
A shorter proof of the Graph Minor Algorithm

– The Unique Linkage Theorem –∗

Ken-ichi Kawarabayashi †

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
k keniti@nii.ac.jp

Paul Wollan
Department of Computer Science
University of Rome, La Sapienza

Via Salaria 113
Rome, 00198 Italy

wollan@di.uniroma1.it

Abstract

At the core of the seminal Graph Minor Theory of Robertson and Seymour is a powerful theorem
which describes the structure of graphs excluding a fixed minor. This result is used to prove Wagner’s
conjecture and provide a polynomial time algorithm for the disjoint paths problem when the number
of the terminals is fixed (i.e, the Graph Minor Algorithm). However, both results require the full
power of the Graph Minor Theory, i.e, the structure theorem.

In this paper, we show that this is not true in the latter case. Namely, we provide a new and much
simpler proof of the correctness of the Graph Minor Algorithm. Specifically, we prove the “Unique
Linkage Theorem” without using Graph Minors structure theorem. The new argument, in addition
to being simpler, is much shorter, cutting the proof by at least 200 pages. We also give a new full
proof of correctness of an algorithm for the well-known edge-disjoint paths problem when the number
of the terminals is fixed, which is at most 25 pages long.
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1 Introduction

1.1 Graph Minors Algorithm

One of the deepest and most important bodies of work in graph theory is the Graph Minor Theory
developed by Robertson and Seymour. At the heart of this theory is a theorem [33, Theorem 1.3]
describing the structure of all graphs excluding a fixed graph as a minor. At a high level, the theorem
says that every such graph can be decomposed into a collection of graphs each of which can “almost”
be embedded into a bounded-genus surface, combined in a tree structure. Much of the Graph Minors
series of articles is devoted to the proof of this structure theorem.

The main algorithmic result of the Graph Minor Theory is a polynomial-time algorithm for testing
the existence of a fixed minor [31] which, combined with the proof of Wagner’s Conjecture, implies the
existence of a polynomial-time algorithm for deciding any minor-closed graph property. The existence
of such a polynomial time algorithm has in turn been used to show the existence of polynomial-time
algorithms for several graph problems, some of which were not previously known to be decidable [10].
It also leads to the framework of parameterized complexity developed by Downey and Fellows [8], which
is perhaps one of the most active areas in the study of algorithms.

This algorithm is one of the most important polynomial time algorithms in theoretical computer
science. The algorithm is relatively easy to describe. However, the proof of correctness of the algorithm
(that is, the proof that the algorithm does in fact correctly determine the presence of a fixed graph as
a minor) uses the full power of the Graph Minor Theory. More precisely, we can immediately reduce
the problem to the case when the input graph has no large clique minor. However, the analysis of this
case requires the development of the structure theorem. Our goal is to provide a new proof for the
correctness of this algorithm that avoids many of the difficulties and technicalities in the original proof
of Robertson and Seymour, and, specifically, avoids the use of the structure theorem.

The main purpose of this paper is to show the correctness of the Graph Minor Algorithm with-
out using the structure theorem. This leads to a dramatically shorter and more simple proof of the
correctness for the algorithm.

Much of the proof of the correctness of Graph Minor Algorithm in fact focuses on developing an
algorithm for the disjoint paths problem. It will be more convenient for us, as well, to focus on the
disjoint paths problem. We discuss this further in the next subsection.

1.2 The Graph Minors Algorithm vs. the k-disjoint paths problem

In the edge- (vertex-) disjoint paths problem, we are given a graph G and a set of k pairs of vertices,
called terminals, in G, and we have to decide whether or not G has k edge- (vertex-) disjoint paths
connecting given pairs of terminals. The problem of testing whether a given graph contains a fixed
graph H as a minor can be trivially reduced to a bounded number of vertex disjoint path problems.
Thus, a polynomial time algorithm for the k disjoint paths problem yields a polynomial time algorithm
for minor testing, albeit with a worse runtime than that of the Graph Minors Algorithm. Moreover, the
arguments for minor testing and the disjoint paths problem are analogous, although somewhat simpler
to explain in the case of the disjoint paths problem. Finally, the k disjoint paths problem is also a
classic problem the theory of algorithms, widely studied in its own right. For all these reasons, for
the remainder of the article we will restrict our attention to the k disjoint paths problem. We will
return only briefly to Graph Minors Algorithm to show how our results yield a short argument for the
correctness of the Graph Minors Algorithm.
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1.3 Background on the disjoint paths problem

The k disjoint paths problem, both in it’s vertex and edge disjoint versions, is a central problem in
algorithmic graph theory and combinatorial optimization. See the surveys [11, 36]. It has attracted
attention in the contexts of transportation networks, VLSI layout and virtual circuit routing in high-
speed networks or on the internet. A basic technical problem here is to interconnect certain prescribed
“channels” on a chip such that wires belonging to different pins do not touch each other. In this simplest
form, the problem mathematically amounts to finding disjoint trees in a graph or disjoint paths in a
graph, each connecting a given set of vertices.

We now quickly look at previous results on the k disjoint paths problem. If k is as a part of the
input of the problem, then this is one of Karp’s original NP-complete problems [13], and it remains
NP-complete even if G is restricted to be planar (Lynch [22]). The seminal work of Robertson and
Seymour says that there exists a polynomial time algorithm (the actual runtime of the algorithm is
O(n3). The time complexity is improved to O(n2) in [18]) for the disjoint paths problem when the
number of terminals, k, is fixed. In the next subsection, we give an outline of this algorithm.

1.4 Robertson-Seymour Algorithm

In this subsection, we sketch Robertson and Seymour’s algorithm for the k disjoint paths problem (see
also [27]). At a high level, Robertson-Seymour’s algorithm is based on the following two cases: either a
given graph G has bounded tree-width (bounded by some function of k) or else it has large tree-width.

Case 1. Tree-width of G is bounded.

In this case, one can apply a dynamic programming argument to a tree-decomposition of bounded
tree-width, see [1, 2, 31].

Case 2. Tree-width of G is large.

This second case again breaks into two cases depending on whether G has a large clique minor or
not.

Case 2.1. G has a large clique minor.

If there exist disjoint paths from the terminals to this clique minor, then we can use this clique
minor to link up the terminals in any desired way. Otherwise, there is a small cut set such that the
large clique minor is cut off from the terminals by this cut set. In this case, we can prove that there is
a vertex v in the clique minor which is irrelevant, i.e., the k disjoint paths problem is feasible in G if
and only if it is also feasible in G− v. We then recursively apply the algorithm to G− v.

Case 2.2. G does not have a huge clique minor.

In this case, one can prove that, after deleting a bounded number of vertices, there is a huge subgraph
which is essentially planar. Moreover, this huge planar subgraph itself has very large tree width. This
makes it possible to prove that the middle vertex v of this wall is irrelevant. Again, we recursively apply
the algorithm to G− v.

The analysis of Cases 1 and 2.1 is relatively easy. It is the analysis of Case 2.2 that gives rise to the
majority of the work. The analysis of this case requires the whole series of graph minor papers and the
structure theorem of [33].

1.5 Our main contributions – Unique linkage theorem

The analysis of Case 2 in the previous subsection can be reduced to the Unique Linkage Theorem
without excessive difficulty. In fact, in the corresponding argument for the Graph Minors Algorithm,
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this is the only place in the proof of correctness which requires the full structure theorem. Before stating
the theorem, we give some notation.

A linkage is a graph where every component is a path (possibly trivial). The order of the linkage
is the number of components. In slightly sloppy notation, we will use P ∈ P to refer to a component
P of the linkage P. Two linkages P and P ′ are equivalent if they have the same order and for every
component P of P, there exists a component P ′ of P ′ such that P and P ′ have the same endpoints.
We say a linkage P in a graph G is unique if for all linkages P ′ in G equivalent to P, we have that
V (P ′) = V (P).

We are now ready to state the theorem, which is the main result of Graph Minors XXI [34].

Theorem 1 (The Unique Linkage Theorem [34]). For all k ≥ 1, there exists a value w(k) such
that the following holds. Let P be a linkage of order k in a graph G with V (G) = V (P). If P is unique,
then the tree-width of G is at most w(k).

The current proof given by Robertson and Seymour [34] needs the full power of the graph minor
structure theorem, but they predicted that there exists a simpler proof avoiding the use of the Graph
Minor structure theorem. Our main contribution is to confirm that they are right– we provide such a
short proof. In fact, our proof less than 25 pages, and gives rise to an explicit bound for the tree-width
w(k), while the original algorithm does not.

We now mention several consequences of our new shorter proof. First, we clarify how the unique
linkage theorem implies that the vertex v in Case 2 is irrelevant. This was easy to prove for Case
2.1. The formal argument is given in Sections 5 and 6 in [31]. We are left with Case 2.2. The main
result in [35] says that the existence of the irrelevant vertex in Case 2.2 can be reduced to the unique
linkage problem. Let us observe that the arguments in [35] does NOT use the graph minor structure
theorem. It is totally self-contained. Our proof of the Unique Linkage Theorem currently uses several
tools from [29] for graphs embedded on surfaces of bounded genus (again, these tools do not depend
on the structure theorem). Thus together with [35] and [29], our proof of the Unique Linkage Theorem
provides a proof of the correctness of the k-disjoint paths algorithm which avoids the use of the graph
minor structure theorem. At the moment, we believe that we also have a much shorter proof of the
main result in [35] and the aspects of [29] which we use. This would lead to a correspondingly short,
self-contained proof of the k-vertex disjoint paths algorithm.

Second, when we consider instead the k-edge disjoint paths problem, we are able to avoid the need
for the work of [35]. This allows us to give a self-contained argument for the proof of correctness of the
k-edge disjoint paths problem. We present the argument in the next subsection.

Finally, one of the original applications of the Unique Linkage Theorem is to verify the “intertwining
conjecture” of Lovász [21] and Milgram and Unger [24]. The conjecture states that for every two graphs
G1 and G2, there is a finite list H1, . . . ,Hn of graphs, such that G topologically contains both G1 and G2

if and only if it topologically contains one of H1, . . . ,Hn (G topologically contains H if some subgraph
of G is isomorphic to a subdivision of H). A proof of this conjecture follows from the unique linkage
theorem, as proved in [34]. But our proof, together with the proof in Section 11 of [34] gives rise to a
short self-contained proof of this conjecture, which is, we believe, of independent interest. As pointed
out in [34], our proof yields an algorithm that given two graphs G1 and G2, computes H1, . . . ,Hn above.

We conclude with a few words on possible applications of our new proof. Kernelization is a technique
for creating algorithms for fixed-parameter tractable problems. This concept has attracted recent inter-
est within the framework of parameterized complexity. See, for example, [3]. The approach is based on
the observation that a problem is fixed-parameter tractable if and only if it is kernelizable and decidable.
The idea of kernelization is to reduce the size of the input X to a function of k in polynomial time.
When the input is bounded by k, we can use any exponential time algorithm, for example brute-force
search, to find a solution of the problem. A basic technique in kernelization arguments is to find an
“irrelevant” vertex for the problem, and reduce the size of the input. This is exactly what we do for
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the disjoint paths problem, hence we hope that our new short proof might yield new technical methods
in this line of inquiry.

Algorithms for H-minor-free graphs for a fixed graph H have been studied extensively; see e.g. [4, 5,
6, 12]. In particular, it is generally believed that algorithms for planar graphs can often be generalized
to H-minor-free graphs for any fixed H. Results from graph minors, and the unique linkage theorem in
particular, are essential for these arguments. For example, the topological embedding algorithms given
in [14, 15, 16, 17, 23] partially depend on the unique linkage theorem. Also, linear time algorithms
for the disjoint paths problem when an input graph is planar [26] or an input graph is bounded genus
[9, 20] heavily depend on the unique linkage theorem. Thus we anticipate that our new proof will have
further applications along these lines.

1.6 The edge-disjoint paths problem

Using our new proof of Unique Linkage Theorem, we give a short proof of correctness for the k-edge
disjoint paths problem.

Input: A graph G with n vertices and m edges, k pairs of vertices (si, ti), called terminals, i = 1, . . . , k,
in G.

Output : Edge-disjoint paths P1, P2, . . . , Pk in G such that Pi joins si and ti for i = 1, 2, . . . , k.

We assume that k is fixed. We will need the following definitions. For a vertex set X in a graph
G = (V,E), let δ(X) be the set of edges between X and V \X. For a graph G = (V,E), its line graph
L(G) is the graph whose vertex set is E such that two vertices of L(G) are adjacent if and only if their
corresponding edges share a common endpoint in G. To simplify the description, when we consider the
line graph of a graph with terminals, we assume that exactly one edge is incident to each terminal by
adding a new terminal and a single edge to G. Let s̃1, . . . , s̃k, t̃1, . . . , t̃k be the edges incident with the
terminals s1, . . . , sk, t1, . . . , tk in G, respectively. Then, one can see that the edge-disjoint paths problem
in G with respect to the terminals s1, . . . , sk, t1, . . . , tk is equivalent to the vertex-disjoint paths problem
in L(G) with respect to the terminals s̃1, . . . , s̃k, t̃1, . . . , t̃k.

As proved in [19], an instance of the k edge-disjoint paths problem can be reduced to an instance
satisfying the following conditions:

(R1) All vertices have degree at most 2k − 1.

(R2) G has no vertex set X such that |X| ≥ 2, X contains no terminals, and |δ(X)| ≤ 3.

(R3) G and L(G) has no clique minor of size 3k.

We call these operations simple reductions. Although it is easy to find a vertex of high degree (as
in (R1)) and a ≤ 3-edge-cut in a given graph (as in (R2)), it is not easy to find a large clique minor.

The following theorem, which is the main result in [19], characterizes the instances of the edge-
disjoint paths problem, and shows a way to find a large clique minor.

Theorem 2. For any instance of the k-edge-disjoint paths problem and for any integer h ≥ 2, there
exists an integer f(k, h) such that one of the following holds:

(A) The instance violates at least one of (R1), (R2), and (R3). That is, one of the simple reductions
can be applied to the instance.

(B) The input graph has tree-width at most f(k, h).
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(C) The input graph contains a wall W of size h with the outer face boundary C with the following
properties:

(a) G− C consists of two parts X and Y such that X ∪ C contains the whole wall W .

(b) Every vertex of X ∪ C has degree at most three.

(c) X ∪ C does not contain any terminal.

(d) X ∪ C can be embedded in a plane with the outer face boundary C.

We can find one of (A), (B) and (C) in O(m) time. Furthermore, if the instance satisfies (R1) and
(R2), but does not satisfy (B) and (C), then we can find a clique minor of size 3k in G or L(G) in
O(m) time (For definitions of the tree-width and the wall, we refer the reader to the appendix).

Having Theorem 2, we are ready to describe our O(mn) time algorithm for the edge disjoint path
problem more precisely. The algorithm below has appeared in [19], but for the completeness, we include
the whole algorithm. We set h = 4w(k) + 4, where w(k) is the value given by Theorem 1.

Algorithm for the edge-disjoint paths problem

Step 1. We first apply Theorem 2. If (A) in Theorem 2 occurs, we apply a simple reduction as in (A)
and recurse on a smaller graph. If (B) occurs, we apply the standard dynamic programming argument
[1, 2]. Thus we may assume outcome (C).

Step 2. If (C) happens, it is possible to throw away a vertex v (irrelevant vertex) in the deep inside
the wall W if h is large enough (i.e, the vertex in the middle brick of W ).

We then recursively apply our algorithm to G− v. Since Theorem 2 can be done in O(m) time, the
whole algorithm runs in O(mn) time (this improves the time complexity of [31] that gives an O(m3)
algorithm for the edge-disjoint paths problem).

