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Abstract
The image irradiance of a three-dimensional object is

known to be the function of three components: the dis-
tribution of light sources, the shape, and reflectance of a
real object surface. In the past, recovering the shape and
reflectance of an object surface from the recorded image
brightness has been intensively investigated. On the other
hand, there has been little progress in recovering illumina-
tion from the knowledge of the shape and reflectance of a
real object. In this paper, we propose a new method for es-
timating the illumination distribution of a real scene from
image brightness observed on a real object surface in that
scene. More specifically, we recover the illumination dis-
tribution of the scene from a radiance distribution inside
shadows cast by an object of known shape onto another ob-
ject surface of known shape and reflectance. By using the
occlusion information of the incoming light, we are able
to reliably estimate the illumination distribution of a real
scene, even in a complex illumination environment.

1 Introduction
The image irradiance of a three-dimensional object is

known to be the function of the following three compo-
nents: the distribution of light sources, the shape, and re-
flectance of a real object surface. From the relationship
among them, three kinds of analyses on the recorded image
brightness are derived: recovering the surface shape from
the surface reflectance and illumination of the scene, recov-
ering the surface reflectance from the surface shape and il-
lumination of the scene, and recovering illumination from
the shape and the reflectance of the surface.

In the past, the first two kinds of analyses, the shape re-
covery and the reflectance recovery, have been intensively
studied using the shape from shading method [7, 8, 9, 16]
as well as through reflectance analysis research [1, 12, 13,
15, 18] . In contrast, there has been little progress on the
subject of recovering illumination from the knowledge of
the shape and the reflectance of an object surface. This is
because real scenes usually include both direct and indirect
illumination distributed in a complex way and it is difficult
to obtain correct illumination models to be used for the es-
timation. Most of the previously proposed methods related

with the first two kinds of analyses aimed to estimate illu-
minant direction and color in a very specific illumination
condition such as a case where there would be only one di-
rect light source in the scene. Accordingly, those methods
cannot be applied to the images taken under natural illumi-
nation environments.

The purpose of this study is to present our progress in
recovering an illumination distribution of a real scene from
the knowledge of the shape and reflectance of an real ob-
ject. In the proposed method, we use radiance changes in-
side shadows rather than appearance changes on the surface
due to the 3D geometry of the surface and the illuminant di-
rection. More specifically, we estimate an illumination dis-
tribution of the scene by observing a radiance distribution
inside shadows cast by an object of known shape onto an-
other object surface of known shape and reflectance. Shad-
ows in a real scene are caused by the occlusion of incoming
lights as illustrated in Figure 1, and thus shadows contain
various pieces of information about the illumination of the
scene. Nevertheless, in the past, shadows have been used
for determining the 3D shapes and orientations of an object
which cast shadows onto the scene [2, 11, 14, 19], while
very few studies have focused on the the illuminant infor-
mation which shadows could provide.

In the proposed method, we are able to reliably estimate
an illumination distribution of a real scene by making use of
the occlusion information of the incoming light. Also, our
method is applicable to the images taken under a complex
illumination environment such as images taken in an ordi-
nary room, including reflections from the wall and other
objects in the scene.

1.1 Overview
Before we describe the proposed method in detail, we

should clarify the basic steps of our method.
First, we take an image of the scene using a color CCD

camera so that shadows of an object appear in the image.
In the rest of the paper, we refer to the image with shadows
as theshadow imageand the object of known shape, which
cast shadows onto the scene, as theoccluding object. (A
typical example of ashadow imageis shown in Figure 3.)

Then, based on the radiance distribution inside shadows,
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an illumination distribution of a real scene is estimated as a
collection of imaginary point light sources distributed over
the entire scene. The key idea of the proposed method is the
discretization of the overall illumination distribution by us-
ing the node directions of a geodesic dome. In the proposed
method, we assume that light sources in the scene are suf-
ficiently distant from the objects and thus all light sources
project parallel rays onto the object surface.

