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Abstract

This paper presents a technique for determining an ob-
ject’s shape based on the similarity of radiance changes ob-
served at points on its surface under varying illumination. To
examine the similarity, we use an observation vector that rep-
resents a sequence of pixel intensities of a point on the surface
under different lighting conditions. Assuming convex objects
under distant illumination and orthographic projection, we
show that the similarity between two observation vectors is
closely related to the similarity between the surface normals
of the corresponding points. This enables us to estimate the
object’s surface normals solely from the similarity of radi-
ance changes under unknown distant lighting by using dimen-
sionality reduction. Unlike most previous shape reconstruc-
tion methods, our technique neither assumes particular re-
flection models nor requires reference materials. This makes
our method applicable to a wide variety of objects made of
different materials.

1. Introduction
The appearance of an object is determined by several fac-

tors including illumination, viewing geometry, and the shape
and surface material of the object. Changing any one of these
factors should change the object’s appearance. These factors
are, in general, nonlinearly related to the object’s appearance,
and consequently an inverse problem of estimating them be-
comes difficult unless there is some a priori knowledge of the
scene. Most of the previous techniques for solving this in-
verse problem thus try to estimate some of these factors from
images of a scene by assuming that the others are known.

Previous studies of shape reconstruction have demon-
strated that the shape of an object can be recovered from mul-
tiple images of the object taken under various lighting con-
ditions assuming that there is some knowledge of the scene,
e.g., illumination and/or surface materials [19, 20, 7, 12].1

1Most of the shape-from-shading approaches estimate an object’s shape
from a single image assuming distant illumination and uniform Lambertian
reflectance [21].
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Figure 1. Determining an object’s shape based on similarity of radi-
ance changes observed at its surface points.

The classical photometric stereo approach presented in [20, 7]
recovers the shape of a Lambertian object from multiple im-
ages of the object taken under known light sources. Later,
this approach was extended to several directions includ-
ing photometric stereo methods for non-Lambertian surfaces
[8, 3, 12, 4] (see [19] for a good survey) and uncalibrated
photometric stereo methods [5, 1, 2].

However, real-world materials sometimes have complex
appearances that prevent us from extracting their shapes us-
ing analytic reflectance models. To cope with this problem,
Hertzmann and Seitz proposed the use of a calibration object
[6], which had also been suggested in early work on pho-
tometric stereo [7]. Instead of computing a reflectance map
based on an analytic reflection model, images of a calibra-
tion object of a known shape made of the same material are
captured under the same lighting conditions as a target object
and used as an empirical reflectance map. Later, Hertzmann
and Seitz extended their method so that instead of using a
single calibration object, it uses a small number of them to
estimate the shape of objects with non-uniform surface ma-
terials. However, the issue of what kinds of reference ma-
terials are suitable for representing the complex appearances
of a wide variety of real-world materials still remains to be
addressed.
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Recently, Koppal and Narasimhan presented a clustering-
based technique to find iso-surface normal clusters of scene
points without requiring knowledge about materials and light-
ing [9]. Their approach shows how effective it is to analyze
the temporal variation in the appearance of a scene for ob-
taining its meaningful geometric structure; e.g., each face of
a planar object is found regardless of its texture. However,
since the method finds iso-surface normal clusters as the ge-
ometric structure of the scene, the 3D shape of the scene can-
not be obtained unless another shape reconstruction technique
such as uncalibrated photometric stereo is used, as suggested
in their work.

In this work, we present a method for recovering an ob-
ject’s shape directly from input images of the object based on
the similarity of the radiance changes observed at points on
its surface under varying illumination (Figure 1). To examine
the similarity, we consider an observation vector that repre-
sents a sequence of pixel intensities of a surface point under
different lighting conditions. Assuming convex objects un-
der distant illumination and orthographic projection, we show
that the similarity between two observation vectors is closely
related to the similarity between surface normals of the cor-
responding points.

This gives rise to the interesting theory that within the
space containing a set of observation vectors, all of the ob-
servation vectors should lie on a manifold that represents the
surface normals of the corresponding surface points. Accord-
ingly, we can find the surface normals of an object by using
a dimensionality reduction technique that best preserves the
intrinsic structure in the input space of observation vectors
as illustrated in Figure 2. Our method is capable of estimat-
ing the dense distribution of an object’s surface normals by
analyzing the similarities of radiance changes between scene
points.

