., PJava developed by Sun Microsystems and
the University of Glasgow) that preserve all the
Java objects’ execution states, including threads
and stack frames.*

3 The approach has supported two similar mechanisms,
Virtual Network Computing (VNC) and X-Windows.
Since RAWT is optimized to Java’s GUI, it enables our
target applications to be more efficiently displayed on the
RCS than with other mechanisms.

Security is essential in mobile agent or code
techniques. This problem in our emulators
becomes not serious because they are used only in
the process of software development. APHs can
inherit the security mechanism of the underlying
Java virtual machine and mobile agent system to
restrict agents so that software running in an emu-
lator can only access specified resources to protect
the APHs from incorrect or malicious software.

EXPERIENCE

In this section we describe some experience with
the approach through testing a prototype naviga-
tion system, which is a typical application of
mobile terminals equipped with conventional
wireless LAN interfaces. The system, described
in the first section of this article, guides a visitor
to the National Institute of Informatics’ building.
Each floor has its own LANs and one or more
WLAN access points. We assume that each visi-
tor has a small tablet PC to access location-
dependent information from the database servers
provided within the subnetwork of the current
floor via IEEE 802.11b. As a visitor moves from
floor to floor, the tablet PC leaves the previous
subnetwork and joins a new one. A map viewer
application running on the terminal automatically
accesses location-dependent information (e.g.,
maps on the current location) from the database
and displays the information on the tablet PC’s
screen. To test the system, we constructed a

4 However, such persistence extensions of Java are still
premature for attaining our goal, because they cannot
transfer most computational resources and do not often
coexist with essential optimization techniques for the Java
language.

IEEE Wireless Communications ¢ October 2004

63

-]

M Figure 4. The map viewer application running on a tablet PC.

mobile-agent-based emulator that corresponds to
the tablet PC. The emulator could migrate a map
viewer application to an APH in the subnetwork
of another floor, and enable the application to
access the local database of the floor via the
APH and display maps on the RCS’s screen.
Figure 4 shows the target tablet PC (Sony
VAIO Type-U with Windows XP) running the
target software tested in our emulator as shown
in Fig. 3. As illustrated in Figs. 3 and 4, both the
application running on the emulator and the one
running on the target terminal presented the
same navigation information. That is, the tested
application ran in the target terminal in the
same way as it was executed in the emulator.
The system uses a multicast-based service discov-
ery technique for visiting tablet PCs to automati-
cally detect database servers. That is, each server
periodically multicasts advertising messages with-
in the domain of its subnetwork to provide its
network address to visiting tablet PCs. Since
software running in the emulator directly uses
the current host’s APIs for UDP-based network-
ing, the emulator receives UDP multicasting
messages from servers in the domain as if the
software were joined to the domain.
Furthermore, this example shows that this
approach can provide a powerful method of test-
ing not only application software for mobile ter-
minals but also creating location-dependent
contents, such as maps and annotations about
locations. It can test server-side systems and con-
tents when client-side terminals access them.
Moreover, by using a remote desktop system
(IBM’s RAWT toolkit), this approach enables
the content creator to view the location-depen-
dent information that should be displayed on the
tablet PC on the screen of his or her stationary
RCS, and operate the software from the RCS
even while the viewer application runs in an
emulator on remote APHs and accesses servers
at its current location. Also, since the emulator
can define its own itinerary for multiple access
points, it can automatically follow the complex
mobility patterns of visitors and test the contents
displayed on the screen of the tablet PC. This is
useful in the development of track-dependent
contents in addition to location-dependent ones.

CONCLUSION

We have described an approach to testing soft-
ware designed to run on mobile terminals for 4G
wireless networks and wireless LANs. The
approach enables application-level software to
be executed and tested with the services and
resources provided through its current network
as if the software were being moved and execut-
ed on that target device when attached to the
network. Software tested successfully in the
emulator can be run in the same way on the tar-
get device without being modified or recom-
piled. Our early experience indicated that by
using the approach we can greatly reduce the
time and cost required to develop network-
dependent software for mobile terminals with
WLANS.

Further issues need to be resolved. Our
approach will be useful in emulating and testing
application-level ad hoc networking, since it can
model the deployment of mobility of mobile ter-
minals on different reachable subdomains. The
approach does not support terminals that con-
nect to multiple networks and reconnect to new
networks while they are running. This limitation
does not lessen the utility of the approach. Nev-
ertheless, we plan to support emulation of seam-
less roaming of terminals, including multi-input
multi-output connectivity.

REFERENCES

[1] I. Satoh, “A Testing Framework for Mobile Computing
Software,” IEEE Trans. Software Eng., vol. 29, no. 12,
2003, pp. 1112-21.

[2] Microsoft Corporation, “Universal Plug and Play Device
Architecture Version 1.0” June, 2000. http://www.upnp.
org/UpnPDevice_Architecutre_1.0.htm

[3] K. Arnold et al., The Jini Specification, Addison-Wesley,
1999.

[4] M. Le, F. Burghardt, and J. Rabaey, “Software Architec-
ture of the Infopad System,” Wksp. Mobile and Wire-
less Info. Sys., 1994.

[5] N. Davies et al., “A Network Emulator to Support the
Development of Adaptive Applications,” Proc. USENIX
Symp. Mobile and Location-Independent Comp., 1995.

[6] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding
Code Mobility,” IEEE Trans. Software Eng., vol. 24, no.
5, 1998.

[7]1 B. D. Lange and M. Oshima, Programming and Deploying
Java Mobile Agents with Aglets, Addison-Wesley, 1998.

[8] M. Dahm, “Byte Code Engineering Library,” http://jakarta.
apache.org/bcel/index.html

[9] I. Satoh, “MobileSpaces: A Framework for Building
Adaptive Distributed Applications Using a Hierarchical
Mobile Agent System,” Proc. Int’l. Conf. Distrib. Comp.
Sys., Apr. 2000, pp. 161-68.

[10] International Business Machines Corporation, “Remote
Abstract Window Toolkit for Java,” http://www.alpha-
works.ibm.com/, 1998.

BIOGRAPHY

ICHIRO SATOH [M] (ichiro@nii.ac.jp) received his B.E., M.E,
and Ph.D. degrees in computer science from Keio Univer-
sity, Japan, in 1996. From 1996 to 1997 he was a research
associate in the Department of Information Sciences,
Ochanomizu University, Japan, and from 1998 to 2000 he
was an associate professor in the same department. Since
2001 he has been an associate professor at the National
Institute of Informatics, Japan. He received the IPSJ paper
award, IPSJ Yamashita SIG research award, and JSSST
Takahashi research award. He is a member of six learned
societies, including ACM. He is serving as Publicity Chair
for IEEE PerCom 2005 and on technical program commit-
tees of several IEEE conferences. His current research
interests include distributed, mobile, and pervasive com-
puting.

64

IEEE Wireless Communications * October 2004