By substituting a collection of imaginary point light
sources for the entire illumination, we are able to derive a
system of equations inn unknown radiance values of imag-
inary point light sources from the image irradiance of the
shadow image. We then solve for a solution set of unknown
radiance values which approximates the illumination distri-
bution of the scene.

The rest of the paper is organized as follows. In Section 2
and Section 3, we explain how to estimate an illumination
distribution of a real scene from the image irradiance of a
shadow image. We first obtain a formula which relates an il-
lumination distribution of a real scene with the image irradi-
ance of theshadow image(Section 2). Second, by assigning
the image irradiance of theshadow imageto the formula, we
obtain a set of linear equations with unknown illumination
radiance values sampled at an equal solid angle. Finally,
we solve the set of linear equations for an illumination radi-
ance solution set which represents the illumination distribu-
tion of the scene (Section 3). Section 4 shows experimental
results of the proposed method applied to real images. To
evaluate the accuracy of the illumination distribution esti-
mated by our method, we superimpose a synthetic object
with the same shape as that of theoccluding objectonto an
image of the scene. In Section 5, we present concluding
remarks.

2 Formula for Relating Illumination Radi-
ance with Image Irradiance

In this section, we present a formula which relates an
illumination distribution of a real scene with the image irra-
diance of ashadow image. Based on the image formation,
the formula is obtained as follows:

1. Illumination radiance to scene irradiance: find a re-
lationship between the illumination distribution of a
real scene and the irradiance at a surface point in the
scene.

2. Scene irradianceto scene radiance: compute how
much of the incoming lights are reflected from the sur-
face toward an image plane.

3. Scene radianceto image irradiance: find a relation-
ship between the reflected light from the surface and
the image irradiance at a corresponding point on the
image plane.

(a) (b)

Figure 1: Total irradiance: (a) withoutoccluding object(b)
with occluding object

2.1 From Illumination Radiance to Scene Irradi-
ance

First, scene irradiance is computed from the entire illu-
mination of the scene. To take illumination from all direc-
tions into account, let us consider an infinitesimal patch of
the extended light source, of sizeδθi in polar angle andδφi

in azimuth as shown in Figure 2.
Seen from the center pointA, this patch subtends a

solid angleδω = sin θiδθiδφi. Let L0(θi, φi) be the
illumination radiance per unit solid angle coming from
the direction (θi, φi); then the radiance from the patch is
L0(θi, φi) sin θiδθiδφi[6], and the total irradiance of the
surface pointA is

E =
∫ π

−π

∫ π
2

0

L0(θi, φi) cos θi sin θidθidφi (1)

Then occlusion of the incoming light by theoccluding ob-
ject is considered as

E =
∫ π

−π

∫ π
2

0

L0(θi, φi)S(θi, φi) cos θi sin θidθidφi (2)

whereS(θi, φi) are occlusion coefficients;S(θi, φi) = 0 if
L0(θi, φi) is occluded by the occluding object; Otherwise
S(θi, φi) = 1.

2.2 From Scene Irradiance to Scene Radiance
Some of the incoming lights at pointA are reflected to-

ward the image plane. As a result, pointA becomes a sec-
ondary light source with scene radiance, which can be com-
puted from scene irradiance at pointA.

The bidirectional reflectance distribution function
(BRDF) f(θi, φi; θe, φe) is defined as a ratio of the radi-
ance of a surface as viewed from the direction(θe, φe) to
the irradiance resulting from illumination from the direc-
tion (θi, φi). Thus, by integrating the product of the BRDF
and the illumination radiance over the entire hemisphere,
the scene radianceRs(θe, φe) viewed from the direction
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Figure 2: (a)the direction of incident and emitted light rays
(b)infinitesimal patch of an extended light source)

(θe, φe) is computed as

Rs(θe, φe) =
∫ π

−π

∫ π
2

0

f(θi, φi; θe, φe)L0(θi, φi)

S(θi, φi) cos θi sin θidθidφi (3)

2.3 From Scene Radiance to Image Irradiance
Finally, the illumination radiance of the scene is related

with image irradiance on the image plane. Since what we
actually observe is not image irradiance on the image plane,
but rather a recorded pixel value in ashadow image, it is
also necessary to consider the conversion of the image ir-
radiance into a pixel value of a corresponding point in the
image. This conversion includes several factors such as D/A
and A/D conversions in a CCD camera and a frame grabber.