As far as we know, this is the first attempt to discover an
object’s shape solely from a set of images of the object based
on manifold learning techniques. Unlike most previous shape
reconstruction methods, our technique neither uses particu-
lar reflection models, nor requires empirical reflection maps.
This makes our method applicable to a wide variety of objects
with different types of material.

The rest of this paper is organized as follows. Section
2 considers the similarity of radiance changes observed at
points on an object’s surface under varying illumination, and
Section 3 outlines our idea of estimating an object’s surface
normals from the similarity of radiance changes. Section 4
discusses the issue of how the similarity of two observation
vectors is related to the similarity of their surface normals.
Section 5 describes our algorithm for recovering the object’s
shape by using a dimensionality reduction technique. Section
6 shows experimental results for synthetic and real data and
Section 7 presents concluding remarks.
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Figure 2. 3-d embedding of observation vectors.
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Figure 3. Geodesic distance measured along a manifold.

2. Similarity of Radiance Changes
Let us first analyze the similarity of radiance changes ob-

served at points on an object’s surface under n different light
sources distributed around the object to illuminate it from var-
ious directions. Suppose Ik

p is the brightness of each pixel or
each corresponding surface point p seen under the kth illumi-
nation with unit radiance.

A vector containing the set of Ik
p (k = 1, 2, · · · , n) in its

elements is normalized

Ip =

(
I1
p , · · · , In

p

)T√∑n
k=1(Ik

p )2
(1)

and referred to as an observation vector. From input images
with m surface points (p = 1, · · · , m), we obtain m obser-
vation vectors. In the following, a n-dimensional space con-
taining a set of m observation vectors is referred to as an ob-
servation space.

Assuming distant light, orthographic projection, isotropic
reflection, and no local effects such as cast shadows and in-
terreflections, we consider the brightness of p under the kth
illumination described in the form:

Ik
p = ρpg(θ′k, θ′v, φ′

k − φ′
v), (2)

where (θ′k, φ′
k) and (θ′v, φ′

v) are the incident and reflection di-
rections defined in the local coordinates with respect to the
point p. Function g represents how much of the incident light
from the direction (θ′k, φ′

k) is reflected on the point toward
(θ′v, φ′

v). ρp is a reflection coefficient that varies over the sur-
face.



Let np be the surface normal of p and lk and v denote the
incident direction of the kth illumination and the direction to
the viewer represented by the global coordinate, respectively.
Note that lk and v are constant over all surface points of the
object under the assumptions of distant illumination and or-
thographic projection.

The angles θ′k, θ′v , and φ′
k − φ′

v can be computed from np,
v, and lk,2 and (2) is thus rewritten as

Ik
p = ρpg

′(np, lk,v), (3)

where the function g′ represents how much of the incident
light lk is reflected on the point of its normal np toward v.

From the normalization process in (1), reflectance coeffi-
cient ρp comes to have no influence on the observation vec-
tor Ip. From this, we see that differences in the observation
vectors among all surface points are caused by differences
in their surface normals. Namely, Iq = Iw is equivalent to
nq = nw for surface points q and w, which was used as the
orientation-consistency cue in [6].

As we will see later in Section 4, the similarity between
two observation vectors is closely related to the similarity
between the surface normals of the corresponding surface
points. This enables us to estimate the distribution of an ob-
ject’s surface normals by analyzing the similarities of its ob-
servation vectors.

Note that the form in (2) can represent a wide variety of
BRDFs including commonly used reflection models such as
Lambertian, Oren-Nayar [13], Phong, Torrance-Sparrow[16],
and isotropic Gauss[17] models. On the other hand, some
BRDFs do not follow this form exactly: e.g., a dichromatic
reflection model whose relative strength between its diffuse
and specular components varies over the object surface. How-
ever, as shown later in our experimental results, our method
is still able to recover object shapes reasonably well even for
BRDFs that do not follow (2) exactly.

3. Shape Recovery by Embedding of Observa-
tion Vectors

The set of m observation vectors seen under n different
light sources can be thought of as m points in n-dimensional
space. As we see in the previous section, differences in the
observation vectors among all surface points are caused by
differences in their surface normals in the case where their n
elements are described in the form (2).

