Natural paths in MCFGs

Edward Stabler

MCFG+, Tokyo, 2010
The interest of MCFLs

- MCFLs are defined by many independent formalisms
- MCFLs are useful for describing linguistic, biological structures

(EQ1) $\text{HL} \subseteq \text{MCFL}$?

Kracht & Michaelis, Kobele: No. (Old Georgian case; Yoruba clefts)

(EQ2) $\text{HL} \subseteq \text{MCFL}_{\text{wn}}$?

Joshi: Yes. $\text{HL} \subseteq \text{TAL}=2-\text{MCFL}_{\text{wn}}$

(EQ3) ‘Semantically appropriate’ $\text{HG} \subseteq \text{MCFG}$?

Rambow: No. (German scrambling)

These are matters of current (useful!) controversy.
Natural paths in MCFGs

- **ML = MCFL** (Michaelis’01, Harkema’01, Seki & al’91)
- In proving \subseteq Michaelis’98 had already revealed a ‘strong’ equivalence.

0. **MGs provide a succinct notation for ‘strongly equivalent’ MCFGs**
1. ‘Order universals’ derivable from fixed categories and selection features
2. ‘Improper movements’ banned by fixed order of licensee features
3. In MCFG these are path restrictions with linear order consequences;
 - allows even more succinct grammars,
 - limits expressive power,
 - ‘near’ the range of Yoshinaka & Clark’s learner.
MGs

\[\text{MG} = \langle \Sigma, \text{Cat}, \text{Ep}, \text{Lex}, M, S \rangle \text{ where} \]

\[
\begin{align*}
\Sigma &= \{ \text{John, Mary, who, criticize, praise, -s, -ed, \ldots} \} \quad \text{(vocabulary)} \\
\text{Cat} &= \{ \text{N, V, A, P, \ldots} \} \quad \text{(categories)} \\
\text{Sel} &= \{ =f \mid f \in \text{Cat} \} \quad \text{(selectors)} \\
\text{Ep} &= \{ +\text{case}, +\text{wh}, +\text{q}, +\text{foc}, +\text{top}, \ldots \} \quad \text{(licensors)} \\
\text{Lic} &= \{ -f \mid +f \in \text{Ep} \} \quad \text{(licensees)} \\
F &= \text{Cat} \cup \text{Sel} \cup \text{Ep} \cup \text{Lic} \\
\text{Lex} &\subseteq \Sigma^{\epsilon} \times F^*, \text{ finite} \quad \text{(lexicon)} \\
M &= \text{merge rules.} \ldots \\
S &= \epsilon \text{ Cat} \quad \text{(start)}
\end{align*}
\]

\(\Sigma, \text{Cat}, \text{Sel}, \text{Ep}, \text{Lic}, \text{Lex} \text{ finite, non-empty, pairwise disjoint.}\)
‘naive Zapotec’ VSO: *praised the students the idea*

<table>
<thead>
<tr>
<th>the</th>
<th>=N D -ep</th>
</tr>
</thead>
<tbody>
<tr>
<td>students</td>
<td>N</td>
</tr>
<tr>
<td>idea</td>
<td>N</td>
</tr>
<tr>
<td>praised</td>
<td>=D V -v</td>
</tr>
<tr>
<td>ε</td>
<td>=V +ep =D v</td>
</tr>
<tr>
<td>ε</td>
<td>=v +ep T</td>
</tr>
<tr>
<td>ε</td>
<td>=T +v C</td>
</tr>
</tbody>
</table>

Each MG names a ‘strongly equivalent’ k-MCFG, $k = |Ep| + 1$.
Given $MG = \langle \Sigma, \text{Cat}, \text{Ep}, \text{Lex}, M, S \rangle$, we define an MCFG with two start categories $MG = \langle \Sigma, N, P, \{\langle 0, S \rangle, \langle 1, S \rangle \} \rangle$, defining the language

$$N = \{ \langle x, \delta_0, \delta_1, \ldots, \delta_j \rangle \mid x \in \{0, 1\}, \quad 0 \leq j \leq |\text{Ep}|, \quad \text{all } \delta_i \in \text{suffix}(\pi_2(\text{Lex})) \},$$

where each nonterminal $\langle x, \delta_0, \ldots, \delta_j \rangle$ has rank $j + 1$.
MGs as MCFGs