Other studies concluded that image irradiance was pro-
portional to scene radiance [6]. In our method, we calibrate
a linearity of the CCD camera by using a gray scale chart so
that the recorded pixel values also become proportional to
the scene radiance of the surface. From Equation 3 the pixel
value of theshadow imageP (θe, φe) is thus computed as

P (θe, φe) = k

∫ π

−π

∫ π
2

0

f(θi, φi; θe, φe)L0(θi, φi)

S(θi, φi) cos θi sin θidθidφi (4)

wherek is a scaling factor between scene radiance and a
pixel value. Due to the scaling factork, we are able to
estimate unknownL0(θi, φi)(i = 1, 2, ...., n) up to scale.
To obtain the scale factork, we need to perform photo-
metric calibration between pixel intensity and physical unit
(watt/m2) for the irradiance.

3 Estimation of Illumination Distribution Us-
ing Image Irradiance

After obtaining the formula which relates the illumi-
nation radiance of the scene with the pixel values of the
shadow image, illumination radiance is estimated based on
the recorded pixel values of theshadow image.

3.1 Approximation of Illuminate Distribution by
a Geodesic Dome

First, the double integral in Equation 4 is approximated
by discrete sampling over the entire surface of the extended
light source.

Node directions of a geodesic dome are used for ap-
proximating the illumination distribution of the scene as a
summation of illumination radiance sampled at equal solid
angles. Nodes of a geodesic dome are known to be uni-
formly distributed over the surface of a sphere. Therefore,
by usingn nodes of a geodesic dome in a northern hemi-
sphere as a sampling direction, the double integral in Equa-
tion 4 is approximated as a sampling at an equal solid angle
δω = 2π/n.

P (θe, φe) =
n∑

i=1

f(θi, φi; θe, φe)L(θi, φi)S(θi, φi) cos θi

(5)
whereL(θi, φi) is the illumination radiance per solid angle
δω = 2π/n coming from the direction(θi, φi), which also
includes the scaling factork between scene radiance and
pixel values. The number of the nodesn can be adjusted by
changing the sampling frequency of a geodesic dome.

It should be noted that the recorded pixel valueP (θe, φe)
is computed as a function of the illumination radiance
L0(θi, φi) and the BRDFf(θi, φi; θe, φi) in Equation 5. We
thus take two different approaches depending on whether
BRDF of the surface is given in the following sections. We
explain the case where the BRDF is given in Section 3.2
and Section 3.3, and the other case where the BRDF is not
given in Section 3.4.

3.2 Known Reflectance Properties: Lambertian
Model

Suppose the surface is a Lambertian surface; BRDF
f(θi, φi; θe, φe) for a Lambertian surface is known to be
a constant. From Equation 5, an equation for a Lambertian
surface is obtained as

P (θe, φe) =
n∑

i=1

KdL(θi, φi)cosθiS(θi, φi) (6)

whereKd is a diffuse reflection parameter of the surface.
From Equation 6, a linear equation is obtained for each im-
age pixel of theshadow imageas

a1L1 + a2L2 + a3L3 + · · · + a1nLn = P (7)

whereLi (i = 1, 2, ...., n) aren unknown illumination ra-
diance specified byn node directions of a geodesic dome.
The coefficientsai(i = 1, 2, ...., n) representKd cos θiSi in
Equation 6; we can compute these coefficients from the 3D
geometry of a surface point, theoccluding objectand the
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illuminant direction.1 P is the values of the image pixel
P (θe, φe).