It can be further said from this that within the observa-
tion space, all of the m points lie on an intrinsically two-
dimensional manifold that represents the surface normals of
the corresponding m surface points because surface normals
have two degrees of freedom.3

2Since cos θ′k = nT
p lk , cos θ′v = nT

p v, cos(φ′
k − φ′

v) = [lTk v −
(nT

p lk)(nT
p v)]/[sin cos−1(nT

p lk) sin cos−1(nT
p v)].

3Note that this manifold has two dimensions because surface normals
(nx, ny , nz) are described in elevation and azimuthal angles (θ, φ).

The key idea of our work is that since surface normals are
defined on a unit sphere in a three-dimensional space, if we
find three-dimensional embedding of the observation vectors
using the dimensionality reduction that best preserves its in-
trinsic structure, the resulting three-dimensional space should
reveal the distribution of the object’s surface normals as illus-
trated in Figure 2.

It is important to note that what we count on here is the
two-dimensional manifold hidden in the observation space
and the similarity of two observation vectors needs to be de-
termined by their shortest distances measured along a mani-
fold. Such a distance is called geodesic distances.

In our method, a nonlinear embedding method, called iso-
metric feature mapping (Isomap) is used for dimensionality
reduction [15].4 Isomap assumes that, for neighboring data
points, distances defined in an input space such as a Euclidean
distance provides good approximations of the geodesic dis-
tances. Accordingly geodesic distances for faraway points
are computed by adding up a sequence of distances between
neighboring points.

For instance, in Figure 3, the geodesic distance between
two observation vectors Iq and Is denoted to as dG(q, s) is
approximated by adding up a sequence of Euclidean distances
between neighboring points as

dG(q, s) ≅ |Iq − Iw| + |Iw − Ir| + |Ir − Is|.

Tenenbaum et al. demonstrated that Isomap could find
low-dimensional representations of natural images, e.g., im-
ages with different poses and lighting directions [15]. Pre-
vious studies have also shown that scene conditions under
which input images are captured could be recovered through
dimensionality reduction: Pless and Simon estimated view-
ing directions or object poses in [14], and Winnemoller et al.
recovered the light source directions in [18]. However, no
theoretical insight into why dimensionality reduction is ef-
fective in extracting such information from the input image
space has been provided.

In the next section, we will show that the Euclidean dis-
tance between two neighboring observation vectors is indeed
a good approximation of the difference between their surface
normals. This means that Isomap is suitable for revealing the
intrinsic structure of the observation space.

It should be also noted that previously proposed methods
of analyzing images using dimensionality reduction aimed at
recovering scene conditions under which images of unknown
subjects are captured, e.g., viewing direction or light source
directions. On the other hand, our goal is to extract the infor-
mation about a photographed subject from images captured
under unknown conditions.

4The set of observation vectors generally has intrinsically nonlinear struc-
tures, and classical techniques for dimensional reduction, such as principal
component analysis (PCA) and multidimensional scaling (MDS) are not ef-
fective in revealing such structures.



4. Theoretical Insight into Similarity of Obser-
vation Vectors

This section discusses the important issue of how the simi-
larity of two observation vectors is related to the similarity of
their surface normals. To get some insight into good similar-
ity measures for finding a manifold representing surface nor-
mals, we derive a distance measure for two commonly used
reflectance models.

We show that the obtained measures are approximately
equal to or closely related to the Euclidean distance |Ii − Ij |
when the distance between two observation vectors of two
surface points i and j is small (Ii ≅ Ij). Note that, even
though the two similarity measures are derived from paramet-
ric reflection models, our method is by no means restricted to
particular reflection models.

Recall that Isomap assumes that, for neighboring data
points, a distance defined in an input space provides good
approximations of the geodesic distances. If two observation
vectors are detected as neighbors with a small distance, this
should also indicate that the distances between their surface
normals are small.

4.1. Discussion of Body Reflection

First, we consider radiance changes of body reflection as
an example. As shown in Appendix A, assuming that a con-
vex object with a Lambertian surface is illuminated by a set
of directional light sources distributed around the object with
uniform density, the inner product of observation vectors Ii

and Ij is given by
IT
i Ij ≅ nT

i nj , (4)

when the corresponding surface normals satisfy ni ≅ nj .
Because the observation vectors are normalized so that

they have unit length, it is clear that

IT
i Ij = 1 − (|Ii − Ij |2/2). (5)

In addition, when Ii ≅ Ij , the angle between ni and nj is
small. Then, the following approximation

nT
i nj = cos[arccos(nT

i nj)] ≅ 1 − arccos2(nT
i nj)

2
(6)

holds. From (4), (5), and (6), the Euclidean distance between
observation vectors Ii and Ij is given by

|Ii − Ij | ≅ arccos(nT
i nj), (7)

when ni ≅ nj . This means that |Ii − Ij | is approximately
equal to the ideal distance that is the angle between ni and nj

that represents their relationship.