For $0 \leq i, j \leq |Ep|$, $\beta \neq \epsilon$, $x, y \in \{0, 1\}$:

lex: $\langle 1, \alpha \rangle(s)$

em1: $\langle 0, \alpha, \delta_1, \ldots, \delta_j \rangle(s_0 t_0, t_1, \ldots, t_j)$:

$\langle 1, =f \alpha \rangle(s_0)$,

$\langle x, f, \delta_1, \ldots, \delta_j \rangle(t_0, \ldots, t_j)$

em2: $\langle 0, \alpha, \delta_1, \ldots, \delta_i, \gamma_1, \ldots, \gamma_j \rangle(t_0 s_0, s_1, \ldots, s_i, t_1, \ldots, t_j)$:

$\langle 0, =f \alpha, \delta_1, \ldots, \delta_i, \rangle(s_0, \ldots, s_i)$,

$\langle x, f, \gamma_1, \ldots, \gamma_j \rangle(t_0, \ldots, t_j)$

em3: $\langle 0, \alpha, \beta, \delta_1, \ldots, \delta_i, \gamma_1, \ldots, \gamma_j \rangle(t_0 s_0, s_1, \ldots, s_i, t_1, \ldots, t_j)$:

$\langle x, =f \alpha, \delta_1, \ldots, \delta_i, \rangle(s_0, \ldots, s_i)$,

$\langle y, f \beta, \gamma_1, \ldots, \gamma_j \rangle(t_0, \ldots, t_j)$

im1: $\langle 0, \alpha, \delta_1, \ldots, \delta_{i-1}, \delta_{i+1}, \ldots, \delta_j \rangle(s_i s_0, s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_j)$:

$\langle 0, +f \alpha, \delta_1, \ldots, \delta_j \rangle(s_0, \ldots, s_j)$

im2: $\langle 0, \alpha, \delta_1, \ldots, \delta_{i-1}, \beta, \delta_{i+1}, \ldots, \delta_j \rangle(s_0, \ldots, s_i)$:

$\langle 0, +f \alpha, \delta_1, \ldots, \delta_j \rangle(s_0, \ldots, s_i)$

SMC: $\delta_1, \ldots, \delta_{i-1}, \delta_{i+1}, \ldots, \delta_j$ do not begin with $-f$.

Edward Stabler (MCFG+, Tokyo, 2010)
Natural paths in MCFGs
7 / 42
‘naive Zapotec’ VSO: praised the students the idea

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>=N D -ep</td>
<td></td>
</tr>
<tr>
<td>students</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>idea</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>praised</td>
<td>=D V -v</td>
<td></td>
</tr>
<tr>
<td>ϵ</td>
<td>=V +ep =D v</td>
<td></td>
</tr>
<tr>
<td>ϵ</td>
<td>=v +ep T</td>
<td></td>
</tr>
<tr>
<td>ϵ</td>
<td>=T +v C</td>
<td></td>
</tr>
</tbody>
</table>
‘naive Zapotec’ VSO: praised the students the idea