If we select a number of pixels, saym pixels, a set of
linear equations is obtained as

a11L1 + a12L2 + a13L3+ · · · + a1nLn = P1

a21L1 + a22L2 + a23L3+ · · · + a2nLn = P2

a31L1 + a32L2 + a33L3+ · · · + a3nLn = P3

· · · · · ·
am1L1 + am2L2 + am3L3+ · · · + amnLn = Pm(8)

Therefore, by selecting a sufficiently large number of im-
age pixels, we are able to solve for a solution set of un-
knownLi’s [17]. Note that, since each pixel consists of 3
color bands (R, G, and B), each band of radianceLi is also
estimated from the corresponding color band of the image.2

3.3 Known Reflectance Properties:
Non-Lambertian Model

Our method is not limited only to the Lambertian re-
flection model; but it can also be extended to other reflec-
tion models. As shown in the previous case, our method
requires a set of linear equations with unknown illumina-
tion radiance. Hence, any reflection model is applicable
to our method providing such a set of linear equations is
obtained. Take a simplified Torrance-Sparrow reflection
model [15, 20] for example; the pixel value of shadow im-
ageP (θe, φe) is computed as

P (θe, φe) =

n∑
i=1

(Kdcosθi + Ks
1

cosθe
e

−γ(θi,φi)
2

2σ2 )

S(θi, φi)L(θi, φi) (9)

whereγ(θi, φi) is the angle between the surface normal
and the bisector of the light source direction and the view-
ing direction,Kd andKs are constants for the diffuse and
specular reflection components, andσ is the standard de-
viation of a facet slope of the Torrance-Sparrow reflection
model.

From Equation 9, we obtain a linear equation for
each image pixel whereL(θi, φi)(i = 1, 2, ...., n)

are unknown illumination radiance, and(Kdcosθi +

Ks
1

cosθe
e

−γ(θi,φi)
2

2σ2 )S(θi, φi) (i = 1, 2, ...., n) are known co-
efficients. Again, if we use a sufficiently large number of
pixels for the estimation, we are able to solve for a so-
lution set of unknown illumination radianceL(θi, φi)(i =

1, 2, ...., n).
1 We established the correspondence between the 3D world coordinate

system in the scene and the 2D image coordinate system by using the cam-
era calibration algorithm proposed by Tsai [21]. From the calibration pro-
cess, a plane ofz = 0 is also defined on the calibration board, onto which
theoccluding objectcast shadows.

2 The question of how to select image pixels to obtain a solution set for
unknown radiance values seems to be leading to an interesting research
topic. For instance, a similar discussion on this subject can be found
in [10].

3.4 Unknown Reflectance Properties : Lamber-
tian Model

Even in the case where the BRDF is not given, we are
still able to estimate an illumination distribution of a real
scene if the surface is a Lambertian surface. The question
we have to consider here is how to cancel the additional
unknown numberKd in Equation 6.

An additional image of the scene taken without theoc-
cluding objectis used to cancelKd. We refer to the im-
age as asurface image. The image irradiance of asurface
imagerepresents the surface color of the plane in the case
where none of the incoming light is occluded. From this,
in the case of thesurface image, the shadow coefficients
S(θi, φi) always becomeS(θi, φi) = 1. Therefore, using
Equation 6, the image irradianceP ′(θe, φe) of thesurface
imageis computed as

P ′(θe, φe) = Kd

n∑
j=1

L(θj , φj)cosθj (10)

From Equation 6 and Equation 10, the unknownKd is
canceled as

P (θe, φe)
P ′(θe, φe)

=
Kd

∑n
i=1 L(θi, φi)cosθiS(θi, φi))

Kd

∑n
j=1 L(θj, φj)cosθj

=
n∑

i=1

L(θi, φi)∑n
j=1 L(θj , φj)cosθj

cosθiS(θi, φi)

(11)

Finally, we obtain a linear equation for each image pixel
where L(θi,φi)∑

n

j=1
L(θj,φj)cosθj

(i = 1, 2, ...., n) are unknowns,

cosθiS(θi, φi) (i = 1, 2, ...., n) are computable coefficients,
and P (θe,φe)

P ′(θe,φe) is a right-hand side quantity. Again, if we use
a sufficiently large number of pixels for the estimation, we
are able to solve the set of linear equations for a solution set
of unknown L(θi,φi)∑

n

j=1
L(θj,φj)cosθj

(i = 1, 2, ...., n).