4.2. Discussion of Surface Reflection

Second, we investigate radiance changes of surface reflec-
tion as another example. As shown in Appendix B, the inner

product of observation vectors Ii and Ij is given by

IT
i Ij ≅ exp

[
−arccos2(nT

i nj)
2σ2

]
(8)

for the simplified Torrance-Sparrow model, when ni ≅ nj

and surface roughness σ ≪ π.
Because ni ≅ nj is equivalent to Ii ≅ Ij , the following

approximation

ln(IT
i Ij) = ln

(
1 − |Ii − Ij |2

2

)
≅ −|Ii − Ij |2

2
(9)

holds. Hence, the Euclidean distance between observation
vectors Ii and Ij is given by

|Ii − Ij | ≅
arccos(nT

i nj)
σ

. (10)

In other words, the distance |Ii−Ij | is proportional to the an-
gle between ni and nj . This means that the geodesic distance
is approximately equal to the ideal distance up to some scale
factor. Note that this scale factor can be removed by nor-
malizing geodesic distances between all pairs of observation
vectors so that 0 ≤ dG(i, j) ≤ π.

5. Algorithm for Shape Recovery
Given m sets of n-dimensional observation vectors, the

surface normals and heights of the corresponding m surface
points are estimated as described in the following steps:
1. Provide a geodesic distance matrix that contains geodesic
distances between all pairs of observation vectors (Section
5.1).
2. Find the three-dimensional embedding of the observation
vectors based on the geodesic distance matrix (Section 5.2).
3. Recover surface normals and object heights. The occlud-
ing boundary is used as a reference to transform the output
from Isomap to the true distribution of the object’s surface
normals (Section 5.3).

5.1. Geodesic Distance Matrix

The geodesic distances between all pairs of observation
vectors are approximated by adding up a sequence of Eu-
clidean distances between neighboring points as follows:

1. Compute Euclidean distances d(i, j) between all pairs
of observation vectors Ii and Ij as

d(i, j) = |Ii − Ij |. (11)

2. Initialize a graph G where points i and j are connected if
i is one of the k nearest neighbors of j based on d(i, j).
Geodesic distances dG(i, j) for all i, j pairs of m obser-
vation vectors are initialized such that dG(i, j) = d(i, j)
if i and j are connected as neighbors and dG(i, j) = ∞
otherwise.



3. Compute the shortest path distances between all pairs
of observation vectors in G by using Floyd’s algorithm
and update the geodesic distance dG(i, j). This provides
a matrix of the geodesic distances between all pairs of
observation vectors Dg = {dG(i, j)}.

5.2. Dimensionality Reduction Based on Geodesic
Distance

After the matrix of geodesic distances Dg is obtained,
classical MDS is applied to this matrix to find a three-
dimensional embedding of the observation vectors such that
the estimated intrinsic geometry is best preserved through di-
mensionality reduction.

Let ep be a three-dimensional vector corresponding to ob-
servation vector Ip after dimensionality reduction. Then ep

are determined by minimizing the cost function

E = |τ(Dg) − τ(D3)|, (12)

where D3 is the matrix of Euclidean distances in the three-
dimensional space d3(i, j) = |ei − ej | and |A| is the Frobe-

nius norm
√∑

ij A2
ij of matrix A. The τ operator converts

distances to inner products to support efficient optimization.5

By setting the coordinates of ep to the top three eigenvectors
of the matrix τ(Dg), we are able to find the global minimum
of the cost function (12) [11].

5.3. Solving Ambiguity of Object’s Surface Normals

There are distance-preserving transformations such as
translations, reflections, and rotations in a three-dimensional
space, and the estimated three-dimensional vector ep does not
necessarily correspond to the true distribution of the object’s
surface normals. In other words, what Isomap computes is
the relative relationships of these surface normals. In addi-
tion, ep does not necessarily has a unit length. For this reason,
we need a further step to solve this ambiguity and obtain the
true distribution of the object’s surface normals. We project
ep onto a unit sphere to ensure |eb| = 1 and find a valid trans-
formation that projects ep onto the unit sphere based on the
known surface normals along the occluding boundary .