Correctness of the Algorithm

For the correctness of the algorithm, it suffices to prove that v is an irrelevant vertex in Step 2. We
now give a proof, which is very similar to that given in [35], Theorem (3.1). We shall essentially reduce
the correctness of the algorithm to the unique linkage theorem.

It is easy to see that if G does not have desired k edge-disjoint paths, then G − v does not have
them either. Thus it remains to show that if G has desired k edge-disjoint paths in G, then G− v has
them as well. Let G′ be the line graph L(G). We begin with the following:

(1) The line graph of X ∪ C described in (C) of Theorem 2 is still a plane graph.

This is because each vertex in X ∪ C has degree at most three in X ∪ C. Hereafter, let H be the
plane subgraph of G′ induced by X ∪ C.

Let C1, . . . , Cs be disjoint cycles in the plane graph H. Let Di be the disc in the plane with boundary
Ci. We say that they are concentric if we have the property that Ds ⊆ · · · ⊆ D1. Let C1, . . . , Ch/2 be
concentric cycles in H and P = {P1, . . . , Pk} be a linkage in G′. Note that since X ∪C contains a wall
of height h, it follows that H also contains these h/2 concentric cycles.

We assume that the vertices of G′ that correspond to the edges incident with v in Step 2 are contained
in Dh/2 −Ch/2 (again such a choice is possible by the above remark). Let M = C1 ∪ · · · ∪Ch. We only
need to prove is the following:

(2) Suppose M exists in G′. Then the desired k vertex-disjoint paths in G′ exist such that the vertices
of G′ that correspond to the edges incident with v in G are not in any of the paths.
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This will clearly suffice to complete the proof of the theorem. We prove (2) by induction on the
number of vertices of G′. Note that we do not preserve line graph in the inductive step, i.e, when we
make a smaller graph and apply induction, it may not be the line graph of some graph. We only require
that our graph is contained in H as a subgraph, i.e, h/2 concentric cycles in a subgraph of the plane
graph H.

Proceeding, if there is a vertex u that is not in M ∪ P, then we can delete u from G′, and apply
induction to G′ − u. Similarly, consider the case when there exists an edge e that is in Ci, i ≤ t/2, but
one of the endpoints is not used in P. We can contract e and still preserves the existence of concentric
cycles C1, . . . , Ci/e, . . . , Ch/2 (and a plane subgraph H/e), unless |Ci| = 3. But if |Ci| = 3, then we can
clearly reroute the paths in P so that they do not touch any vertex inside the disk Di, except for the
vertices in Ci, and so find a linkage avoiding the edges incident v. Thus, after contracting e, we can
apply induction to the resulting graph. We conclude that V (M ∪ P) = V (G′).

Let w(k) be the value given by Theorem 3. By a dive we mean a subpath of a path in P contained
in the disc D1 with both ends in C1 and at least one vertex in Cl for some l ≥ w(k) + 1 We now claim
the following:

(3) There are at most w(k) dives.

If there is another linkage P ′ equivalent to P such that |V (P ′)| < |V (P)|, then there is a vertex u
of G′ that is not in P ′. If u is not in M , then we delete u from G′, and apply induction to G′ − u.
Similarly, if u is in M , then there is an edge e with one endpoint u in M . In this case, we contract e
as above. After contracting e, we can apply the inductive hypothesis to the resulting graph. Thus we
may assume that P is unique linkage.

We now use the unique linkage theorem to prove (3). Suppose for a contradiction that the linkage
P contains at least w(k) + 1 dives. Then since H is a plane subgraph of G′ and M is contained in H,
there are dives P1, P2, . . . , Pw(k)+1 that are pairwise disjoint and all intersect Ci for i = 1, . . . , w(k) + 1.
This implies that P1, P2, . . . , Pw(k)+1 all intersect each of C1, C2, . . . , Cw(k+1), and hence C1 ∪ P1, C2 ∪
P2, . . . , Cw(k)+1 ∪ Pw(k)+1 is a “bramble” in G′ of “order” at least w(k) + 1 (for the definition of the
bramble, we refer the reader to [25]). By [25] the graphG′ has tree-width at least w(k)+1, a contradiction
to the unique linkage theorem. This proves (3).

We are now ready to finish the proof. We claim that no dive intersects C2w(k)+1. The depth of a
dive P is the maximum index i such that P ∩ Ci 6= ∅. To see this, observe that if P is a dive of depth
i, then if Ci−1 does not intersect any path of P, we can reroute the component of P containing P to
avoid the vertex P ∩Ci. Thus, some component (other than the one containing P ) of P intersects Ci−1.
By planarity, it follows that there exists a dive of depth i − 1. Thus, if there exists a dive of depth
2w(k) + 2, we see that there exist w(k) + 1 dives, a contradiction to (3).

If we assume that h ≥ 4w(k) + 4, we see that no component of P can intersect Ct/2. This completes
the proof of (2), and the theorem.

In the next section, we give an outline of our proof of the unique linkage theorem. To help the reader
see how the proof goes, we shall give a short proof of the case k = 2.

2 Outline of the proof of the Unique Linkage Theorem

The proof proceeds by analyzing what we will call traversing linkages. Before we give the exact definition,
we first give some intuition of what a traversing linkage is. Let P be a k-linkage. A linkage Q traverses
P if when we follow the linkage Q from beginning to end, we intersect the linkage P repeatedly in a
regular, uniform way. Moreover, these intersections are independent of each other in a sense. That is,
in that the first intersections of P and Q are contained in a small subpath of P, and Q never returns to
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that subpath. We reduce the proof of the Unique Linkage Theorem to showing the following theorem.

Theorem 3. There exists functions l(k) and w(k) such that the following holds. Let P be a linkage of
order k, and let Q be a linkage traversing P of order w(k) and length l(k). Then P is not unique in
P ∪Q.

Traversing linkages have two nice properties we use repeatedly in the proof of Theorem 3. First,
the graph consists of just two linkages, and so is dramatically simpler than the general graphs typically
analyzed in the theory of graph minors. Second, there is an element of symmetry allowing us to move
back and forth between analyzing first the linkage P, and then the linkage Q, and back again.

We now give the exact definition of a traversing linkage. We recall that a ladder of length t is a
graph consisting of two paths of length P1, P2 with the vertices of Pi equal to vi1, . . . , v

i
t for i = 1, 2 as

well as edges of the form vj1vj2 for 1 ≤ j ≤ t.

Definition 4. Let P be a linkage. The linkage Q traverses P (or, equivalently, is a traversing linkage)
if there exist disjoint subpaths B1, . . . , Bl in P such that the following hold:

a. The linkage Q intersects P only in the subpaths B1, . . . , Bl, i.e. V (Q) ∩ V (P) ⊆
⋃l

1 V (Bi).

b. For all Q ∈ Q and 1 ≤ i ≤ l, Q ∩Bi is a (possibly trivial) subpath of Bi.

c. For every element Q ∈ Q, we may traverse the path Q from one end to the other, we encounter
the paths B1, B2, . . . , Bl in that order.

d. If we look at the Z the set of subpaths of Q with one end in Bi and another end in Bi+1 for
1 ≤ i ≤ l − 1, then Z ∪ Bi ∪ Bi+1 forms a subdivided ladder after possibly deleting vertices of
degree one.

The paths B1, B2, . . . , Bl are called the basis subpaths of the traversing linkage Q. The value l is
the length of the traversing linkage Q. Again, the order of the traversing linkage is the number of
components. Fix labels sP , tP to the endpoints of every component P ∈ P. If we consider the ladder
in d, there are two distinct possibilities. Let P and P ′ be the components of P containing Bi and Bi+1,
respectively. We say that Q twists between Bi and Bi+1 if for all j, the jth component of Z we intersect
traveling P from sP to tP is the (w− j + 1)th when traversing P ′ from sP ′ to tP ′ (where w is the order
of Q).

Figure 1: The grey linkage is a traversing linkage of order three and length five traversing the black
linkage. The first and fourth basis subpaths are indicated with boxes. The grey linkage twists between
the first and second basis subpaths.

Observe, that if we swap the labels sP and tP on a component P ∈ P, then if we consider some
basis subpath Bi contained in P , if Q twists between Bi and Bi+1 before the swap, then Q will not
twist between the two basis subpaths after the swap (and vice versa: if Q does not twist before the
swap, then it will twist after the swap).
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We briefly describe now how we reduce the Unique Linkage Theorem to the proof of Theorem 3.
The analysis is somewhat similar to the proof of the edge disjoint version of the disjoint paths problem.
We proceed in two basic steps. First, we pick a prospective counter-example to the Unique Linkage
Theorem: a linkage P contained in a graph G with V (G) = V (P) such that G does not contain an
equivalent linkage on fewer vertices. Moreover, we make the assumption that the tree width of the graph
is huge. We first show that such a counterexample G cannot contain a large clique minor, and then
using what we call the Weak Structure Theorem, we show that there exists a large planar subgraph H
containing a huge wall such that the linkage P interacts with H planarly. In other words, even if there
exist vertices with neighbors in the center of H, the components of P intersect H in a way that always
respects the planar embedding of H. We then, as in the proof of the edge disjoint version, take a large
number of concentric cycles such that they intersect the linkage P in a clean way. The concentric cycles
as they travel through the linkage P will then provide the traversing linkage Q.

The proof of Theorem 3 will be the main work in our proof of the Unique Linkage Theorem. The
remainder of this section will be devoted to a brief outline of the proof of Theorem 3.

The proof of Theorem 3 proceeds by finding many sublinkages in Q forming what we will call Q-
bumps. Let P be a linkage and Q be a traversing linkage of order w. Let B1, . . . , Bl be the basis
subpaths. A Q-bump is a sublinkage Q of Q of order w such that there exist indices i and i′ and a path
P ∈ P such that

a. every component of Q has one endpoint in Bi and one endpoint in Bi′ and no internal vertex in
P , and

b. Bi and Bi′ are both contained in P .

Q-bumps can be thought of as a cylindrical set of subpaths wrapping around a sublinkage of the linkage
P. A Q bump allows one to reroute the linkage P - not to find an equivalent linkage - but rather to
cyclically shift by one some subset of the paths. We make this more explicit in the following observation.

Observation 5. Let P be a linkage of order k with components Pi for 1 ≤ i ≤ k. Let si and ti be
the endpoints of Pi for 1 ≤ i ≤ k. Let Q be a traversing linkage of order k + 1 with basis subpaths
B1, . . . , Bl. Let Q be a Q-bump of length l′+ 1 with basis subpaths B1, . . . , Bl′+1 satisfying the following
properties.

i. Assume Bi is contained in Pi for 1 ≤ i ≤ l′. Specifically, note Bi and Bi′ are contained in distinct
components of P for 1 ≤ i < i′ ≤ l′.

ii. For all i, 1 ≤ i < l′ + 1, Q does not twist between Bi and Bi+1.

Then P∪Q contains disjoint paths P ′1, . . . , P
′
k such that the endpoints of P ′i are si and ti+1 for 1 ≤ i ≤ l′

(taken modulo l′) and the ends of Pi are si and ti for i > l′. Moreover, the paths P ′1, . . . , P
′
k can be

chosen to avoid some vertex of P.

We illustrate the observation in Figure 2.

Let R1 and R2 be two vertex disjoint Q-bumps, and assume that there exists a component P of P
containing all the endpoints of R1 and R2. Let π(i) and σ(i) be values, for i = 1, 2 such that Ri has
endpoints in Bπ(i) and Bσ(i). Consider the subpath of Pi of P connecting the ends of Ri, i.e. let Pi be
the minimal subpath of P containing Bπ(i) and Bσ(i) for i = 1, 2. Then R1 and R2 are independent if
P1 and P2 are disjoint.

We now have everything in place to outline the argument for the proof of Theorem 3. Let P be our
linkage of order k which we would like to reroute, and let Q be a very long traversing linkage of huge
order. Fix a path P1 in the linkage P.
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Figure 2: A bump of order 4 traversing a linkage of order 3. The rerouted paths guaranteed by
Observation 5 are indicated as dotted paths. Note that the circled vertex is avoided by the new linkage.

First, we observe that for some component P1 of P, the linkage Q must return frequently to the
path P .

If there existed many disjoint independent Q-bumps with ends in P1, it would be relatively easy to
ensure that some subset large satisfies the necessary properties to apply Observation 5. Then using at
most k bumps satisfying the conditions of Observation 5, we repeatedly rotate and find an equivalent
linkage avoiding some vertex.

The difficulty is how to find many disjoint independent Q-bumps. We switch perspectives at this
point and consider how the components of P intersect with Q. The path P1 repeatedly crosses the
linkage Q, always hitting the paths of Q in order. Then there are two possible cases. First, it is
possible that some subpath P ′1 of P1 intersects Q in a somewhat regular manner, yielding many disjoint,
independent Q-bumps on P ′1. In this case, we apply Observation 5 to find a linkage equivalent to P
avoiding some vertex. Alternatively, no such path P ′1 exists and the path P1 intersects Q in a more
complex fashion. In this case we are able to find a large complete minor in P ∪Q. As we have already
discussed, a large clique minor allows us to find an equivalent linkage avoiding some vertex of P. In
each case, we find an equivalent linkage avoiding some vertex of P, completing the proof.

We expand, for a moment, on these ideas for interested readers with some familiarity with the graph
minors techniques. We return to a more general discussion below. Let P be a linkage of order k and Q
be a traversing linkage of order w and length l. Let the basis subpaths of Q be B1, B2, . . . , Bl.

We contract all the edges incident a vertex of degree at most two, as well as edges of E(Q)∩E(P).
Thus we may assume that:

1. there are no edges contained in Q∩ P, and

2. there are no vertices in V (Q) \ V (P).

We can fix a labeling Q1, Q2, . . . , Qw of the components of Q of order w, so that every component
P ∈ P satisfies the following. The path P can be decomposed into subpaths R1, . . . , Rt and edges
e1, . . . , et−1 that are pairwise disjoint so that ei connects the ends of Ri and Ri+1 and each Ri has one
end in Q1, the other end in Qw, and intersects the paths of Q in order, i.e. Q1, Q2, . . . , Qw. (In fact,
the paths Ri are the basis subpaths of Q on P , ordered by traversing P ).

If we look at the graph formed by P ∪ Q, we see that Q ∪
⋃t

1Ri forms a subdivision W of the
(w × t)-grid. The horizontal paths of the grid are the Qi for 1 ≤ i ≤ w, and the vertical paths are the
Ri, 1 ≤ i ≤ t. The edges ei form a matching with the ends contained in Q1 ∪Qw. We keep the grid W
aside, and for the rest of the proof focus on the edges ei. As we described above, there are essentially
two cases. If these edges are relatively well behaved, all but a small number of them can be embedded
in a low genus surface. In this case, this will allow us to reroute the linkage P avoiding some vertex
using techniques of Robertson and Seymour for the disjoint paths problem in the bounded genus case
[29]. Alternatively, the edges ei are not tame. In this case, we will find a large clique minor. Then,
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again we see that P can again be rerouted to avoid some vertex v.

The edges ei, together with the outer face boundary of W , comprise a society, one of the key topics
in Graph Minors Theory [30]. Our proof builds on results in [30], and extending them in such a way
that the outcomes include “genus addition”, i.e, a handle addition and a crosscap addition. We further
adapt some ideas in [32, 33] to grow a graph on the surface with large representativity. This process
stops when we have a huge clique minor, because, as mentioned above, if there is a huge clique minor,
we can reroute the linkage P to avoid some vertex. We reiterate that our proof does not need most
of the heavy machinery in Graph Minor theory. This is for several reasons. First, because our society
consists of only a matching, the analysis is simplified. Second, we do not have to worry about global
connectivity issues as the society vertices are the vertices of the outer ring of a grid. And, finally, certain
degenerate cases will allow us to easily find many disjoint Q-bumps, an outcome not available in the
general graph minors arguments. This final point will allow us to evade the topic of “vortices”, a major
savings in time and effort. Further ingredients of the graph minors series which we are able to avoid
include, “embedding up to 3-separations”, “tangle, respectful tangle” etc.