\[
\langle 0, C \rangle \text{(praised the students the idea)} \\
\langle 0, +vC, -v \rangle \text{(the students the idea, praised)} \\
\langle 1, =T+vC \rangle(\epsilon) \quad \langle 0, T, -v \rangle \text{(the students the idea, praised)} \\
\langle 0, +epT, -v, -ep \rangle \text{(the idea, praised, the students)} \\
\langle 1, =v+epT \rangle(\epsilon) \quad \langle 0, v, -v, -ep \rangle \text{(the idea, praised, the students)} \\
\langle 0, =Dv, -v \rangle \text{(the idea, praised)} \quad \langle 0, D-ep \rangle \text{(the students)} \\
\langle 0, +ep=Dv, -v, -ep \rangle(\epsilon, \text{praised, the idea}) \quad \langle 1, =ND-ep \rangle \text{(the)} \quad \langle 1, N \rangle \text{(students)} \\
\langle 1, =V+ep=Dv \rangle(\epsilon) \quad \langle 0, V-v, -ep \rangle \text{(praised, the idea)} \\
\langle 1, =DV-v \rangle \text{(praised)} \quad \langle 0, D-ep \rangle \text{(the idea)} \\
\langle 1, =ND-ep \rangle \text{(the)} \quad \langle 1, N \rangle \text{(idea)}
\]
‘naive Zapotec’ VSO: praised the students the idea
‘naive Zapotec’ VSO: praised the students the idea
‘naive Tamil’ SOV: the students the idea praised

```
the = N D -ep
students = N
idea = N
praised = D V
ε = V + ep = D V
ε = v + ep T
ε = T C
```

```
ε ::= T C
ε ::= v + ep T
ε ::= V + ep = D V
praised ::= D V
the ::= N D - ep
students ::= N
```

Edward Stabler (MCFG+, Tokyo, 2010)
Natural paths in MCFGs
‘naive Tamil’ SOV: *the students the idea praised*
‘naive English’ SVO: *the students praised the idea*

- the = N D
- the = N D - ep
- students = N
- idea = N
- praised = D V
- ε = V = D v
- ε = v + ep T
- ε = T C
- which = N D - wh
- which = N D - ep - wh
- teachers = N
- ε = T + wh C
- knew = D V

Diagram:

```
ε ::= T C
  /       \
 /         \
ε ::= v + ep T
  |         |
  +---------+
     ε ::= V = D v
  |         |
  |         |
ε ::= = D V
  |         |
  |         |
  |         |
  +---------+
    ε ::= N D - ep
    |         |
    |         |
    +---------+
      ε ::= N D
      |         |
      |         |
      +---------+
        idea ::= N
        |         |
        |         |
        +---------+
          students ::= N
```

Edward Stabler (MCFG+, Tokyo, 2010)
“naive English” SVO: the students praised the idea
‘naive English’ SVO

\[
\langle \text{the teachers knew which idea the students praised} \rangle : \langle 0, C \rangle
\]
‘naive English’ SVO MCFG (page 1)

\[
\begin{align*}
\langle 0, C \rangle(s_0 t_0) :&= \langle 1, = T \ C \rangle(s_0), \langle 0, T \rangle(t_0) \\
\langle 1, = T \ C \rangle(\epsilon) :&= \langle 0, + ep \ T, - ep \rangle(s_0, s_1) \\
\langle 0, + ep \ T, - ep \rangle(s_0 t_0, t_1) :&= \langle 1, = v + ep \ T \rangle(s_0), \langle 0, v, - ep \rangle(t_0, t_1) \\
\langle 1, = v + ep \ T \rangle(\epsilon) :&= \langle 0, + D \ v \rangle(s_0), \langle 0, D, - ep \rangle(t_0) \\
\langle 0, + D \ v \rangle(s_0 t_0) :&= \langle 1, = V + D \ v \rangle(s_0), \langle 0, V \rangle(t_0) \\
\langle 1, = V + D \ v \rangle(\epsilon) :&= \langle 0, + T \ C \rangle(s_0) \\
\langle 0, + T \ C \rangle(\epsilon) :&= \langle 1, = C \ V \rangle(s_0), \langle 0, C \rangle(t_0) \\
\langle 1, = C \ V \rangle(knew) &:= \langle 0, + wh \ C, - wh \rangle(s_0, s_1) \\
\langle 0, + wh \ C, - wh \rangle(s_0 t_0, t_1) :&= \langle 1, = V + wh \ C \rangle(s_0) \langle 0, V, - wh \rangle(t_0, t_1) \\
\langle 1, = V + wh \ C \rangle(\epsilon) :&= \langle 0, + wh \ C \rangle(t_0, t_1) \\
\langle 0, + wh \ C \rangle(s_0 t_0, t_1) :&= \langle 1, = C \ V \rangle(s_0), \langle 0, C, - wh \rangle(t_0, t_1) \\
\langle 0, C, - wh \rangle(s_0 t_0, t_1) :&= - em1[1, = T \ C \rangle(s_0), \langle 0, T, - wh \rangle(t_0, t_1)
\end{align*}
\]