Under the orthographic projection viewed from the di-
rection (0, 0, 1), the true surface normals of the occluding
boundary can be obtained as their gradient directions in the
2D input image coordinate systems. Let cb be the obtained
true surface normals of those boundary points and eb be their
corresponding embedded vectors. Then a transformation ς()
that projects the embedded vectors eb onto a unit sphere is
found by minimizing the cost function

∑
all b |cb − ς(eb)|.

Here the center and orientation (θ = 0 and φ = 0 directions)
of the unit sphere defines this transformation, and ς() are thus
estimated with respect to those parameters.

5τ(D) = −HSH/2, where S is the matrix of squared distances Sij =
D2

ij and H is the centering matrix Hij = δij − 1/m. See Tenenbaum [15]
and Mardia [11] for details.

After projecting all embedded vectors ep onto the unit
sphere based on the estimated ς(), the recovered surface nor-
mals are stored in their original pixel locations to provide a
normal field, as shown in Figure 6(b). Then the height field
of the object is estimated from the recovered normal field by
using the shapelet technique [10].

6. Experimental Results
6.1. Synthetic Data

We evaluated the accuracy of our technique for shape re-
construction using synthetic data. The images of objects with
different surface materials were synthesized under 450 dis-
tant light sources that were randomly distributed around the
objects with (1) diffuse (textured Lambertian), (2) specular
(Torrance-Sparrow), (3) diffuse (uniform Lambertian) + spec-
ular (Torrance-Sparrow), and (4) diffuse (textured Lamber-
tian) + specular (Torrance-Sparrow) surfaces.

The residual variance after the dimensionality reduction is
shown in Figures 4. We can clearly see that residual vari-
ances decrease as the dimensionality increases and the curve
levels off after three dimensions. This indicates that three-
dimensional embedding of the observation vectors were suc-
cessfully found. It should be noted that in the process of di-
mensionality reduction, there is only one parameter k repre-
senting the number of neighbors, which was adjusted to min-
imize the cost function (12).

The estimated surface normals and shapes of the objects
and some of the input images used for this experiments are
shown in Figure 5. In this figure, the estimated surface nor-
mals are stored directly in the RGB values of the surface nor-
mal map images where absolute values of x, y, and z coordi-
nates are shown in red, green, and blue, respectively: x and
y axes correspond to the horizontal and vertical axis of the
image plane, and z axis is defined to be perpendicular to the
image plane.

Compared with the ground truth provided in Figure 5 (a),
we clearly see that our technique was able to estimate the
surface normals and shapes of the object quite well for all
four cases in spite of the fact that they were recovered solely
from input images without requiring light source directions
or reflection models.

Table 1 provides a quantitative evaluation of the technique
that summarizes the root-mean-square errors in the estimated

Case Diffuse Texture Specular Distance Normal Height
(1) ⋄ ⋄ d 5.7 0.066

dd 5.7 0.066
(2) ⋄ d 8.5 0.093

ds 6.9 0.052
(3) ⋄ ⋄ d 5.2 0.059
(4) ⋄ ⋄ ⋄ d 6.0 0.072

Table 1. Root-mean-square errors in the estimated surface normals
and object’s heights.



(a) synthetic data (b) real data
Figure 4. Residual variance after the dimensionality reduction.

(a) ground truth (b) some input images

(c) case 1 (d) case 2

(e) case 3 (f) case 4
Figure 5. Synthetic data: estimated surface normals and object
heights.

surface normal directions and heights for all cases. Here,
the error in surface normal directions are shown in degrees,
and the heights are normalized between 0 and 1. For cases
(1) and (2), we also tested the ideal distances analytically
derived in the previous section. The distance between two
neighboring observation vectors d(i, j) = |Ii − Ij | defined
in (11) was replaced with the ideal distances derived from
(4) and (8): dd(i, j) = arccos(IT

i Ij) for Lambertian, and
ds(i, j) =

√
− ln(IT

i Ij) for the simplified Torrance-Sparrow
model. The column Distance in this table indicates which
distance was used for the estimation.