We return now to a more general overview of the proof. A technicality we ignored in this outline is
the following. Given that we find many disjoint independent Q-bumps on the subpath P ′1 of P1, how
do use the bumps to reroute the linkage? We do so by splitting on edges. Given an edge e in a linkage
P, we say that the linkage P − e is obtained from P by splitting P on e. We note that the property of
being a unique linkage is preserved upon splitting a linkage on a given edge:

Observation 6. Let P be a unique linkage in a graph G, and let P be obtained from splitting P on
some edge e. Then P is a unique linkage in G. Moreover, if Q is a traversing linkage of P of length l,
with basis subpaths B1, B2, . . . , Bl, then if e /∈ E(Bi) for all 1 ≤ i ≤ l, then Q is a traversing sublinkage
of P.

Thus we perform possibly two edge splits on P to obtain a new linkage with a component equal to
P ′1. Given that we have many disjoint, independent Q bumps attaching to P ′1, we contradict that the
new linkage is unique, and by the observation, that the original linkage P is unique.

In conclusion, we give a complete proof of the k = 2 case of Theorem 3. Robertson and Seymour
[34] observe that this can be easily shown directly; however, we give a proof using traversing linkages
in the hopes that it further illustrates the tools and techniques of the main result.

Theorem 7. Let P be a linkage of order 2. Let Q be a traversing linkage of order five and length 33.
Then there exists a vertex v ∈ V (P) such that (P ∪Q)− v contains a linkage P ′ equivalent to P.

Proof. Let the components of P be P1 and P2, and label the ends of Pi si and ti for i = 1, 2. Let the
basis subpaths of Q be B1, B2, . . . , B33. We assume, to reach a contradiction, that there do not exist
paths P ′1, P ′2 that avoid some vertex of P such that the endpoints of P ′i are si and ti.

The linkage Q repeatedly passes back and forth between P1 and P2. To simplify the picture some-
what, we consider the following auxiliary graph H with vertices equal to the set of basis subpaths Bi
for 1 ≤ i ≤ 33 and two vertices Bi and Bj connected by an edge if either there is a subpath of Pi
connecting them avoiding all other basis subpaths, or if |j − i| = 1. It follows that E(H) is comprised
of three edge disjoint paths: one for each of the paths Pi and one for the linkage Q. The edges of H of
the form BiBi+1 have two distinct types - the linkage Q can either twist between Bi and Bi+1 or not.
We will refer to the edges BiBi+1 where Q twists as the odd edges of H; every other edge of H will
be called even. If Σ is the set of odd edges, then by swapping the labels si and ti, the resulting set of
odd edges is Σ4X where 4 denotes the symmetric difference and X is the set of all edges of the form
BiBi+1.

First, observe that there does not exist an index i such both the edge Bi−1Bi and BiBi+1 are even in
H. Otherwise, we can find paths P ′1 and P ′2 equivalent to P avoiding an internal vertex of Bi. Similarly,
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there does not exist an index i such that Q does twist between both Bi−1 and Bi and between Bi and
Bi+1. This is because we could swap the labels on the ends P1 so that Q does not twist between Bi−1

and Bi and between Bi and Bi+1. If we let R be the path in H of consisting of the edges of the form
BiBi+1 for 1 ≤ i ≤ 32, it follows that the edges of R alternate between edges in Σ and edges not in Σ.

Also, observe that for indices i and j such that both the edges BiBi+1 and BjBj+1 are not in Σ, we
have that the edges do not “cross” in H. That is, if Bi and Bj are both contained P1, say, and occur
on P1 in that order when traversing from s1 to t1, then Bi+1 occurs before Bj+1 on P2 when traversing
from s2 to t2. Otherwise, we would be able to find an equivalent linkage avoiding some vertex of P.
Similarly, if i and j are two indices such that both the edges BiBi+1 and BjBj+1 are in Σ, and if both
Bi and Bj are contained in P1 in that order, then it follows that Bj+1 and Bi+1 occur on that order
when traversing P2 from s2 to t2.

After possibly swapping the labels si and ti for one or possibly both values of i, we see by ex-
amining the graph H that the following must hold for Q ∪ P. Traversing P1 from s1 to t1, we
see B2, B6, . . . , B26, B30, B32, B28, . . . , B8, B4 in that order, and traversing P2 from s2 to t2, we see
B1, B5, . . . , B29, B33, B31, B27, . . . , B7, B3 in that order. Moreover, Q twists between Bi and Bi+1 if and
only if i is even. Let e1 be an edge of P1 separating B30 from B32, and let e2 be an edge of P2 separating
B33 from B31. If we split the linkage P on e1 and e2, we have a linkage P ′ of order four. Moreover, by
appropriately choosing the labels for the endpoints of components of P ′, we may assume that Q does
not twist between any two basis subpaths in P ′. We label the components of P ′ as P ′i for 1 ≤ i ≤ 4
such that the endpoints of Q are contained in P ′1.

By examination, we see that there exist four disjoint independent Q-bumps with endpoints in P ′1
satisfying i. and ii. in Observation 5. Moreover, if we let the endpoints of P ′i be s′i and t′i, then for each
such bump, the rerouting guaranteed by Observation 5 results in paths with endpoints s′i and t′i+1. By
using all four re-routings, we see that we wrap around and find a linkage P equivalent to P ′ avoiding
some vertex of P ′. Then Observation 6 implies a contradiction to our choice of P to be a unique linkage,
proving the claim.
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A Outline of the appendix

In this appendix, we present the proofs of Theorems 1 and 3. We now give a brief overview of the
sections. In the next section, we present the Graph Minors tools which we will need for the argument.
In Section C, we prove a necessary technical lemma about combining a large family of traversing linkages
into a single traversing linkage. This will be necessary in order to generalize Observation 5 and weaken
the conditions i and ii. In Section D, we show how a suitable prospective counterexample to the Unique
Linkage Theorem guarantees the the existence of a large traversing linkage. In this section, we include
the proof of the Unique Linkage Theorem assuming Theorem 3. The remainder of the appendix is
concerned with the proof of Theorem 3.

Section E covers much of the same ideas laid out in the outline of the proof in the main article.
Specifically, it shows how we reduce the proof of Theorem 3 to one of analyzing societies consisting of
a matching glued onto the outside ring of a grid. Sections F, G, and H deal with several independent
results on societies consisting of only a matching, culminating in the main lemma we will use to analyze
these societies in the proof of Theorem 3. This lemma is presented in Section H. Section I provides a
final lemma necessary to the proof of Theorem 3, which is presented in the last section.

B Graphs in surfaces and the Weak Structure Theorem

Before developing the algorithm for the k disjoint paths problem in general graphs, Robertson and
Seymour first studied the problem in graphs embedded in some fixed surface. We will use these tools as
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well, and we present them in this section. We will also use a weak structure theorem for graphs without
a large clique minor. We present this theorem at the end of this section.

We begin with several basics on graphs embedded in surfaces. By surface we mean a 2-manifold
without boundary, and we always assume the embedded graph has a 2-cell embedding. If a graph G is
embedded in a surface Σ not equal to the sphere, the representativity of the embedding is the minimal
number of points in which a homotopically non-trivial curve C in the surface intersects the embedded
graph.

Again, let G be a graph embedded in a surface Σ and let F be a face of G bounded by a cycle C.
Let the vertices of C be labeled v1, v2, . . . , vk such that they occur in that cyclic order on C. A rooted
circular grid on the face F of depth t consists of pairwise disjoint contractable cycles C1, . . . , Ct in G
and pairwise disjoint paths P1, . . . , Pk such that:

• each Ci defines a disc Di in Σ with Dt ⊇ Dt−1 ⊇ · · · ⊇ D1 ⊇ F ;

• Pi has one end equal to vi and the other end in Ct;

• Pi ∩ Cj is a subpath of Pi for all 1 ≤ i ≤ k, 1 ≤ j ≤ t.

Rooted circular grids will be essential later in the proofs, as they allow us to maintain representativity
when adding edges to a fixed face. Before explaining this further, we need several background definitions.

A society is a pair (G,Ω) where G is a graph and Ω is a cyclic ordering of a subset of the vertices of
G. The set of vertices ordered by Ω are referred to as the society vertices. We will often use Ω to refer
both to the cyclic ordering as well as the set of society vertices.

We recall that for a graph G and a set A of vertices in G, an A-path in G is a path with both
endpoints in A and no internal vertex in A.

A k-crosscap in a society (G,Ω) consists of k disjoint Ω-paths P1, . . . , Pk such that the ends of Pi
labeled si and ti such that the vertices s1, s2, . . . , sk, t1, t2, . . . , tk occur in Ω in that order. A k-handle
consists of 2k disjoint Ω-paths P1, . . . , Pk, Q1, . . . , Qk such that the ends of Pi are si and ti for 1 . . . , t
and the ends of Qi are ui and vi such that the vertices s1, . . . , sk, u1, . . . , uk, tk, . . . , t1, vk, . . . , v1 occur
in Ω in that order. See Figure 3.

Figure 3: An example of a 4-crosscap and a 4-handle.

Observation 8. Let G be a graph embedded in a surface Σ of representativity t. Let F be a face with
boundary cycle C, and assume there exists a rooted circular grid of depth t rooted at F . Let Ω be the
natural cyclic ordering of V (C) given by following the cycle C in clockwise order in the face F . Let H
be a set of edges (H,Ω) be a set of edges forming a t-crosscap (or a t-handle). Then G∪H embeds with
representativity t in the surface Σ′ equal to Σ plus a crosscap in F (or Σ′ is equal to a Σ plus a handle

15



in F ). Moreover, if F ′ is any face of the embedding in Σ bounded by a subset of the vertices of Ω, then
there exists a rooted circular grid of depth bt/2c rooted at F ′.

The proof of Observation 8 follows from the fact that any homotopically non-trivial curve in Σ′

(that is homotopically trivial in Σ) must in fact be contained the disc bounded by the circular grid.
The statement then follows from the case when we add a t-handle or t-crosscap to the inner face of a
circular grid.

We will need the following two results or Robertson and Seymour.

Theorem 9 ([29], Theorem (9.1)). For all t ≥ 1 and for all surfaces Σ in which Kt can be embedded,
there exists a value f(t,Σ) such that if G is a graph embedded in Σ with representativity f(t,Σ), then
G contains Kt as a minor.

The next result is essentially Theorem 1 for graphs embedded in a surface of bounded genus.

Theorem 10 ([29], follows from Theorem (7.5)). There exists a function w = w(k,Σ) such that the
following holds. Let P be a linkage in a graph G with V (G) = V (P). Assume G embeds in Σ. If the
tree width of G is at least w, then there exists a vertex v ∈ V (G) and a linkage P ′ equivalent to P in
G− v.

We believe that we also have short proofs for both Theorems 9 and 10. This allows us to avoid using
[29], which is also lengthly.

We finish this section with the the version of the structure theorem we will use. Before describing
the theorem, we first need the definition of a wall, as well as some notation.

For positive even integers r, define a graph Hr as follows. Let P0, . . . , Pr be r vertex disjoint
(‘horizontal’) paths of length 2r + 1, say Pi = vi0 . . . v

i
2r+1. Let V (Hr) =

⋃r
i=1 V (Pi) \ {v0

0, v
r
2r+1}, and

let

E(Hr) =

(
r⋃
i=1

E(Pi) \ {v0
0v

0
1, v

r
2rv

r
2r+1}

)
∪
{
vijv

i+1
j : i odd, j even; 1 ≤ i < r; 0 ≤ j ≤ 2r + 1

}
∪
{
vijv

i+1
j : i even, j odd; 0 ≤ i < r; 1 ≤ j ≤ 2r + 1

}
.

The 6-cycles in Hr are its bricks. In the natural plane embedding of Hr, these bound its ‘finite’ faces.
The outer cycle of the unique maximal 2-connected subgraph of Hr is the boundary cycle of Hr. Any
subdivision H = THr of Hr will be called an r–wall or a wall of size r. The bricks and the boundary cycle
of H are its subgraphs that form subdivisions of the bricks and the boundary cycle of Hr, respectively.

Let us recall that an r-grid is a graph which is isomorphic to a subdivision of the graph Wr obtained
from the Cartesian product of paths Pr ×Pr, with vertex set V (Wr) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r} in
which two vertices (i, j) and (i′, j′) are adjacent if and only if one of the following possibilities holds:

(1) i′ = i and j′ ∈ {j − 1, j + 1}.

(2) j′ = j and i′ = i+ (−1)i+j .

Let us recall that the (a× b)-grid can be defined in a similar way.

A tree-decomposition of a graph G is a pair (T,W ), where T is a tree and W is a family {Wt | t ∈
V (T )} of vertex sets Wt ⊆ V (G), such that the following two properties hold:

(W1)
⋃
t∈V (T )Wt = V (G), and every edge of G has both ends in some Wt.
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(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then Wt ∩Wt′′ ⊆Wt′ .

The tree-width of G is defined as the minimum width taken over all tree decompositions of G.

One of the most important results concerning the tree-width is that it guarantees the existence of a
large wall. We give an algorithmic version of this result, which is due to Bodlaender [2].

Theorem 11. For any constant r, there exists a constant w = f1(r) satisfying the following: There
exists an O(wwn) time algorithm that, given a graph G, either finds a tree-decomposition of G of width
w or finds a wall W of height r. For a planar graph, the time complexity can be improved to O(2wn).

Definition 12. For a positive integer r and a graph G, a flat r-wall decomposition of G is a collection
of subgraphs G0, G1, . . . , Gn and an r-wall subgraph W with boundary cycle C satisfying the following:

a. G =
⋃n

0 Gi,

b. V (Gi) ∩ V (Gj) ⊆ V (G0) for all 1 ≤ i < j ≤ n and |V (Gi) ∩ V (G0)| ≤ 3 for all 1 ≤ i ≤ n, and

c. for all 1 ≤ i ≤ n, V (Gi) \ V (G0) contains at most one vertex of degree 3 in W .

Let G′0 be the subgraph resulting from G0 after adding an edge to any two nonadjacent vertices u and
v contained in V (G0) ∩ V (Gi) for some index 1 ≤ i ≤ n.

d. The graph G′0 is planar and can be embedded such that the infinite face is bounded by V (C) ∩
V (G0).

Recall that ∂(X) for any subset X in a graph G is the set of vertices v in V (G) \X such that v has
a neighbor in X.

We are give the Weak Structure Theorem.

Theorem 13 (Weak Structure Theorem, [31], Theorem (9.4)). For all k ≥ 1, r even, there exists a
value w = w(t, r) and α such that the following holds. Let G be a graph that does not contain Kt as a
minor with tree-width at least w. Then there exists a set A ⊆ V (G) with |A| ≤ α such that G− A can
be decomposed into subgraphs H and G′ with G−A = G′ ∪H. Moreover, the graph H has a flat r-wall
decomposition H0, H1, . . . ,Hn, W and C satisfying:

i) ∂G−A(V (G′)) ⊆ V (C) ∩ V (H0), and

ii) every vertex of degree 3 in W is contained in V (H0).