\[
\begin{align*}
\text{the} &= N \ D \\
\text{the} &= N \ D, - ep \\
\text{students} &= N \\
\text{idea} &= N \\
\text{praised} &= D \ V \\
\epsilon &= V = D \ v \\
\epsilon &= v + ep \ T \\
\epsilon &= T \ C \\
\text{which} &= N \ D, - wh \\
\text{which} &= N \ D, - ep, - wh \\
\text{teachers} &= N \\
\epsilon &= T + wh \ C \\
\text{knew} &= C \ V
\end{align*}
\]
\[\langle 0, T, \text{-wh} \rangle (s_2 s_0, s_1) \quad \text{:-} \quad \langle 0, \text{+ep T}, \text{-wh}, \text{-ep} \rangle (s_0, s_1, s_2) \]
\[\langle 0, \text{+ep T}, \text{-wh}, \text{-ep} \rangle (s_0 t_0, t_1, t_2) \quad \text{:-} \quad \langle 1, \text{=v +ep T} \rangle (s_0), \langle 0, \text{v, -wh}, \text{-ep} \rangle (t_0, t_1, t_2) \]
\[\langle 0, \text{v, -wh}, \text{-ep} \rangle (s_0, s_1, t_0) \quad \text{:-} \quad \langle 0, \text{=D v, -wh} \rangle (s_0, s_1), \langle 0, \text{D -ep} \rangle (t_0) \]
\[\langle 0, \text{=D v, -wh} \rangle (s_0 t_0, t_1) \quad \text{:-} \quad \langle 1, \text{=V =D v} \rangle (s_0), \langle 0, \text{V, -wh} \rangle (t_0, t_1) \]
\[\langle 0, \text{V, -wh} \rangle (s_0, t_0) \quad \text{:-} \quad \langle 1, \text{=D V} \rangle (s_0), \langle 0, \text{D -wh} \rangle (t_0) \]
\[\langle 1, \text{=D V} \rangle \text{(praised)} \]
\[\langle 0, \text{D -wh} \rangle (s_0 t_0) \quad \text{:-} \quad \langle 1, \text{=N D -wh} \rangle (s_0), \langle 1, \text{N} \rangle (t_0) \]
\[\langle 1, \text{=N D -wh} \rangle \text{(which)} \]
\[\langle 1, \text{N} \rangle \text{(teachers)} \]
\[\langle 1, \text{N} \rangle \text{(idea)} \]
\[\langle 1, \text{N} \rangle \text{(students)} \]
\[\langle 0, \text{D -ep} \rangle (s_0 t_0) \quad \text{:-} \quad \langle 1, \text{=N D -ep} \rangle (s_0), \langle 1, \text{N} \rangle (t_0) \]
\[\langle 1, \text{=N D -ep} \rangle \text{(the)} \]
\[\langle 0, \text{T, -wh} \rangle (s_1 s_0, s_2) \quad \text{:-} \quad \langle 0, \text{+ep T, -ep, -wh} \rangle (s_0, s_1, s_2) \]
\[\langle 0, \text{+ep T, -ep, -wh} \rangle (s_0 t_0, t_1, t_2) \quad \text{:-} \quad \langle 1, \text{=v +ep T} \rangle (s_0), \langle 0, \text{v, -ep, -wh} \rangle (t_0, t_1, t_2) \]
Edward Stabler (MCFG+, Tokyo, 2010)
Constituent order

- MG builds spec-head-comp, which can then be distorted by movements.

\[=D =D V \text{ is analagous to } (D \backslash V)/D. \]

MG has no analog of changing slash direction. Alternative orders by movement to the left, introducing asymmetries...