In Table 1, for all cases, our method could estimate surface
normals and object’s heights with reasonably high accuracy.
This shows that our algorithm successfully found the intrin-

(a)

(b) (c)

(a)

(b) (c)

(a)

(b) (c)

Figure 6. Results for real images: (a) input images, (b) surface nor-
mals, and (c) object’s heights.

sic structure of the observation space to be used for shape
reconstruction. Especially, in the cases of (1) and (2), about
the same accuracy was achieved for the surface normals using
the distance d and the ideal distances dd and ds to measure the
similarity between two neighboring observation vectors. This
indicates that the distance d well approximates the geodesic
distance between these vectors.



On the other hand, strictly speaking, case (4) does not sat-
isfy the necessary conditions of our approach since its radi-
ance changes cannot be described in the form (2). Neverthe-
less, we could achieve about the same accuracy as in case (3).
Body reflection is often observed at most points on an object’s
surface under varying illumination, while specular reflection
are less likely to be observed. We consider that the diffuse
reflection components contributed more to the shape recon-
struction than did the specular reflection components in this
case.

6.2. Real Objects

We also tested our technique using real images of several
objects with different surface materials. Figure 6(a) shows the
objects used in this experiment: cat (painted bisque), lemon
(plastic), and sheep (ceramic) ornaments. Figure 6 (b) and (c)
show the estimated surface normals and the objects’ heights.
For each object, 130 ∼ 150 images were captured by moving
a point light source around the object, which was roughly 1
m away from the object of 5 ∼ 10 cm in diameter.

In this figure, we see that our method was able to estimate
their shapes regardless of the complexity of their surface ma-
terials and shapes. In the case of the cat ornament, this object
has both convex and concave shapes and thus some cast shad-
ows were observed in the images. Strictly speaking, this does
not follow our assumption of a convex object. However, it
was found through the experiment that cast shadows did not
cause that much trouble in estimating an object’s surface nor-
mals as long as its unshadowed appearances were observed
enough in other input images under different lighting condi-
tions. It seems that our method is less sensitive to this kind
of obstruction in cases where observation vectors contain cor-
rect values for most of their elements.

7. Conclusion
We presented a novel technique for recovering an object’s

shape directly from input images of the object that is based
on the similarity of the radiance changes observed at points
on its surface under varying illumination. The main contri-
bution of our work is that we have shown that the similar-
ity of the radiance changes is closely related to the similarity
between surface normals of the corresponding points and in-
troduced a new theory that within the observation space, all
of the observation vectors of these points lie on a manifold
that represent their surface normals. This enables us to find
surface normals of an object by using a dimensionality re-
duction technique that best preserves the intrinsic structure
in the observation space as captured in geodesic distances on
a manifold. A future research direction of this work would
be to analyze the manifold in more detail by using objects of
known shapes with various kinds of surface materials and to
investigate how many images are generally sufficient in order
to obtain an object’s shape correctly.

Appendix A
Assuming the Lambertian model, let us consider radiance changes observed
at a point i on an object’s surface under a set of directional light sources
{l1, l2, · · ·, lF }. Here, the light source vector lk is a product of its bright-
ness and a unit vector representing the direction of the light source, so the

unnormalized observation vector I′i (Ii = I′i/
q

|I′i|2) is given by

I′i = (max(ρin
T
i l1, 0), · · ·, max(ρin

T
i lF , 0))T , (13)

where ρi and ni are the albedo and normal, respectively. Note that we repre-
sent attached shadows using operator max(∗, 0) but do not take account of
cast shadows.

The inner product of vectors I′i and I′j is derived as

I′i
T
I′j =

F
X

k=1

max(ρin
T
i lk, 0)max(ρjn

T
j lk, 0) (14)

= ρiρjn
T
i

0

B

@

X

{k|nT
i lk>0,nT

j lk>0}

lklTk

1

C

A

nj , (15)

where
P

{k|nT
i lk>0,nT

j lk>0} means the summation over light source vec-

tors satisfying both nT
i lk > 0 and nT

j lk > 0. That is, the summation is
taken when neither i nor j are in attached shadows.