The weak structure theorem is in fact weaker than the full structure theorem. Notice that a graph
G may have the desired decomposition in the statement of the weaker theorem, and yet still have an
arbitrarily large clique minor. Instead, in the full structure theorem of the form of the clique-sum
decomposition, for all integers t there exists a value T such that any graph with no Kt minor has a
certain structure, and, moreover, any graph which does have this structure cannot contain KT as a
minor. See [7].

C Merging traversing linkages

The goal of this section is a lemma showing that given many distinct linkages Q1, . . . ,Qn traversing a
fixed linkage P, either we are able to reroute the linkage P to avoid a vertex, or we can join sublinkages
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of many of the Qi together to find a new traversing linkage. This lemma will be necessary in the coming
sections.

We will need the following two easy lemmas. The first is a restatement of a result of Robertson and
Seymour; the second follows from a lemma of Erdős and Szekeres.

Let P = p1, · · · , pl be a path. We say that two edge e1 = papb and e2 = pcpd cross, if either
a < c < b < d or c < a < d < b. Otherwise we say that e1 and e2 do not cross.

Lemma 14 ([29]). Let P be a path and let e1, . . . , en be n disjoint edges with endpoints in V (P ) (but
each ei is not an edge of P ). If n ≥ k3, then there exist k distinct ei such that they pairwise cross, they
define pairwise disjoint intervals of P , or they define nested intervals of P .

Let P = p1, · · · , pl and Q = q1 · · · ql be two disjoint paths. We say that two edge e1 = paqb and
e2 = pcqd cross, if either a < c and d < b or c < a and b < d. Otherwise we say that e1 and e2 do not
cross.

Lemma 15. Let P and Q be two paths, and let e1, . . . , en be disjoint edges, each with one end in P and
one end in Q. If n ≥ k2, then there exist k edges ei which pairwise cross, or pairwise do not cross.

We now give the main lemma in this section. It says that given many distinct linkages each traversing
a fixed linkage P, we can find a subset of them for which a subset of their paths have the same behavior
on P.

Lemma 16. For all positive integers k, l, n, and r, there exists positive integers N and R satisfying
the following. Let P be a linkage of order k and let Q1, . . . ,QN be linkages traversing P, each of order
R and length l. Then either

1. there exists indices π(1), . . . , π(n) and linkages Rπ(i) ⊆ Qπ(i) for 1 ≤ i ≤ n, each of order r and
length l, such that

⋃n
1 Rπ(i) is a linkage traversing P, or

2. there exists a linkage P ′ in P ∪
(⋃N

1 Qi
)

equivalent to P and avoiding a vertex v ∈ V (P).

Proof. Intuitively, we will begin with a subset of the linkagesQi all of which start on the same component
of P. Then we traverse the Qi’s from beginning to end. At each step we will find a large subset that
has the same behavior for the first t intersections with P, or we will use Observation 5 to reroute the
linkage P to avoid some vertex.

We think of t as indexing the number of steps we have proceeded so far in the argument. We define
the following. Let P(t) be a linkage of order at most k + t obtained by a series of at most t splits on
edges of P. Let I(t) ⊆ {1, . . . , N} be a subset of N(t) indices, and let linkages R(t)i sublinkages of Qi
for i ∈ I(t) where the basis subpaths of R(t)i are B(t)ji for 1 ≤ j ≤ l satisfying the following:

a. The basis subpaths are pairwise disjoint, i.e. B(t)ji ∩ B(t)j
′

i′ = ∅ for all i, i′, j, j′ unless i = i′ and
j = j′.

b. There exist distinct components S1, . . . , St of P(t) such that B(t)ji ⊆ Sj for all 1 ≤ i ≤ N(t),
1 ≤ j ≤ t.

c. Each of the R(t)i has order k + l + 1 + r.

d. The R(t)i are either pairwise crossing or pairwise non-crossing between Sj and Sj+1 for 1 ≤ j ≤
t− 1. In other words, for all 1 ≤ j ≤ t− 1, there exists i and i′ with B(t)ji before B(t)ji′ on Sj and
B(t)j+1

i before B(t)j+1
i′ if and only if this holds for all indices i, i′ ∈ I(t).
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If we prove the existence of such linkages with t = l and N(l) ≥ n, then the linkages R(l)i for i ∈ I(l)
will be the desired linkages in the statement of the lemma, with the subpaths S1, . . . , Sl forming the
basis subpaths of the traversing linkage. We will give a recursive relation for N(i) which will indicate
how large N must be in order to make the lemma true.

As a first step, we uncross the basis subpaths of the various linkages Qi, 1 ≤ i ≤ N . Let the basis
subpaths of Qi be Bj

i for 1 ≤ j ≤ l. Note that for indices i, i′, j, and j′ such that Bj
i ∩ B

j′

i′ 6= ∅, there

exist disjoint paths Bj
i ⊆ B

j
i and B

j′

i′ ⊆ B
j′

i′ such that each of Bj
i and B

j′

i′ contain half (rounded down)
of the components of Qi ∩Bj

i and Qi′ ∩Bj′

i′ , respectively. If we apply this to every possible choice of i,
i′, j, and j′, we see that if we assume

R ≥ (k + l + 1 + r)3N
2l2

then there exist linkages Qi ⊆ Qi for 1 ≤ i ≤ N with basis subpaths Bj
i for 1 ≤ j ≤ l, each of order

(k + l + 1 + r) such that the basis subpaths are pairwise disjoint.

We first construct P(1), I(1), R(1)i, B(1)ji , and S1 as follows. There exists a component S1 of P
such that at least N/k of the components of Qi have Bi contained in S1. We let P(1) = P, I(1) the set
of indices with B

1
i contained in S1 (and let B(1)ji = B

j
i in general), and, finally, R(1)i = Qi.

Let P(t), I(t), S1, . . . , St, R(t)i for i ∈ I(t) with basis subpaths B(t)ji for 1 ≤ j ≤ k + l + 1 + r be
given in order to calculate the corresponding t+ 1 structures. We will show that we can find a desired
subset of indices with

N(t+ 1) ≥
(
N(t)
k + l

) 1
3

.

We will additionally need the assumption that N(t) ≥ 2l + 1. If we look at the path St, then there
exists some component P ∈ P(t) such that P contains at least N(t)/(k+ l) of the “next” basis subpaths
B(t)t+1

i . We let I be the indices i with B(t)t+1
i contained in P .

There are now two cases to consider: if P = Si for some index i, or alternatively, P ∈ P(t)−
(⋃t

1 Si
)
.

The easier case is when P 6= Si for all 1 ≤ i ≤ t. Then, by Lemma 15, there exists a subset I(t) ⊆ I
with |I(t)| ≥

√
|I| such that the linkages R(t)i for i ∈ I(t) either pairwise cross between P and St or

pairwise do not cross. Thus setting St+1 = P and R(t+ 1)i = R(t) satisfies a.-d.

The other case is only slightly more complicated. Assume there exists an index x such that P = Sx.
Consider the auxiliary graph obtained by creating a path with vertices B(t)xi and B(t)t+1

i for i ∈ I,
with the order of the vertices given by the order in which they occur on Sx. We add edges connecting
B(t)xi and B(t)t+1

i for all i ∈ I, and now we apply Lemma 14 to the auxiliary graph. We find a subset
I(t + 1) ⊆ I with |I(t + 1)| ≥ (|I|)

1
3 such that the edges B(t)xiB(t)t+1

i for i ∈ I(t + 1) either pairwise
cross, are pairwise nested, or give pairwise disjoint intervals of the underlying path. In the first two
cases, there exists an edge e of Sx such that if we split Sx on e we obtain two components S1 and S2

such that B(t)xi is contained in S1 for all i ∈ I(t+ 1) and B(t)t+1
i is contained in S2 for all i ∈ I(t+ 1).

It follows that setting Sx to S1 and St+1 to be S2, and R(t+ 1)i = R(t)i, we satisfy a.-d.

Alternatively, there for every i ∈ I(t+1), the corresponding subpaths of the auxiliary graph connect-
ing B(t)xi and B(t)t+1

i are pairwise disjoint. In this case, we can find indices π(1), . . . , π(2t+1) and label
the ends of Si si and ti such that for B(t)xπ(1), B(t)t+1

π(1), B(t)xπ(2), B(t)t+1
π(2), . . . , B(t)xπ(2t+1), B(t)t+1

π(2t+1) oc-
cur on Sx when traversing from sx to tx, and for x < i ≤ t, the paths B(t)iπ(1), B(t)iπ(2), . . . , B(t)iπ(2t+1)

occur on Si in that order when traversing from si to ti. If there exists two linkages that twist between
distinct Si and Si+1 for x ≤ i ≤ t, then we are able to reroute. But otherwise, we may apply Observa-
tion 5 t times, and in either case find an equivalent linkage to P(t) avoiding some vertex. Since P(t)
was obtained from P by a series of edge splits, we conclude that there exists a linkage equivalent to P
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avoiding some vertex of P. This completes the proof of the lemma.

We now reconsider Observation 5. Observation 5 describes how, given a linkage Q traversing a
linkage P with several fairly restrictive properties, we are able to reroute the linkage P and avoid some
vertex of the graph. The next lemma shows how the conditions i. and ii. in Observation 5 can be
relaxed. The proof follows immediately from Lemma 16.

Lemma 17. Let k and l be positive integers. There exist integers R and N such that the following
holds. Let Q1, . . . ,Qn be linkages each of order R and length at most l which traverse P. Furthermore,
assume there exist pairwise disjoint subpaths Si of P containing all the endpoints of Qi for 1 ≤ i ≤ n.
Then there exists a linkage P ′ equivalent to P in P ∪

⋃n
1 Qi avoiding some vertex of P.

Proof. We let R′ and N ′ be the values given by Lemma 16 with k, l, and n = 2, r = 1. We prove the
lemma for R = R′ and N = lN ′. As a slight technicality, Lemma 16 assumes all the linkages have the
same length. By our choice of N , there exists a subset I ⊆ {1, . . . , N} with |I| ≥ N ′ such that linkages
Qi for i ∈ I all have length l′ for some integer l ≤ l.

We apply Lemma 16 to the linkages Qi, i ∈ I. Outcome 2 in the lemma is a desired outcome
of Lemma 17, thus, we may assume that there exist indices π(1), π(2) and components Rπ(i) ⊆ Qπ(i)

for i = 1, 2 such that the linkage Rπ(1) ∪ Rπ(2) traverses P. It follows that there exist disjoint basis
subpaths B1 and Bl′ of P such that each of Rπ(i) has one end in B1 and the other end in Bl′ . However,
this contradicts the fact that there exist disjoint subpaths Sπ(i) containing both ends of Rπ(i). This
contradiction completes the proof of the lemma.

D Finding a traversing linkage and proof of Theorem 1

In this section, we show how the proof of Theorem 1 can be reduced to Theorem 3. To do so, we will
use the Weak Structure Theorem to show that a unique linkage of sufficiently large tree width contains
a large traversing linkage. To apply the Weak Structure Theorem, we need the following theorem of
Robertson and Seymour.

Theorem 18. Let P be a linkage of order k in a graph G with V (G) = V (P). If G contains K3k+1 as
a minor, then there exists a vertex v and a linkage P ′ in G− v equivalent to P.

We will need two lemmas before proceeding with proof of the Unique Linkage Theorem.

Let C1, . . . , Cs be disjoint cycles in a plane graph G. Let Di be the disc in the plane with boundary
Ci. We say that they are concentric if we have the property that Ds ⊆ · · · ⊆ D1. Let G be a graph
and P be a linkage in G. Let H be a plane subgraph of G and let C1, . . . , Cs be concentric cycles in
H. A local peak of P in C1, . . . , Cs is a subpath Q of P with both endpoints contained in Ci, i > 1,
such that every internal vertex of Q contained in

⋃s
1 V (Cj) is contained in V (Ci−1). We allow the case

that the subpath Q has no internal vertices contained in Ci−1. A related notion is that of a simple
rerouting. The linkage P has a simple rerouting if there exists a cycle Ci, i ≥ 1 and a subpath P of
some component of P such that P has both endpoints in Ci, at least one vertex in Ci+1, and if there
exists a subpath Q of Ci with the same endpoints as P with Q internally disjoint from P. The name
derives from the fact that the subpath P can be replaced in the linkage P by the path Q.

Lemma 19. Let s be a positive integer. Let G′ be a graph embedded in the plane and let C1, . . . , Cs be
concentric cycles in G′. Let G′′ be another graph, with V (G′) ∩ V (G′′) ⊆ V (C1). Assume that G′ ∪G′′
contains a linkage P with endpoints in V (G′′). Finally, let v ∈ V (G′) be a vertex contained in Ds. Then
there exist concentric cycles C ′1, . . . , C

′
s in G′ bounding discs D′1, . . . , D

′
s with v in D′s and a linkage P ′

equivalent to P such that P ′ does not have either a local peak in C ′1, . . . , C
′
s nor a simple rerouting.
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Proof. Assume the lemma is false, and let G′, G′′, P, and C1, . . . , Cs form a counterexample containing
a minimal number of edges. To simplify the notation, we let G = G′ ∪ G′′. By minimality, it follows
that the graph G =

⋃s
1Ci ∪ P.

It immediately follows that P does not have a simple rerouting. The remainder of the proof will
focus on showing that we do not have a local peak.

Note that no subpath Q ⊆ P∩G′ that is internally disjoint from
⋃s

1Ci has both endpoints contained
in Cj for some 1 < j ≤ s. Otherwise, we could reroute Cj through the path Q to find s concentric
cycles in G′ and contradict our choice of a counterexample containing a minimal number of edges. Note
that we must reroute the cycle Cj to ensure that the vertex v is contained in the disc bounded by Cs;
however, this is always possible, since we would not reroute the cycle Cs.

Assume, to reach a contradiction, that there exists an index j > 1 and a subpath Q in P such that
Q is a local peak with both endpoints on Cj . Pick such a Q and j with j maximal. Assume Q is a
subpath of P ∈ P. Let the endpoints of Q be x and y. Lest we re-route P through Cj and find a
counter-example containing fewer edges, there exists a component P ′ ∈ P intersecting the subpath of
Cj linking x and y. By planarity, P ′ either contains a subpath internally disjoint from the union of the
Ci with both endpoints in Cj , or P ′ contains a subpath forming a local peak with endpoints in Cj−1.
Either is a contradiction to our choice of a minimal counterexample (note that in the second case, we
may have to apply the same argument to P ′, but eventually we would get the first conclusion). This
contradiction proves the lemma.

Definition 20. We define a target T to be a graph such that the following holds:

a. there exist disjoint cycles C1, . . . , Cm and a linkage P such that T = P ∪
⋃m

1 Ci,

b. there exists a plane subgraph H of T such that C1, . . . , Cs are concentric cycles in H, and

c. the linkage P does not have either a local peak in C1, . . . , Cs or a simple rerouting.

The value s is the height of the target. Let P be a subpath of component of P ∩D1 with both ends in
C1 and otherwise internally disjoint from C1. We assume that P does not intersect Ds except for the
vertices in Cs. Observe that P ∪ C1 forms two internally disjoint discs F1 and F2 with F1 ∪ F2 = D1

and F1 ∩ F2 ⊆ P . We may assume F1 contains the disc Ds. We define the wedge of T formed by P to
be the subgraph W = F2 ∩H. The height of the wedge W is the maximum i such that Ci ∩W 6= ∅.

Note that for any target of height s with concentric cycles C1, . . . , Cs and linkage P, it follows
immediately from the definition that for any index k, Ck+1, Ck+2, . . . , Cs with the linkage P forms a
target of height s− k.

Lemma 21. For all integers l, w, k, there exists an s = s(l, w, k) such that the following holds. Let T
be a target of height m with concentric cycles C1, . . . , Cm and assume that the linkage P of order k is
given. Assume V (T ) = V (P). Then either there exists a linkage Q traversing P of order w and length
l, or there exists a linkage equivalent to P avoiding some vertex of T .