We should point out that the estimated radiance from
these equations is a ratio of the illumination radiance in
one directionL(θi, φi) to scene irradiance at the surface
point

∑n
j=1 L(θj , φj)cosθj . Hence, without knowing the

ratio of the scene irradiance among color bands, there is no
way to relate the estimated radiance over the color bands.
Our method avoids this problem because of the initial cam-
era calibration. Since we use a white board with regularly
spaced dots as a calibration board, the recorded color of the
board directly shows the ratio of the scene irradiance among
color bands.

4 Experimental Results
We have tested the proposed method by using real im-

ages of indoor environments. To evaluate the accuracy of
the illumination distribution estimated by our method, we
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superimpose a synthetic object with the same shape as that
of the occluding objectonto an image of the scene taken
without theoccluding object, and compare the shadows of
the synthetic object with those of theoccluding objectin the
shadow image. Section 4.1 explains how to superimpose a
synthetic object onto the real scene by using the estimated
illumination distribution. In Section 4.2, we describe ex-
perimental results in the case where reflectance properties
of a reflected surface are known. Then, in Section 4.3, we
describe experimental results in the case where reflectance
properties of the surface are unknown.
4.1 Superimposing a Synthetic Occluding Object

onto the Scene
The ray casting algorithm is used to superimpose a syn-

thetic object. If the ray generated from camera projection
center through the image pixel intersects a synthetic object,
we compute a color to be observed at the surface point using
a simplified Torrance-Sparrow reflection model from Sec-
tion 3.3. From the model, a color to be observed at the
surface pointRs(θe, φe) is computed using the estimated
illumination distribution of the real scene as

Rsc(θe, φe) = Kd,c

n∑
i=1

Lc(θi, φi)cosθi

+Ks,c

n∑
i=1

Lc(θi, φi)
1

cosθe
e

−γ(θi,φi)
2

2σ2 (12)

c = R, G, B

whereLc(θi, φi) (i = 1, 2, ...., n)are the estimated illumina-
tion radiance values.

Otherwise, the influence of the synthetic object onto the
real object surface is considered. In other words, we create
shadows cast by the synthetic object onto the surface.

First, we compute total irradianceE1 at the surface point
using the estimated illumination distribution in the case
where a synthetic object does not occlude any incoming
light (Figure 1.a).

E1,c =
n∑

i=1

Lc(θi, φi)cosθi c = R, G,B (13)

whereL(θi, φi) (i = 1, 2, ...., n) are the estimated illumina-
tion radiance values.

Second, we compute total irradianceE2 at the surface
point in the case where the synthetic object occludes some
of the incoming light (Figure 1.b).

E2,c =
n∑

i=1

Lc(θi, φi)cosθiS(θi, φi) c = R, G,B

(14)
whereS(θi, φi) = 0 if the synthetic object occludes illumi-
nation radianceL(θi, φi); otherwise,S(θi, φi) = 1.

Then, we compute the ratio ofE2 to E1, which repre-
sents how much of the irradiance at the intersection would
still be preserved if the synthetic object were placed in the
scene. Finally, by multiplying the ratioE2/E1 to the ob-
served color of the image pixelI, we obtain the colorI ′

that would be the color of the image pixel if there were a
synthetic object in the scene.

I ′c = Ic
E2,c

E1,c
c = R, G,B (15)

4.2 Experimental Results for Known Reflectance
Property

An image of a surface with anoccluding objectcalled a
shadow imagewas taken under the usual illumination en-
vironment in our office, including direct light sources such
as fluorescent lamps and windows to the outside, as well as
indirect illumination such as reflections from a wall (Fig-
ure 3).