When ni ≅ nj , the summation is approximated as

I′i
T
I′j ≅ ρiρjn

T
i

0

B

@

X

{k|(ni+nj)T lk>0}

lklTk

1

C

A

nj (16)

= ρiρjn
T
i

0

B

@

l2x lxly lxlz
lxly l2y lylz

lxlz lylz l2z

1

C

A

nj , (17)

because both i and j are in attached shadows for almost the same light
sources. Here, we denote lk = (lkx, lky , lkz)T and define l2x =

P

k l2kx.
Assuming that directional light sources with brightness l distribute

around the object with uniform density, the above summations can be con-
verted to integrals such as

l2x = l2
Z π/2

0

Z 2π

0
(sin θ cos φ)2 sin θdθdφ =

2π

3
l2. (18)

By computing the other elements of the matrix in (17) similarly, we obtain

I′i
T
I′j ≅

2π

3
l2ρiρjn

T
i

0

@

1 0 0
0 1 0
0 0 1

1

Anj (19)

The norm of I′i is given by

|I′i|2 = ρ2
i l2
Z π/2

0

Z 2π

0
(cos θ)2 sin θdθdφ =

2π

3
l2ρ2

i . (20)

Therefore, the inner products of the normalized observation vectors are
related to the inner products of the surface normals at the corresponding
points as

IT
i Ij =

I′i
T I′j

q

|I′i|2|I′j |2
= nT

i nj , (21)

because
q

|I′i|2|I′j |2 = 2π
3

l2ρiρj .

Appendix B
We derive the relationship between the similarity of observation vectors

and the similarity of surface normals for the simplified Torrance-Sparrow
model. Let us consider a polar coordinate system (Figure 7) whose north
pole coincides with the viewing direction v, and denote surface normals ni,



� �
� �

� �
�� �

�� �

�

�

Figure 7. Polar coordinate system.

nj , and a light source vector l by (θi, φi), (θj , φj), and (θ, φ). Then, half
vector h, which bisects v and l, is given by (θ/2, φ). We denote the angles
between h and ni, h and nj , and ni and nj by αi, αj , and β.

For the sake of simplicity, we do not take the Fresnel and geometric at-
tenuation terms into consideration. We also obtain radiance Ii at a point i
illuminated by a single directional light source l with brightness l as

Ii =
ρil

nT
i v

exp

„

−
α2

i

σ2

«

. (22)

Here, ρi is the reflectance of surface reflection, and σ represents surface
roughness. The angle αi satisfies

cos αi = hT ni = sin
θ

2
sin θi cos(φ − φi) + cos

θ

2
cos θi. (23)

Assuming that the directional light sources with brightness l are dis-
tributed around the object with uniform density, the inner product of ob-
servation vectors I′i and I′j is represented by an integral with respect to l
as

I′i
T
I′j =

ρil

nT
i v

ρj l

nT
j v

Z Z

{l|nT
i l>0,nT

j l>0,|l|=1}

exp

 

−
α2

i + α2
j

σ2

!

dl (24)

in a similar manner to the Lambertian model.
As is often the case with real materials, we assume that the specular re-

flection has a sharp peak and then σ ≪ π. Thus, only combinations of ni,
nj , and l that satisfies α2

i + α2
j ≪ π2 can contribute to the integral in (24).

Therefore, we assume ni ≅ nj , and consider l such that h ≅ ni ≅ nj .
Accordingly, taking Taylor series expansion of (23) and ignoring higher

order terms with respect to αi, (θ/2 − θi), and (φ − φi), we obtain

α2
i ≅

„

θ

2
− θi

«2

+ sin
θ

2
sin θi(φ − φi)

2. (25)

Similarly, we can derive

β2 ≅ (θi − θj)
2 + sin θi sin θj(φi − φj)

2. (26)

Substituting these approximations into (24), we can derive

I′i
T
I′j ≅

ρil

nT
i v

ρj l

nT
j v

exp

„

−
β2

2σ2

«

Z Z

{l|(ni+nj)T l>0,|l|=1}

exp

»

−
1

σ2



1

2
(θ − θi − θj)

2

+ sin
θ

2
(sin θi + sin θj)

„

φ −
φi + φj

2

«2
)#

dl. (27)

The norm of the observation vector is calculated as

|I′i|2 ≅
(ρil)

2

(nT
i v)2

Z Z

{l|nT
i l>0,|l|=1}

exp

»

−
1

σ2



1

2
(θ−2θi)

2+2 sin
θ

2
sin θi(φ−φi)

2

ff–

dl. (28)

Therefore, the inner products of the normalized observation vectors are
related to the angles between surface normals as

IT
i Ij =

I′i
T I′j

q

|I′i|2|I′j |2
≅ exp

„

−
β2

2σ2

«

. (29)
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