Proof. We will prove a slightly stronger statement to facilitate an inductive proof. We will show:

Claim 22. There exists a value h = h(l, w, k) such that if W is a wedge of height h in a target T formed
by a subpath P of P, then W either contains a linkage Q traversing P of order w and length l such that
P is the first basis subpath of the traversing linkage, or there exists a linkage equivalent to P avoiding
some vertex of T .
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Proof. The proof will be by induction on l. So, we assume lexicographical order l, w, k for h(l, w, k).
When l = 1, the statement is trivial if we assume h(1, w, k) ≥ w. We fix the values k and w, and let W
and T be given. We let s be the height of the target T , and we assume l ≥ 2.

We fix t = h(l− 1, w′, k) where t and w′ will be later chosen in order to make the claim true. Let z
be a vertex of Ch ∩P . If we look at the two components P1 and P2 of P − z, each intersects each of the
cycles C1, . . . , Ch−1 in exactly one subpath by the fact that there are no local peaks by Lemma 19. We
let xi be a vertex of P1 ∩Ci for t ≤ i ≤ h− 1 and yi a vertex of P2 ∩Ci for t ≤ i ≤ h− 1. We let Qi be
the subpath of Ci linking xi and yi in W .

The proof will now proceed roughly as follows. Let U1 be the plane graph bounded by the cycle
C1 in the target T . As we traverse Qi from xi to yi, by the fact that there are no simple reroutings in
the target T , we know we encounter some other component P ′ of P ∩ U1. This component P ′ forms a
wedge W ′ contained as a subgraph of W , and by our choice of t, the wedge W ′ contains a traversing
linkage of length l − 1 and order w′. Thus, if departing from xi for many distinct indices i, we arrive
at distinct wedges W ′, we can merge many of these linkages using Lemma 16 to find a big traversing
linkage of length l−1 which extends to a traversing linkage of length l with P ′ as the first basis subpath.
Alternatively, if departing from xi for many distinct indices i, we arrive at the same wedge W ′, we have
already begun to construct our traversing linkage with P as the first basis subpath, and P ′ as the
second.

We give the constants we will need in the remainder of the proof. We let N and w′ = R be the
value given by Lemma 16 applied with k, l− 1, n = 2lw, and r = 1. We also assume s ≥ t+N l + 1 and
N ≥ t.

Let W1, . . . ,Wl′ be wedges formed by components P1, . . . , Pl′ of P ∩ U1 with W1 ⊇ W2 ⊇ · · · ⊇ Wl′

and W1 = W , P1 = P . Moreover, there exists an index x ≥ t such that the following holds: for all i,
x ≤ i ≤ x + N l−l′+1, traversing Qi from xi to yi, the first l′ components of P encountered are exactly
P1, P2, . . . , Pl′ in that order. Note that such a choice clearly if l′ = 1 because s ≥ t + N l + 1. We
choose W1, . . . ,Wl′ , P1, . . . , Pl′ , and x such that the value l′ is maximized. Note that if l′ = l (and we
assume N ≥ w), then the statement is proven and there exists a traversing linkage with basis subpaths
P1, . . . , Pl′ and order N ≥ w.

Let x′i be the first vertex of Pl′ ∩Ci when traversing Qi from xi to yi for x ≤ i < x+N l−l′+1. Then
if we consider in the subgraph Wl′ , again by the fact that there are no simple reroutings in a target,
we see that if we traverse Qi from x′i to yi, we encounter some component of P before intersecting Pl′
second time. Let Ri be the first such component of P ∩ U1 we intersect. Note that Ri forms a wedge
of height at least t = h(k, l − 1, w′). Also, note that by planarity, we have that if Ri 6= Rj , then the
wedges formed by Ri and Rj are disjoint, and, if i ≤ j ≤ k and Ri = Rk, we have Rj = Ri.

If there exists a subset I of N distinct indices i, I ⊆ {x, . . . , x + N l−l′+1 − 1} such that the Ri are
pairwise distinct, then by the induction hypothesis, since N ≥ t, there exist linkages Li traversing P
for all i ∈ I, each of width w′ = R and length l − 1. We apply Lemma 16. If we find an equivalent
linkage to P avoiding some vertex, the claim is proven. Thus, we may assume we find a subset I ′ ⊆ I of
w2l distinct indices and paths Li ∈ Li for all i ∈ I such that Li has an endpoint in Ri, and, moreover,
we have the property that

⋃
i∈I′ Li forms a linkage traversing P of length l − 1. We may assume, in

fact, that each Li has the vertex x′i as an endpoint. If we consider the set of paths Li = Li ∪ xiQix′i
for i ∈ I ′, we see that

⋃
i∈I′ Li almost form a traversing linkage of order w and length l − 1 + l′, with

the paths P1, . . . , Pl′ forming the additional basis subpaths. The only possible difficulty is that each of
the Pi may intersect a basis subpath of

⋃
i∈I′ Li. However, each of the paths Li is disjoint from Pj for

all i ∈ I ′, 1 ≤ j ≤ l′ because Li is contained in the wedge formed by Ri. Thus, by possibly discarding
at most half of the paths in

⋃
i∈I′ Li for each Pj , 1 ≤ j ≤ l′, we see there exists a subset I ′′ ⊆ I ′ with

|I ′′| ≥ w such that
⋃
i∈I′′ Li forms a traversing linkage of order w and length l with P1 a basis subpath

containing an endpoint of each Li.
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We may therefore assume that there does not exist such a subset I of indices and there are at most
N distinct paths Ri. It follows that there exists an index x such that at least N l−(l′+1)+1 + 1 of the
Ri are in fact equal to Rx. By our observations on the planarity of T , we may assume that in fact
Ri = Rx for all x ≤ i ≤ N l−(l′+1)+1 for an index x. This contradicts our choice of l′ maximal by setting
Pl′+1 = Rx, completing the proof of the claim.

The lemma now follows immediately from Claim 22 as every target of height s contains a wedge of
height s.

The next theorem essentially allows us to reduce the proof of the Unique Linkage Theorem to the
proof of Theorem 3.

Theorem 23. Let k be a positive integer, and let P be a linkage of order k in a graph G with V (G) =
V (P). For all integers r and l there exists an integer w such that the following holds. If the treewidth
of G is at least w, then there exists a linkage P ′ equivalent to P such that either P ′ avoids some vertex
v of G, or, there exists a linkage Q traversing P ′ of order r and length l.

Proof. Fix the value k. We may assume, by Theorem 18 that G does not contain K3k+1 as a minor.
By Theorem 13, there exists a subset A of at most α(k) vertices such that G−A has a decomposition
G′, H0, H1, . . . ,Hn such that H =

⋃n
0 Hi contains a t-wall W . Note we may make t as large as necessary

by increasing the value w. We choose such a decomposition to minimize n.

First, we split the linkage P on every edge incident the vertex set A. This results in a linkage P ′
of order at most 2α + k. To complete the proof of the theorem, it suffices to show that there exists a
vertex v of G and a linkage equivalent to P ′ avoiding v by Observation 6.

The linkage P ′ may have endpoints contained in H. However, there is only bounded number of such
vertices, and so we may select a subgraph H ′ of H containing a t′-wall W ′ with boundary cycle C ′ such
that H ′ has a flat wall decomposition H ′0, . . . ,H

′
n′ satisfying the following:

1. ∂G−A(V (G) \ V (H ′)) ⊆ V (C ′) ∩ V (H ′0), and

2. no endpoint of a path in P ′ is contained in H ′.

Note that since the number of vertices to avoid in W is fixed (in terms of k), we may again choose t′

arbitrarily large by forcing t to be large.

It follows from the fact that V (H ′) ⊆ V (P ′), and the fact that every vertex of H ′ has degree 2 in
P ′, that for all i ≥ 1, V (H ′i) consists of a single induced subpath Q of some component of P ′. It follows
that H ′i is planar and can be embedded with the vertices of V (H ′i) ∩ V (H ′0) on the boundary of the
infinite face. Thus, by our choice of near embeddings to minimize the value n, we conclude that n′ = 0
and that H ′ is a planar subgraph of G.

We fix an embedding of H ′0 and let C1, . . . , Cs be concentric cycles contained in the disc D1 bounded
by the cycle C1. We may choose s = bt′/2c. By Lemma 19, we may assume that there exist concentric
cycles C1, . . . , Cs and a linkage P equivalent to P ′ such that P has neither a local peak in C1, . . . , Cs
nor a simple rerouting. It follows that P ∪

⋃s
1Ci forms a target of height s.

If we set s to the value given by Lemma 21 for k + 2α, l, and w, we see that there exists a linkage
P ′ equivalent to P such that either there exists a linkage Q traversing P ′ of order w and length l, or P ′
avoids some vertex in G. This completes the proof of the theorem.

The proof of Theorem 1 now follows easily, assuming Theorem 3.
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Proof of Theorem 1, assuming Theorem 3. Let G be a graph and P a linkage of order k in G. Assume
V (G) = V (P). Let l and w be the values given in the statement of Theorem 3. Then by Theorem 23,
there exists a value width such that if the treewidth of G is at least width, then there exists a linkage
P ′ equivalent to P such that either P ′ avoids some vertex v of G, or there exists a linkage Q traversing
P ′ of order w and length l. Theorem 3 implies that there exists a linkage P ′ equivalent to P in P ∪ Q
avoiding some vertex of G. Thus it follows that if the tree width of G is at least width, then there exists
a linkage P ′ equivalent to P avoiding some vertex of G. This proves Theorem 1.

E Switching Perspective

In this section, we outline the main steps in the argument for the proof of Theorem 3. We cover many
of the same points already discussed in the main article. We include this section for completeness of
the appendix.

Let k, w, and l be integers. Let P be a linkage of order k and Q be a traversing linkage of order w
and length l. Let the basis subpaths of Q be B1, B2, . . . , Bl.

We contract all the edges of P ∪ Q incident a vertex of degree at most 2. We also contract all the
edges of P ∩Q. Thus we may assume that:

1. that there are no edges contained in Q∩ P, and

2. there are no vertices in V (Q) \ V (P).

Intuitively, until now we have been thinking of the linkage P as a sort of underlying graph, and
looking at how the linkage Q visits each of the components in turn. We now would like to shift
perspectives, and keep the linkage Q fixed in our minds, and look at how a component P of P intersects
Q as we travel along P .

By the definition of a traversing linkage, we can fix a labeling Q1, Q2, . . . , Qw of the components
of Q so that every component P ∈ P satisfies the following. The path P can be decomposed into
subpaths R1, . . . , Rt and edges e1, . . . , et−1 that are pairwise disjoint so that ei connects the ends of Ri
and Ri+1 and each Ri has one end in Q1, the other end in Qw, and intersects the paths of Q in order,
i.e. Q1, Q2, . . . , Qw. (In fact, the paths Ri are the basis subpaths of Q on P , ordered by traversing P ).

If we look at the graph formed by P ∪Q, we see that Q∪
⋃t

1Ri forms a subdivision of a (w× t)-grid.
The horizontal paths of the grid are the Qi for 1 ≤ i ≤ w, and the vertical paths are the Ri, 1 ≤ i ≤ t.
The edges ei form a matching with the ends contained in Q1 ∪ Qw. In the rest of the proof, we place
the grid aside, and focus on these edges ei.

The edges ei together with the outer face boundary of W form a society. We build on the results
in [30], and then extend them in such a way that the outcomes include “genus addition”, i.e, a handle
addition and a crosscap addition. This will be done in Section F. Using the main lemma of Section
F, we adapt some ideas in [32, 33] to grow a graph on the surface with large representativity. These
arguments are covered in Sections G and H. This process terminates either when we find a large clique
minor (which allows us to reroute P to avoid some vertex by Theorem 18), or alternatively, when we
embed all but a bounded number of the edges ei in a surface of bounded genus. In this case, we use
the tools for analyzing linkages developed in [29]. Let us emphasis that our proof does not need most
of the heavy machinery in Graph Minor theory. Specifically, we do not use the structure theorem. We
are able to avoid doing so because our society consists of only a matching, and that matching is glued
onto the outside boundary of a grid. This allows us to avoid any global connectivity issues, since the
structures we find are already nicely connected to the grid. And, furthermore, the society consisting of
only a matching leads to considerably simpler arguments. In contrast, Graph Minor Theory needs more
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ingredients, including ”vortex”, ”embedding, up to 3-separations”, ”tangle, respectful tangle” etc. This
leads to a dramatic savings in space and effort in our proof.

Thus the remainder of the proof will now focus on these edges ei. The first step in these arguments,
which we will cover in the next few sections, will be a series of results for analyzing these edges ei.

F An Erdős-Pósa result for societies

In this section, we return to societies which were introduced in Section B. We will prove a lemma about
Ω-paths in societies. First, we give several more notions concerning societies. Let (G,Ω) be a society. A
subset of vertices X ⊆ Ω is a segment of the society vertices Ω if there do not exist vertices x1, x2 ∈ X
and vertices y1, y2 ∈ Ω \X such that x1, y2, x2, y2 occur in Ω in that order.

We say a society (G,Ω) is rural if G can be embedded in the disc with the vertices of Ω on the
boundary of the disc in the order specified by Ω. We say two disjoint paths Ω-paths P1 and P2 cross
if the ends of Pi can be labeled si and ti for i = 1, 2 such that the vertices s1, s2, t1, t2 occur in Ω in
that order. Equivalently, two paths cross if there do not exist disjoint segments S1 and S2 such that Si
contains the endpoints of Pi for i = 1, 2. Note that in a rural society, there do not exist disjoint crossing
Ω-paths.

We extend the idea of independent bumps to societies as follows. We say that disjoint Ω-paths
P1, . . . , Pk are independent if there exist disjoint segments Si in Ω such that Si contains the endpoints
of Pi. Note that two disjoint Ω-paths are independent if and only if they do not cross.

Let P1, . . . , Pk, Q1, . . . , Qk be pairwise disjoint Ω-paths, and assume that Pi and Qi cross. Fur-
thermore, assume there exist nested segments S1, S2, . . . , Sk such that the endpoints of Pi and Qi are
contained in Si \ Si−1 for all 1 ≤ i ≤ k. Then the paths P1, . . . , Pk, Q1, . . . , Qk form k nested crosses.

Figure 4: An example of 3-nested crosses.

We now give the main result of this section.

Lemma 24. Let (G,Ω) be a society such that E(G) is a matching. There exists a function f(k) such
that the following holds.

1. There exist k independent edges in (G,Ω).

2. There exists a k-crosscap.

3. There exists a k-handle.

4. There exists a set Z ⊆ E(G) of size at most f(k) such that (G− Z,Ω) is rural.

25



5. There exist k nested crosses.

Before proceeding with the proof of Lemma 24, we give the following useful lemma. A transaction
in a society (G,Ω) is a linkage P of Ω-paths such that there exist two disjoint segments S1 and S2 of
Ω such that every component P ∈ P has one end in S1 and one end in S2. A transaction is rural if it
does not contain a 2 disjoint crossing Ω-paths.

The following two lemmas are essentially the same as Lemmas 14 and 15, translated into terms of
societies.

Lemma 25 ([30]). Let P be a set of order k3 of pairwise disjoint Ω-paths in a society (G,Ω). Then P
contains a k-crosscap, k pairwise disjoint, independent Ω-paths, or a rural transaction of order k.

Lemma 26. Let P be a transaction of order k2 in a society (G,Ω). Then either P contains a sublinkage
forming a rural transaction of order k, or a k-crosscap.

We now proceed with the proof of Lemma 24.