First, an illumination distribution of the scene was es-
timated using the image irradiance inside shadows in the
shadow imageas explained in Section 3.2. Then a synthetic
object with the same shape as that of theoccluding object
was superimposed onto an image of the scene taken without
theoccluding object, called thesurface image. Synthesized
results are shown in Figure 4 (a), (b), and (c). Also, we
superimposed another synthetic object of a different shape
onto the scene in Figure 4(d). The number of nodes of a
geodesic dome used for the estimation is shown under the
resulting image.

We found through our experiments that, the larger num-
ber of nodes we used, the more the shadows of the syn-
thetic object resembled those of theoccluding objectin the
shadow image. Especially in the case of 521 nodes, the
shadows of the synthetic object are indistinguishable from
those of theoccluding objectin the shadow image: this
shows that the estimated illumination distribution gives a
good presentation of that of the real scene.

Figure 5 numerically shows the improvement of the ac-
curacy by increasing the number of samplings. The verti-
cal axis represents average error in pixel values inside the
shadow regions in the synthesized images compared with
those in theshadow image. Here, the initial difference in
pixel values of shadow regions between thesurface image
and theshadow imageis set to100 %. The horizontal axis
represents the number of nodes of a geodesic dome used for
the estimation. From the plot in the figure, we can clearly
see that the accuracy improves rapidly as we use more imag-
inary point light sources.

Also the small pictures right next to the plot shows error
distributions inside shadow regions in the synthesized im-
ages. Darker color represents larger error in a pixel value in
the shadow regions compared with the real shadows of the
occluding objectin theshadow image.
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(b)(a) (c)

Figure 3: Input images : (a)surface image(b) shadow im-
age(c) calibration image

(a) number of nodes :  89 (b) number of nodes : 193

(d) number of nodes : 521(c) number of nodes : 521

Figure 4: Synthesized images: known reflectance property

Also, the resulting images indicate that it is required to
adjust the number of nodes of a geodesic dome depending
on the complexity of a scene to obtain a reasonably good
estimation for less computational cost. We are currently
extending our work so that an appropriate number of nodes
is automatically selected for the estimation, depending on
the scene complexity.

4.3 Experimental Results for Unknown Re-
flectance Property

We also applied our method to the case where reflectance
properties of a surface were unknown. The input images
used in this experiment are shown in Figure 6. Since the re-
flectance properties of the surface were unknown, the image
irradiance of both theshadow imageand thesurface image
were used for estimating the illumination distribution of the
scene as explained in Section 3.4.

In the same way as in the previous case, a syntheticoc-
cluding objectwas superimposed onto the surface of the
surface image. Synthesized results are shown in Figure 7.
Again, in the case of 521 nodes, the shadows in the resulting
image strongly resemble those of theoccluding objectin the
shadow image. This shows that the estimated illumination
distribution gives a good representation of the characteris-
tics of the real scene.
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Figure 5: Error Analysis: known reflectance property

We concluded from our experiments that the proposed
method is effective for providing an illumination distribu-
tion which can be used as a substitution for a real illumina-
tion distribution.

5 Conclusions
In this paper, we have proposed a new method for esti-

mating an illumination distribution of a real scene from a
radiance distribution inside shadows cast by a real object of
known shape onto other object surface of known shape and
known reflectance. By using the occlusion information of
the incoming light, we could estimate an illumination dis-
tribution of a real scene reliably even for the images taken
in a complex illumination environment.

There have also been several methods proposed for mea-
suring illumination of a real scene in the field of augmented
reality research [3, 4, 5]. However, those methods tended to
measure the illumination directly from images of the scene
and therefore, they suffered from two technical problems:
how to capture a wide field of view of the scene, and how
to record high dynamic range of the scene. In the proposed
method, since we observe shadows and not the illumination
itself, no effort to overcome these problems is required.

To demonstrate the effectiveness of the proposed
method, we have successfully tested our method by using
sets of real images taken in our office with different surface
materials of shadow regions.
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