Proof. Lemma 24. We prove the lemma with f(k) = 2(4k2)6. We first observe that for all t ≥ 1, either
(G,Ω) contains vertex disjoint edges e1, . . . , et, f1, . . . , ft such that ei and fi cross for i = 1, . . . , t, or,
there exists a set Z of at most 2t edges such that G−Z does not contain a cross. In other words, G−Z
is rural. Such edges e1, . . . , et, f1, . . . , ft may in fact be selected greedily. We pick such ei and fi for
1 ≤ i ≤ t for t = (4k2)6.

Apply Lemma 25 to the society consisting just of the edges e1, . . . , et. Lest we satisfy 1 or 2, we may
assume that among the edges ei, we find a planar transaction of order (4k2)3. We then apply Lemma
25 again to the corresponding edges fi of the planar transaction consisting of the edges ei, and again
find a planar transaction of order 4k2, among the edges fi. We thus conclude that there exists edges
e1, . . . , e4k2 , f1, . . . , f4k2 such that:

i. ei and fi cross for 1 ≤ i ≤ 4k2,

ii. the edges ei form a planar transaction for 1 ≤ i ≤ 4k2, and

iii. the edges fi form a planar transaction for 1 ≤ i ≤ 4k2.

Note that i. follows from the fact that we have a planar transaction of order (4k2)3 consisting of
the edges ei. There also exist segments S1, S2 of Ω such that every edge ei has one end in S1 and one
end in S2. We may assume that the endpoints of e1, e2, . . . , e4k2 occur on S1 in that order. Note that
for all indices j, if the edge fj crosses ei(1) and ei(2) for two values i(1) ≤ i(2), then fj crosses ei(3) for
all i(1) ≤ i(3) ≤ i(2).

Consider the edges f1, . . . , fk. If they all cross e2k+1, then f1, . . . , fk, ek+1, . . . , e2k form a k-handle.
Thus we may assume that there exists an index j, 1 ≤ j ≤ k such that fj does not cross e2k+1. We now
look at f3k+1, . . . , f4k. If each one crosses e2k+1, then f3k+1, . . . , f4k and e2k+1, . . . , e3k form a k-handle.
We conclude there is an index j′, 3k + 1 ≤ j′ ≤ 4k such that fj′ does not cross e2k+1. It follows that
the edge e2k+1 divides Ω into two disjoint segments S1 and S2 such that one, say S1 contains all the
endpoints of ej and fj , and the other S2 contains the endpoints of every edge ei, fi for i ≥ j′. Since
there are 4k2 indices for ei, fi, thus it follows by induction on k that (G,Ω) contains k nested crosses,
which proves the lemma.

G Extending a k-crosscap or k-handle

In Section F, one outcome when considering a huge society comprised of a matching was that we found
either a large handle or crosscap. In the applications, we will want to embed the remaining edges of the
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matching into the faces of this handle or crosscap. The goal of this section is to characterize when we
are able to do so.

Let (G,Ω) be a society with G a matching. Let M ′ be a k-crosscap or k-handle for some positive
integer k. A facial set of M ′ is a subset X ⊆ Ω such that if we embed (M ′,Ω) in the natural way into
the disc plus a crosscap (or in the disc plus a handle in the case that M ′ is a k-handle) with Ω on the
boundary of the disc in the order specified by Ω, then X is the set of Ω vertices contained in a single
face of the embedding.

For the lemma, we will need to allow for one more possible outcome. Let (G,Ω) be a society, and
let P1, . . . , Pt, Q1, . . . , Qt be disjoint Ω-paths. We say that P1, . . . , Pt, Q1, . . . , Qt form t twisted nested
crosses if there exists a segment S of Ω containing exactly one endpoint of Pi and Qi for all 1 ≤ i ≤ t
and if we let Ω′ be the cyclic order obtained from Ω by reversing the order of the vertices of S, then
P1, . . . , Pt, Q1, . . . , Qt form t nested crosses in (G,Ω′).

The next lemma is the main result of this section.

Lemma 27. Let t be a positive integer. There exists a function f(t) such that the following holds. Let
(G,Ω) be a society, and assume E(G) can be partitioned into a matching M on Ω and a cycle C with
V (C) = Ω such that the natural order of the cycle is the same as the cyclic order Ω. Assume that M
contains a matching M ′ which is either a f(t)-crosscap or a f(t)-handle. Then one of the following
holds

1. There exists a subgraph M ′′ ⊆ M ′ such that M ′′ is either a t-crosscap or a t-handle and every
edge of G−M ′′ has both endpoints in a facial set of M ′′.

2. M contains t independent bumps.

3. M contains t nested crosses or t twisted nested crosses.

4. There exists a path P in C such that if we let Ω′ be the order of Ω−P given by Ω, the the following
holds. In (G,Ω′) there exists a set P of disjoint Ω′-paths such that P contains disjoint independent
Ω′-paths Q1, . . . , Qt such that for every 1 ≤ i ≤ t, there exist t distinct components in P crossing
Qi.

Proof. Assume the theorem is false, and let (G,Ω) form a counterexample. Let M ′, C, and M be as in
the statement. We let S1, . . . , Sm be the segments of Ω demarcated by the vertices of V (M ′)∩Ω so that
C[Si] form internally disjoint subpaths of C. So, each C[Si] is contained in some facial set. We label
the Si such that S1, . . . , Sm occur in that order in the order Ω. If M ′ is a f(t)-crosscap, note m = 2f(t)
and if M ′ is a f(t)-handle, then m = 4f(t). We will see in the course of the proof how large f(t) must
be in order to derive a contradiction.

We consider an auxiliary graph A with vertex set S1, . . . , Sm where two segments Si and Sj are
adjacent if there exists an edge e of M with one end in Si and one end in Sj , but no facial set of M ′

contains both ends of e.

First, we observe that for any pair of indices i and j, there exists a subgraph M1 of M ′ such that
Si and Sj are contained in the same facial set of M1 and if M ′ is a f(t)-crosscap, then M1 is an
f(t)/2-crosscap, and if M ′ is a f(t)-handle, then M1 is an f(t)/2-handle. We let l be a value such that

f(t) ≥ t2l.

Lest we satisfy 1, we conclude that the auxiliary graph A has at least l distinct edges.

Claim 28. The auxiliary graph A does not have a vertex of degree (t+ 4)(4t)2.
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Proof. Assume, to reach a contradiction, that there exists an index z such that Sz has degree (t+4)(4t)2

in A. If we select every (t+ 4)th Si adjacent to Sz while following the cyclic order Ω, it follows that we
can find indices π(1), . . . , π

(
4t2
)

with the following properties.

a. For all indices 1 ≤ j ≤ (4t)2, there exists an edge of M , label it ej , with one end in Sz and one
end in Sπ(j);

b. for all j, 1 ≤ j ≤ (4t)2 − 1, there exist at least t distinct edges of M ′ with at least one end in the
segment of Ω \ (Sπ(j) ∪ Sπ(j+1)) avoiding Sz and no end equal to an internal vertex of Sz;

c. π(1) ≤ π(2) ≤ . . . ,≤ π
(
4t2
)
.

Note that b. follows from the fact that M ′ is either a f(t)-crosscap or a f(t)-handle. By Lemma 26, it
follows that the set of edges e1, . . . , e(4t)2 contains either a rural transaction of order 4t or a 4t-crosscap.
By pairing sequential edges in this rural transaction or crosscap, we see that there exist 2t disjoint
independent Ω′-paths P1, . . . , P2t with ends in Ω′ = Ω \ Sz. Moreover, for each Ω′-path Pi, there exist t
distinct edges of M ′ each with exactly one end in the Ω′-segment linking the ends of Pi and the other
end in Ω′. Since M ′ has at most two independent edges, it follows that at least 2t − 2 of the Ω′-paths
Pi are each crossed by t distinct edges of M ′. We conclude that 4. is satisfied, a contradiction. This
completes the proof of the claim.

We have shown that the auxiliary graph A does not have a vertex of large degree. The remainder
of the proof will consist in showing that A does not have a large matching.

Claim 29. If A contains a matching of order at least 9(18t2(t+ 2))3, then there exist edges ei, fi, and
segments Ti for 1 ≤ i ≤ t2(t+ 2) with the following properties.

a. The segments Ti are disjoint and occur in the order T1, . . . , Tt2(t+2) in Ω.

b. The edges ei and fi each have exactly one end in Ti and are each disjoint from Tj for all 1 ≤
i, j ≤ t2(t2), j 6= i.

c. The edges ei, 1 ≤ i ≤ t2(t + 2), either form a crosscap or a rural transaction; the edges fi,
1 ≤ i ≤ t2(t+ 2), either form a crosscap or a rural transaction.

d. If the edges ei form a crosscap, then ei and fi do not cross for all 1 ≤ i ≤ t2(t + 2); if the edges
ei do not pairwise cross, then ei and fi do cross for all 1 ≤ i ≤ t2(t+ 2).

e. There exists a segment T containing Ti, and exactly one endpoint of each edge ei and fi for all
1 ≤ i ≤ t2(t+ 2).

Proof. For every edge in the matching in A, let an edge fi be an edge of M \M ′ whose endpoints are
not contained in a single facial set. We set Ti to be a segment Sj containing an endpoint of fi. Note
that since M is a matching, the endpoint of fi in Ti is an internal vertex of the segment. Consider the
two edges of M ′ incident the first and last vertices of Ti. If M ′ is a crosscap, since fi does not have
both ends in the facial set of the crosscap containing Ti, at least one of the edges is not crossed by fi.
We set ei to be such an edge. If M ′ is a handle, then fi must cross one of the edges of M ′ incident Ti.
In this case, let ei be such an edge.

Each Ti intersects Tj for at most two indices j. Thus, by discarding at most two thirds of the indices
i, we may assume that the Ti are pairwise disjoint. After possibly re-ordering the indices, we conclude
that there exist ei, fi, and Ti, 1 ≤ i ≤ 3(18t2(t+2))3 satisfying the following. For 1 ≤ i ≤ 3(18t2(t+2))3,
the edges ei and fi have exactly one endpoint in Ti. The segments Ti, 1 ≤ i ≤ 3(18t2(t+2))3 are pairwise
disjoint and occur in that order in Ω. The edges ei, 1 ≤ i ≤ 3(18t2(t+ 2))3 either form a crosscap or are
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a subset of the edges of handle. Finally, the edges ei and fi, for 1 ≤ i ≤ 3(18t2(t+ 2))3, satisfy property
d.

The proof will proceed by discarding ei, fi, and Ti for some subset of the indices 1 ≤ i ≤ 3(18t2(t+
2))3 to find a set satisfying all the properties a - e. We see already that we satisfy property a. and d.
Again, by the property that each edge of M \M ′ has each endpoint contained as an internal vertex of
the segment Si for some index i, we see that for all 1 ≤ j ≤ 3(18t2(t + 2))3, the edge ej intersects at
most one Tl for l 6= j, and the edge fj intersects at most one Tl for l 6= j. We conclude that there exists
a subset I ⊆ {1, . . . , 3(18t2(t + 2))3} with |I| ≥ (18t2(t + 2))3 such that ei, fi, and Ti for i ∈ I satisfy
a, b, and d.

We apply Lemma 25 to the set of edges fi, i ∈ I. There do not exist t independent edges in (G,Ω),
so we conclude that there exists a set I1 ⊆ I such that fi, i ∈ I1 is either a |I1|-crosscap or a rural
transaction. Moreover, |I1| ≥ |I|

1
3 ≥ 18t2(t+ 2). If the edges ei are not in the crosscap, by construction

they are a subset of the handle. Thus, there exists I2 ⊆ I1, |I2| ≥ |I1|/2 ≥ 9t2(t+ 2) such that the edges
ei for i ∈ I2 form either a crosscap or a rural transaction. We conclude that ei, fi, and Ti, for i ∈ I2
satisfy a - d.

In the final step, we must show the existence of the segment T . Let T ′ be the minimal segment
containing Ti for all i ∈ I2. If the edges ei form the rural transaction, then there exist at most two
indices i and i′ such that ei and ei′ are independent and have both their endpoints in T ′. It follows that
T ′ can be partitioned into 3 segments such that no edge ei has both endpoints in one such segment.
If the edges ei form a crosscap, then there do not exist two indices i and i′ such that ei and ei′ have
both their endpoints in T ′ and are independent. In this case, T ′ can be partitioned into two segments
such that no edge ei has both endpoints in one of the segments. We conclude that there exists a subset
I3 ⊆ I2 with |I3| ≥ |I2|/3 such that ei, fi, and Ti satisfy a-d and there exists a segment T ′′ containing Ti
for all i ∈ I3, and no edge ei has both endpoints in T ′′. Re-iterating the same argument for the edges fi,
we see that after again discarding possibly 2/3 of the indices, we find a subset I4 ⊆ I3, |I4| ≥ t2(t+ 2)
such that a-e holds for ei, fi, and Ti, i ∈ I4. This completes the proof of the claim.

We will show that given such ei, fi, and Ti as in Claim 29, either 3 or 4 in the statement of the
lemma is satisfied. There are now four cases to consider: the edges ei either form a crosscap or a rural
transaction, and the edges fi either form a crosscap or a rural transaction. However, two of these cases
are essentially symmetric to the others. The next claim is a slight strengthening of outcomes 3 and 4
in order to take advantage of this symmetry.

Claim 30. Let ei, fi, Ti, and T satisfy a. − e. in Claim 29 for 1 ≤ i ≤ t2(t + 2). Then either (G,Ω)
satisfies 3 with the additional property that every edge of the nested crosses or twisted nested crosses
has one end in T and one end in Ω \ T , or (G,Ω) satisfies 4 with the additional property that the path
P satisfies V (P ) ⊆ Ω \ T .

Proof. We first define the idea of a flip on a segment. If S is a segment of Ω, the cyclic order Ω′ is
obtained by a flip on S if Ω′ is an order on the same set of vertices as Ω obtained by following S in
the same order as in Ω, followed by the reverse order on Ω \ S. We observe that (G,Ω) satisfies 3 or 4
with the additional properties in the statement if and only if (G,Ω′) does as well where Ω′ is the cyclic
ordered obtained by a flip on T . Thus, it suffices to prove the claim up to flips on T .

By possibly flipping on T , we may assume that the edges ei do not cross. It follows that there are
two possible cases - whether the edges fi cross or not. We analyze each case separately.

Case: The edges fi pairwise cross. Consider the edge et(t+2)+1, and let z be the endpoint of
et(t+2)+1 in Ω \ T . The vertex z partitions Ω \ (T ∪ z) into two segments, say F1 and F2, so that
F1, z, F2, T occur in Ω in that order. If ft(t+2)+1 has an endpoint in F1, then fi has an endpoint in F1
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for every i ≤ t(t+ 2). If we link fi(t+2)+1 and f(i+1)(t+2) in F1, we conclude that outcome 4 is satisfied
with P ⊆ F1. Similarly, if ft(t+2)+1 has an end in F2, we satisfy outcome 4 with P contained in F2.
This completes the analysis of the first case.

Case: The edges fi pairwise do not cross. First, we consider what happens if there exists an
index x such that fx crosses ex+t(t+2). It follows that fx crosses ei for all x ≤ i ≤ x+ t(t+2). Moreover,
since the edges fi do not cross, we see that fi crosses ej for all x ≤ i ≤ x+t(t+1) and i ≤ j ≤ x+t(t+2).
We conclude that Ω \T can be partitioned into two segments F1 and F2 such that F1 contains the ends
of fi for x ≤ i ≤ x+ t(t+ 2) and F2 contains the endpoints of ei for x ≤ i ≤ t(t+ 2). By linking every
fx+i(t+2) and fx+(i+1)(t+2)−1 in F1 for 0 ≤ i ≤ t− 1, we see that conclusion 4 in the lemma is satisfied
with the additional property that the path P is disjoint from T , as desired. We conclude that no such
index x exists. It follows that the crossing edges eit(t+2)+1, fit(t+2)+1 for 0 ≤ i ≤ t − 1 form t nested
crosses, as desired. This completes the analysis of the second case.

The analysis of these two cases completes the proof of the claim.

Claims 29 and 30 together imply that the auxiliary graph does not contain a matching of or-
der 9(18t2(t + 2))3. If we also consider Claim 28, we see that the auxiliary graph A has at most(
2(t+ 4)(4t)2

)
9(18t2(t+ 2))3 edges. However, by choosing the function f to be large, we can guarantee

that the auxiliary graph have arbitrarily many edges. This final contradiction completes the proof of
the lemma.

H Growing a surface

In this section, we put together the results from the previous sections to arrive at one of the main
lemmas we will use in the proof of Theorem 3.

We will need the next theorem. Robertson and Seymour showed a complete characterization of
when a given society (G,Ω) is rural. In the case that V (G) is just the society vertices, the statement
and proof are considerably more simple.

Theorem 31 (Robertson and Seymour [30]). Let (G,Ω) be a society with Ω = V (G). Then (G,Ω) is
rural if and only if there do not exist two crossing edges.

Let (G,Ω) be a society with G consisting of a matching. Let M ′ be a k-crosscap or k-handle. If X
is a facial set of M ′, we define ΩX the facial order to be the cyclic ordering of the vertices of X given
by traversing the facial cycle when we embed (M ′,Ω) in the disc plus a crosscap or in the disc plus a
handle, respectively.

Lemma 32. Let t be a positive integer. There exists a function f(t) such that the following holds. Let
(G,Ω) be a society, and assume E(G) can be partitioned into a matching M on Ω and a cycle C with
V (C) = Ω such that the natural cyclic order given by the cycle is the same as the cyclic order Ω. Then
one of the following holds

1. There exists a subgraph M1 of M such that M1 is either a k-crosscap (or a k-handle) such that
that every edge of M −M1 is contained in a facial set of M1. Moreover, for all but possibly one
facial set X, if we let ΩX be the facial order of the vertices of X and HX the edges of M with
both endpoints in X, then (HX ,ΩX) is rural.

2. There exists a set Z ⊆M of size at most f(t) such that M − Z is rural.

3. There exist t independent bumps in M .
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4. There exist t nested crosses or t twisted nested crosses.

5. There exists a path P in C such that if we let Ω′ be the order of Ω − P given by Ω with the
following property. In (G,Ω′) there exists a set P of disjoint Ω′-paths such that P contains disjoint
independent Ω′-paths Q1, . . . , Qt such that for every 1 ≤ i ≤ t, there exist t distinct components
in P crossing Qi.

Proof. Let f1 be the function given in the statement of Lemma 24. We let f2 be the function in the
statement of Lemma 27. Finally, we let f be equal to

f(k) = f1(f2(k23k+1)).

To simplify the notation, we fix α = k23k+1. Lemma 24 implies that either we can find a set Z of at
most f(k) edges such that (G − Z,Ω) is rural, or we satisfy outcome 2 or 3 above, or there exists a
subgraph M ′ equal to a handle or a crosscap of order f2(α). We apply Lemma 27 to the subgraph
M ′. Again, either we satisfy one of the conclusions above, or there exists a subgraph M ′′ equal to an
α-handle or an α-crosscap such that every edge of M \M ′′ has both endpoints in some facial set of M ′′.

Again, we observe that for any two facial sets X and Y of M ′′, there exists an α/2-crosscap or
handle M ′′′ ⊆ M ′′ such that X and Y are contained in the same facial set X ′ of M ′′′. Moreover, the
facial sets of M ′′′ not equal to X ′ are the same facial sets as in M ′′.

Let m be a positive integer and let X1, . . . , Xm be the facial sets of M ′′. Let Hi be the subgraphs of
M given by the edges with both ends in Xi for 1 ≤ i ≤ m, and let Ωi be the corresponding facial order
of Xi. If there exist 3k+1 distinct indices i such that (Hi,Ωi) is rural, it follows that we satisfy outcome
1 in the lemma by applying the above remark 3k + 1 times (then we would get either a k-handle or a
k-crosscap).

Thus we may assume that there exist such 3k + 1 such indices for which (Hi,Ωi) is not rural. Note
that there exists at most one facial set Xi of M ′′ which cannot be partitioned into two segments of
Ωi. Thus, we see that there exist 3k distinct indices i for which (Hi,Ωi) is not rural and Ωi can be
partitioned into two segments S1

i and S2
i such that each Sji is simply connected in a topological sense

in Ω for j = 1, 2.

As (Hi,Ωi) is not rural and consists of edges in Ω plus a matching, it follows from Theorem 31 that
if (Hi,Ωi) contains a pair ei and fi of crossing edges. If there exists k distinct indices i such that either
ei or fi has both endpoints contained in a single segment Sji for j = 1 or 2, then we see that (G,Ω)
satisfies outcome 3. It follows that for 2k indices i, each of the edges ei and fi have exactly one endpoint
in S1

i and the other endpoint in S2
i . We now see that if M ′′ is a crosscap that the edges ei and fi form

a k twisted nested crosses in (G,Ω). Otherwise, M ′′ is a handle, and we see that half of the pairs of
edges ei and fi form k nested crosses in (G,Ω). This completes the proof of the lemma.

I Repeatedly crossed independent paths

As an outcome of Lemmas 27 we find a large number of independent Ω-paths, each of which is crossed
by many disjoint Ω-paths. In the application to our matching society attached to the outside boundary
of a large grid, these Ω-paths may possibly use part of the boundary cycle. In this case, the structure of
the linkage P is lost. However, such Ω-paths will allow us to find a large clique minor which will allow
us to apply Theorem 18. The next lemma is the main result of this section.

Recall that the (l×m)-grid to be the graph with vertex set v(i, j) for 1 ≤ i ≤ m and 1 ≤ j ≤ l such
that v(i, j) and v(i′, j′) are adjacent if |i− i′|+ |j − j′| = 1. The indices i, j form the normal cartesian
coordinates of the vertices of the grid. The outer cycle of the grid to be the cycle bounding the infinite
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face give the standard embedding of the grid in the plane.

Lemma 33. For all t ≥ 1, there exists integers k, l,N such that the following holds. Let H1 be an
(n×m)-grid with n,m ≥ N . Let Ω be the branch vertices in the outer cycle of H1 in the natural cyclic
order given by the outer cycle, and let (H2,Ω) be a society with H2 a matching. If (H2,Ω) contains k
disjoint independent Ω-paths e1, . . . , ek such that for each ei there exist l distinct edges that cross ei,
then H1 ∪H2 contains Kt as a minor.

Until this point, we have not worked explicitly with minors and have been able to use the necessary
graph minor results as a sort of “black box”. However, in the proof of Lemma 33 we will need to
explicitly find a large clique minor in the graph. We remind the reader that a graph G contains Kt as
a minor if and only if there exist disjoint sets of vertices X1, . . . , Xt such that each induces a connected
subgraph of G, and for every pair of indices i, j, there exists an edge of G with one end in Xi and one
end in Xj . The sets Xi are called the branch sets of the minor.

In the proof of Lemma 33, we will eventually reduce to one of several possible cases. We first show
that in each such case, we can find a large clique minor. Consider the following graph. Let H1

r be
the graph formed by taking an 2r × 2r-grid and labeling the vertices v(i, j) with the natural cartesian
coordinates, and adding edges of the form v(i, r)v(i+1, r+1) and v(i, r+1)v(i+1, r) for 1 ≤ i ≤ 2r−1.
In other words, H2r is constructed by taking a (2r×2r)-grid and adding a pair of crossing edges in each
face of the middle row of faces.

Lemma 34. Let t ≥ 1 be an integer. The graph H1
4t2 contains Kt as a minor.

Proof. The proof is by induction on t. We actually prove a slightly stronger statement, to facilitate the
induction. We show that H1

4t2 contains a Kt minor such that every branch set contains a vertex in the
top row of the grid, i.e. a vertex equal to v(i, 4t2) for some value i. The statement is clearly true for
t ≤ 4.

We now assume t > 4, and let H1
4t2 be given. Observe that the set of vertices {v(i, j) : 1 ≤ i ≤

4(t − 1)2, 2(2t + 1) + 1 ≤ j ≤ 4t2 − 2(2t + 1)} induces a subgraph isomorphic to H1
4(t−1)2 , and so by

induction contains the branch sets B1, . . . , Bt−1 of a Kt−1 minor such that Bi contains a vertex of the
form v(i, 4t2 − 2(2t+ 1)) for some index i, i ≤ 4(t− 1)2. We let Bt be the set of vertices

Bt ={v(i, 4t2) : 1 ≤ i ≤ 4(t− 1)2 + 2t}
∪ {v(4(t− 1)2 + 2t, i) : 2t2 ≤ i ≤ 4t2}
∪ {v(4(t− 1)2 + 2t+ j, 2t2) : 2 ≤ j ≤ 2t, j even}
∪ {v(4(t− 1)2 + 2t+ j, 2t2 + 1) : 1 ≤ j ≤ 2t− 1, j odd}

Then Bt induces a connected subgraph of H1
4t2 . Moreover, there exist t− 1 disjoint paths from each

of the Bi, 1 ≤ i ≤ t − 1 to the set of vertices {v(i, 4t2) : 4(t − 1)2 + 2t + 1 ≤ i ≤ 4t2}. Each of these
disjoint paths will use one crossing edge of the crossing edges in the middle strip and will consequently
have an edge to Bt. We conclude that B1, . . . , Bt form the branch sets of a Kt minor satisfying the
stronger hypothesis, completing the proof of the lemma.

Let H2
r be constructed as follows. We begin with a (2r × 4r3)-grid with the vertices labeled v(i, j)

for 1 ≤ i ≤ 4r3 and 1 ≤ j ≤ 2r. Moreover, we add the edges eij for 1 ≤ i ≤ r, 1 ≤ j ≤ 2r2 where the
endpoints of eij are v(2r(j − 1) + i, 2r) and v(2r(j − 1) + i + r, 2r). The graph H2

r can be thought of,
then, as a long grid with 2r2 distinct r-crosscaps glued to the top of the grid in a series.

Lemma 35. Let t ≥ 1 be a positive integer. Then H2
t contains Kt as a minor.
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Proof. Fix the integer t, and let H2
t be given. Consider the graph H2 defined as follows. We begin with

a 2t × 2t-grid, to which we add the edges ei defined as follows. For 1 ≤ i ≤ t, the endpoints of ei are
v(i, 2t) and v(i + t, 2t). The graph H2

t can be decomposed into 2t2 copies of H2 glued together in a
path-like manner.

To prove the lemma, we will find paths P1, . . . , Pt in H2
t such that the endpoints of Pi are v(1, i)

and v(4t3, t − i + 1) such that for any pair of indices i and j, there exists an edge of H2
t with one end

in Pi and one end in Pj . The paths P1, . . . , Pt will then comprise the branch sets of a Kt minor.

Fix an integer k, k ≤ t. In the graph H2, there exists paths P ′1, . . . , P
′
t such that the endpoints of P ′i

are v(1, i) and v(2t, i) for i < k and v(1, i) and v(2t, t−i) for i ≥ k. Note that there is an edge connecting
P ′t and P ′k−1. Consequently, in H2

t restricted to the vertices {v(i, j) : 1 ≤ i ≤ 4t}, there exist paths P ′′i ,
1 ≤ i ≤ t with the endpoints of P ′′i equal to v(1, i) and v(4t, i) with the property that there is an edge
between P ′′t and P ′′k−1. Thus, in H2

t restricted to the vertices {v(i, j) : 1 ≤ i ≤ 4t(t − 1), 1 ≤ j ≤ 2t},
there exist paths linking v(1, i) to v(4t(t − 1), i) such that the v(1, t) path has an edge to every other
path.

We can now extend the path P ′′t along the bottom edge of the grid in H2
t to a path terminating at

v(4t3, 1), and inductively find the desired paths from v(4t(t − 1), i) to v(4t3, t − i + 1) for 2 ≤ i ≤ t.
This completes the proof of the lemma.

The final special graph we will have to consider is as following. Let H3
r be defined as follows. We

begin with a ((r+ 1)r3 × 2r)-grid with the vertices labeled v(i, j) for 1 ≤ i ≤ (r+ 1)r3 and 1 ≤ j ≤ 2r.
As above, we add additional edges eij for 1 ≤ i ≤ r + 1, 1 ≤ j ≤ r3/2, but now the endpoints of eij
are of two different kinds. For i = 1 and 1 ≤ j ≤ r3/2, we have that the endpoints of eij are equal to
v(2(r + 1)(j − 1) + 1, 2r) and v(2(r + 1)(j − 1) + r + 1, 2r). For 2 ≤ i ≤ r + 1 and 1 ≤ j ≤ r3/2, the
endpoints of eij are equal to v(2(r + 1)(j − 1) + i, 2r) and v(2(r + 1)(j) + 1− i, 2r).

Lemma 36. Let t ≥ 1 be a positive integer. Then H3
t contains Kt as a minor.

Proof. Fix t ≥ 1, and let H3
t be given. As in the proof of Lemma 36, we consider the following subgraph

of H3
t . Let H3 be constructed from the (2(t+ 1)× 2t)-grid by adding the edges v(1, 2t)v(t+ 1, 2t) and

v(i, 2t)v(2(t+ 1) + 2− i, 2t). The graph H3
t can be thought of as t3/2 copies of H3 glued together in a

path-like structure.

To construct aKt minor, we find paths P1, . . . , Pt from {v(1, 1), . . . , v(1, t)} to {v((t+1)t3, 1), . . . , v((t+
1)t3, t)} such that for every pair of indices i and j, there exists an edge with one end in Pi and the other
end in Pj . First, observe that for any choice of j, j < t, in H3 there exist paths P ′1, . . . , P

′
t such that the

endpoints of Pi are equal to v(1, i) and v(2(t+ 1), i) for i ≤ j, and equal to v(1, i) and v(2(t+ 1), i+ 1)
for j < i < w and v(1, w) and v(2(t+1), j+1) for i = j. It follows that in the subgraph of H3

t restricted
to the vertices {v(i, j) : 1 ≤ i ≤ [t(t− 1)/2] 2(t + 1), 1 ≤ j ≤ 2(t + 1)} there exist disjoint paths P ′′i ,
1 ≤ i ≤ t such that the endpoints of P ′′i are equal to v(1, i) and [v(t(t− 1)/2] 2(t+ 1), i) and moreover,
for all i < t, there exists an edge with one end in P ′′i and P ′′t . We use one more copy of H3 and route P ′′t
to a path using the bottom row of the grid, and inductively find the desired t−1 paths. This completes
the proof of the lemma.

We will also use the following easy combinatorial lemma. It shows that given a collection of subsets
of some ordered set Ω, then if the sets are sufficiently large, we can sacrifice some of the elements and
separate the sets by intervals in Ω.

Lemma 37. Let l, k be positive integers. Let Ω be an ordered set of elements, and let S1, . . . , Sl be
subsets of Ω. Assume |Si| ≥ kl2 for all 1 ≤ i ≤ l. Then there exists subsets S′i ⊆ Si and intervals Ii ⊆ Ω
for all 1 ≤ i ≤ l such that Ii ∩ Ij = ∅ for all i 6= j, S′i ⊆ Ii, and |S′i| ≥ k for all 1 ≤ i ≤ l.
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Proof. The proof is by induction on l. Clearly, the statement holds when l = 1. We now assume l ≥ 2.
Note that we may also assume that every element of Ω is contained in some set Si for some index i. Let
I be the interval consisting of the first kl elements. There exists some index i such that |Si ∩ I| ≥ k.
Moreover, for every j 6= i, Sj has at least kl2− kl ≥ k(l− 1)2 elements not contained in I. Thus, we fix
Ii = I and apply the induction hypothesis to the sets Sj − I, j 6= i contained in the sets Ω− I.

We now proceed with the proof of Lemma 33.

Proof. Fix t ≥ 1. Let (H2,Ω) and H1 be as stated, and let e1, . . . , ek be disjoint independent edges in
H2. We let f1, . . . , fs be the edges of H2 \ {e1, . . . , ek}. Let Ii for 1 ≤ i ≤ k be the subset of indices
j, 1 ≤ j ≤ s such that fj crosses ei. Note that by assumption, |Ii| ≥ l for all 1 ≤ i ≤ k. Finally, for
each edge ei, 1 ≤ i ≤ k, we fix the segment Si of Ω containing the endpoints of ei so that for all j 6= j′,
Sj ∩ Sj′ = ∅.

We will prove that H1∪H2 contains one of H1
4t2 , H2

t , or H3
t . Then Lemmas 34, 35, 36 will complete

the proof. We set k = 2(4(8t3)3)2 and l = 2(4(8t3)3)2(4t4). We set N = k + l.

We would like to be able to assume that the sets Ii are pairwise disjoint, however, this certainly will
not be the case in general. By discarding some of the edges ei and some of the edges fi, we will be able
to guarantee this property.

Claim 38. There exists a subset J1 ⊆ {1, . . . , k}, and subsets I1
j ⊆ Ij for j ∈ J1 such that |J1| ≥ k/2

and |I1
j | ≥ l/2 such that the following holds. For all j ∈ J1 and for all i ∈ I1

j , the edge fj does not have
an endpoint in Sj′ for all j′ 6= j.

Proof. We consider a weighted auxiliary graph defined as follows. The vertex set is {1, . . . , k}∪x, where
x is a dummy vertex. Two vertices i and i′ are adjacent if there exists an edge fj with endpoints in
both Si and Si′ . The vertex x is adjacent to i if there exists an edge fj with one end in Si and one end
in Ω \

⋃s
1 Si′ . The weight of an edge is number of distinct edges fj with endpoints in the corresponding

sets.

A classic result of Erdős says that in any weighted graph, there exists a partition of the vertices such
that every vertex has at least half of the total weight of its incident edges with the opposite end in the
other side of the partition. It follows that there exists a partition (X,Y ) of the vertices of our auxiliary
graph so that for every i ∈ X, at least half of the total weight of it’s incident edges have an end in Y .
One of X or Y has at least half the indices i, say X, and we let J1 = {i : i ∈ X}. For all i ∈ J1, we
let I1

i be the edges fi with ends correspond to vertices in opposite sides of the partition (X,Y ). This
proves the claim.

Let J1 and I1
j , j ∈ J1 be as in the claim. We have the property that |J1| ≥ (4(8t3)3)2 and

|I1
j | ≥ (4(8t3)3)2(4t4) for all j. For all j ∈ J1, let Xj ⊆ Ω be the vertices of Ω − Sj equal to an end

an edge fi for some i ∈ Ij . We apply Lemma 37 to the sets Xj , j ∈ J1, to find I2
j ⊆ I1

j and segments
Tj ⊆ Ω for all j ∈ J1 such that:

i. Tj ∩ Tj′ = ∅ for all j 6= j′.

ii. For all j ∈ J1 and for all i ∈ I2
j , the edge fi has one end in Sj and one end in Tj .

iii. For all j ∈ J1, |I2
j | ≥

√
2(4(8t3)3)2(4t4)

2(4(8t3)3)2
≥ 2t2.

As a quick technicality, it is possible that Sj ∩ Tj 6= ∅. However, observe that by possibly discarding
half the indices in each I2

j , we may assume that Tj ∩ Sj = ∅ for all j. Finally, by applying Lemma 26,
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for every j ∈ J1, we may pick I3
j ⊆ I2

j such that the edges fi, i ∈ I3
j either form a k-crosscap or a rural

transaction of order k.

We want the property that the Tj ∩ Sj′ = ∅ for all j, j′.

Claim 39. There exists a subset J2 ⊆ J1 such that for all j, j′ ∈ J2, we have that Sj ∩ Tj′ = ∅, and we
may choose J2 with |J2| ≥ 1

2

√
|J1| ≥ (8t3)3.

Proof. Fix an index j ∈ J1. If there exist 1
2

√
|J1| + 2 distinct indices j′ with Tj′ ∩ Sj 6= ∅, then

J2 = {j′ ∈ J1 : Tj′ ⊆ Sj} satisfies the claim because Tj ∩ Tj′ = ∅. Thus, we may assume that at most
1
2

√
|J1| + 1 distinct Tj′ intersect Sj . Similarly, at most 1

2

√
|J1| + 1 distinct Sj′ intersect Tj . Thus at

most
√
|J1|+2 indices have their corresponding segments intersect Sj∪Tj . We may then greedily select

a set of indices J2 ⊆ J1 of size 1
2

√
|J1| satisfying the claim.

Finally, we apply Lemma 25 to J2. One outcome is to find disjoint segments R1, . . . , R8t3 each
containing both Sj and Tj for some index j ∈ J2. In this case, we see that H1 ∪ H2 contains either
the graph H2

t or H3
t as a minor, and consequently, a Kt minor by Lemma 35 or 36, respectively.

Alternatively, there exist two segments R∗1 and R∗2, such that R∗1 contains 4t3 distinct Sj and R∗2
contains the corresponding Tj . In this case, we take two disjoint (2(4t2) × 2(4t2))-grid minors, one
containing many of the Sj in R∗1 and one containing many of the Tj in R∗2. In this case, the graph
H1 ∪H2 contains H1

4t2 as a minor, and consequently also contains Kt as a minor, which proves Lemma
33.

J The proof of Theorem 3

We prove in this section that given a linkage P and a sufficiently large and long traversing linkage Q,
that P is not unique in P ∪ Q. Assume Theorem 3 is false. We fix a value k and let P be a linkage
of order k and let Q be a traversing linkage of P of length l = l(k) and order w = w(k) contradicting
the statement of Theorem 3. Assume that from all such contradictory linkages, we choose P and Q to
minimize the number of vertices in their union P ∪ Q. In the course of the proof we will see exactly
how large l and w must be in order to arrive at a contradiction.

First, we observe that by our choice to minimize the number of vertices, that there are no vertices
of degree two or one in P ∪Q, otherwise we could contract an edge and find a smaller counter-example
to the theorem. Similarly, there do not exist any edges contained in P ∩Q.

We return to the perspective discussed in Section E. We label the components ofQ as Q1, Q2, . . . , Qw
such that every component P of P can be partitioned into subpaths R1, . . . , Rt and edges e1, . . . , et−1

for some positive t where the endpoints of ei are equal to an endpoint of Ri and and endpoint Ri+1.
Moreover, we may select the paths R1, . . . , Rt to satisfy the property that each Ri intersects the each of
the paths Q1, . . . , Qw and in that order. The paths Ri are in fact the basis subpaths of Q which happen
to be subpaths of P .

Notice that union of Q as well as all the paths R1, . . . , Rt for every component P ∈ P form a
(w × l)-grid. Label this grid subgraph W . As additional notation, we fix M to be the set of these
edges e1, . . . , et for every path P ∈ P. Then M is a matching such that every edge has it’s endpoints in
Q1 ∪Qw. Note that every vertex of Q1 ∪Qw is the end of some edge in M .

If we let Ω be the natural cyclic ordering of V (Q1)∪V (Qw) by following Q1 and then Qw in clockwise
order around the boundary cycle of W .

We first show the following.
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Claim 40. There exists a value K1 (depending only on k) such that (M,Ω) does not contain K1

independent Ω-paths.

Proof. Assume, to reach a contradiction, that there exist edges e1, . . . , eK1 forming K1 independent
Ω-paths. We will see in the proof how big K1 must be in order to make the statement true. Let
S1, . . . , SK1 be the pairwise disjoint segments of Ω containing the endpoints of e1, . . . , eK1 , respectively.
We choose such edges ei and segments Si to minimize

⋃K1
i=1 Si.

Observe that by our choice to minimize
⋃K1
i=1 Si, it follows that for every i and every vertex v of

Si − ei, there exists some edge of M with one end equal to v and the other end in Ω \ Si. We know
that the graph P ∪ Q does not contain K3k+1 as a minor by Theorem 18. Let k′, l′, N ′ be the integers
obtained from Lemma 33 by excluding K3k+1 as a minor. It follows that there exists a set I of at least
K1− k′ distinct indices such that for all i ∈ I, we have the property that Si− ei has at most l′ vertices.
Note that we are assuming that both l and w are at least N ′.

For every i ∈ I, we have that |Si| ≤ l′ + 2. As a slight technicality, we discard possibly two edges
ei in order to assume that ei has both ends either contained in Q1 or both ends contained in Qw. As
a further technicality, we discard possibly half the indices in I so that we may assume that every Si is
contained in the same path, either in Q1 or in Qw. Let Qi be the sublinkage of Q restricted to the basis
subpaths between the two endpoints of ei. It follows that there exists a component P ∈ P such that at
least

K1 − k′ − 2
2k

distinct indices of I, we have that Qi has all it’s endpoints contained in P . Moreover, by construction,
there exist disjoint segments Si of P such that Si contains the endpoints of Qi. If we let f be the
function in Lemma 17 and assume that

K1 − k′ − 2
2k

≥ f(k, l′ + 2)

then Lemma 17 contradicts our assumptions on P. Note that here we are assuming that w ≥ l′+k+4.

The next claim is an immediate consequence of Lemma 36, and we omit the proof here.

Claim 41. There exists a constant K2, depending only on k, such that (M,Ω) does not contain K2

nested crosses nor contain K2 twisted nested crosses.

Proceeding with the proof of the theorem, we will repeatedly apply Lemma 32. In each application,
we will use Claim 40 to exclude the possibility of outcome 3, Claim 41 to exclude outcome 4, and Lemma
33 to ensure that we do not have outcome 5.

In each application of Lemma 32, we will add either a large crosscap or a handle. We use a more
technical inductive hypothesis to ensure that we also maintain high representativity. Thus, either we
grow to a large genus surface with high representativity, and consequently show that P ∪Q contains a
large clique minor, a contradiction, or the process terminates and we delete a bounded number of edges
of P ∪ Q and embed the graph in a surface of bounded genus. In this case, we derive a contradiction
via Theorem 10.

In order to maintain representativity, we will need to maintain a rooted circular grid of large depth.
This leads us to a somewhat technical inductive hypothesis. The function g(i) will be a decreasing
function and we will see later how large it must be later in order to make the theorem true.

i. V (Hi) = V (P ∪Q) and W is a subgraph of Hi.

ii. Hi is embedded in a surface Σi of Euler genus ≥ i.
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iii. If Σi is not the sphere, then the embedding of Hi in Σ has representativity at least g(i).

iv. There is a unique face Fi of Hi such that P ∪Q−E(Hi) forms a matching with every edge having
both endpoints in Fi.

v. The boundary of Fi is a cycle in Hi and can be decomposed into at most 4i segments of Q1 ∪Qw
of Ω.

vi. Hi has a rooted circular grid on the face F of depth g(i).

We begin with H0 equal to the grid W formed by Q as well as the union of every basis subpath Ri of
Q embedded in the surface Σ0 equal to the plane. As a slight technicality, in order to satisfy v., we add
two dummy edges d1 and d2 to the graph with the endpoints of d1 equal to the first vertices of Q1 and
Qw and the endpoints of d2 equal to the last vertices of Q1 and Qw.

We now pick Hi and Σi and an embedding satisfying i-vi with the value i to be maximal so that
the graph K3k+1 does not embed in the surface Σi. We let Ωi be the cyclic order of the vertices of Fi
given by the boundary cycle Ci of Fi. We apply lemma 32 to the graph (Ci ∪ ((P ∪Q) \Hi),Ω) with

t = max{K1 + 4g(i),K2 + 4g(i), k′ + 1, l′ + 1, N ′}.

where k′, l′, and N ′ are the values obtained from applying Lemma 33 for a K3k+1 minor. We analyze
the five possible outcomes of the application of the lemma.

The easiest outcomes to consider are 3 and 4. If we have outcome 3, then since the facial boundary of
Fi can be decomposed into at most 4g(i) segments of Ω, if there exist K1 + 4g(i) independent Ωi edges,
then at least K1 of these edges must have their endpoint in a single segment of Ω. This contradicts
Claim 40. If we have outcome 4, then by a similar argument, either there exists a single segment of Ω
with K2 nested crosses or K2 nested twisted crosses, or there exists two segments S1 and S2 with the
K2 nested crosses or twisted crosses having the property that each edge has one end in S1 and one end
in S2. These edges will then form either K2-nested twisted crosses or K2-nested crosses in Ω, depending
on the order order of the segment S1 and S2 in Ω. This contradicts Claim 41.

If outcome 5 in the application of Lemma 32 holds, we proceed as follows. Let W ′ be the circular grid
obtained by deleting the cycle F . Let P be the linkage obtained in Lemma 32. Then the components
of P extend to a linkage P with endpoints in the inner boundary of W ′. By possibly discarding one
of the paths in P, we find as a minor a grid W ′′ of depth at least g(i) − 1 and width at least t and a
linkage P allowing us to apply Lemma 33 and find K3k+1 as a minor, a contradiction. Note, here we
are assuming that g(i) ≥ N ′ + 1 .

The final two cases to consider are when we have outcome 1 or 2. If we satisfy outcome 1, let M be
the graph forming the t-crosscap or t-handle, as well as the edges of every rural face of the t-crosscap
or t-handle. It follows from Observation 8 that Wi ∪M embeds in a surface Σ′ of genus strictly greater
than the order of genus than the surface Σ. Moreover, the edges not included in the new embedding
have their endpoints in a single face F ′, and clearly there exists a circular grid of depth g(i)/2 rooted at
F ′. Also, the representativity of the embedding is at least g(i)/2 by the existence of the above circular
grid of depth g(i)/2 rooted at F ′. Finally, it is easy to see that if Fi can be decomposed into m segments
of Ω, then the boundary cycle of the face F ′ can be decomposed into at most m+ 4 segments of Ω. If
we assume

g(i) ≥ 2g(i+ 1),

we conclude that the embedding of Hi ∪M satisfies i− vi.
By our choice of i, it follows that K3k+1 must embed in the surface Σ′. If we assume that the value

g(i) is sufficiently large to allow us to apply Theorem 9 for the surface Σ′ and K3k+1 minors, we conclude
that G contains K3k+1 as a minor, a contradiction.
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The final case to consider, then, is that we satisfy outcome 2. It follows that there exists a set Z
of f(t) edges such that G− Z embeds in a surface of genus bounded by a function of k. If we consider
the linkage P ′ obtained by splitting the linkage P on the edges of Z, we have a linkage of order at most
k + f(t). We let w′ be the value obtained from Theorem 10 applied to linkages of order k + f(t) in a
surface Σ. Theorem 10 now provides a contradiction, as we see that G − Z contains a (w′ × w′)-grid,
and consequently, the tree width of G− Z is at least w′. Thus the linkage P ′ can be rerouted to avoid
some vertex of G, and consequently, the linkage P can also be rerouted to avoid some vertex of G by
Observation 6. This completes the proof of Theorem 3.
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