- Cinque’05, Greenberg’63 Universal 20: not all orders of [Dem Num Adj N] are attested

- Given [1 [2 [3 [4]]]], what orders by adding ‘licensing’?
Constituent order

<table>
<thead>
<tr>
<th>order</th>
<th>C</th>
<th>MG</th>
<th>order</th>
<th>C</th>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>4</td>
<td>4</td>
<td>1324</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1243</td>
<td>3</td>
<td>3</td>
<td>1342</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1423</td>
<td>1</td>
<td>3</td>
<td>1432</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4123</td>
<td>2</td>
<td>3</td>
<td>4132</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2134</td>
<td>0</td>
<td>0</td>
<td>2314</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2143</td>
<td>0</td>
<td>0</td>
<td>2341</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2413</td>
<td>0</td>
<td>0</td>
<td>2431</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4213</td>
<td>0</td>
<td>0</td>
<td>4231</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3124</td>
<td>0</td>
<td>0</td>
<td>3214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3142</td>
<td>0</td>
<td>2</td>
<td>3241</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3412</td>
<td>1</td>
<td>3</td>
<td>3421</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4312</td>
<td>2</td>
<td>2</td>
<td>4321</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cinque</th>
</tr>
</thead>
<tbody>
<tr>
<td>0=</td>
</tr>
<tr>
<td>1=</td>
</tr>
<tr>
<td>2=</td>
</tr>
<tr>
<td>3=</td>
</tr>
<tr>
<td>4=</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>unattested</td>
</tr>
<tr>
<td>very few</td>
</tr>
<tr>
<td>few</td>
</tr>
<tr>
<td>many</td>
</tr>
<tr>
<td>very many</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 licensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 licensors</td>
</tr>
<tr>
<td>2 licensors</td>
</tr>
<tr>
<td>0-1 licensors</td>
</tr>
</tbody>
</table>
Constituent order

<table>
<thead>
<tr>
<th>order</th>
<th>C</th>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1243</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1423</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4123</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2134</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2143</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2413</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4213</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3124</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3142</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3412</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4312</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1324</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1342</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1432</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4132</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2314</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2341</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2431</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4231</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3241</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3421</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4321</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Cinque MG

0 = unattested
1 = very few
2 = few
3 = many
4 = very many

MG

underivable

4 licensors
3 licensors
2 licensors
0-1 licensors
Constituent order

- MG hypothesis explains U20 only with fixed selection
 \[\text{Dem} < \text{Num} < \text{Adj} < \text{N} \]
 MG allows no change in slash direction; now, no change in selection..
 (Makes sense only with independent properties. 'Flexible' accounts similar.)

- Our VSO, SOV, VSO examples:
 \[\text{C} < \text{T} < \nu < \text{V} < \text{D} < \text{N} \]

- Rizzi’04 ‘left periphery’
 \[\text{Force} < \text{Top1} < \text{Foc} < \text{Top2} < \text{Fin} < \text{Infl} \]

- Cinque’99 adverbials
 \[\text{Mood} < \text{Evidential} < \text{Epistemic} < \text{Habitual} < \text{Inceptive} \]
 frankly allegedly probably usually suddenly

- Manzini&Savoia’04 clitic positions
 \[\text{Def(uninfl)} < \text{Quant}(3) < \text{N(3pl)} < \text{P(1,2)} < \text{Origin} < \text{Loc} < \text{Measure} \]
Constituent order and paths

- **(Cartographic hypothesis)** (informal)
 Categories and order of selection in human languages is universal.
 ‘Clausal hierarchy is fixed.’

- ‘C-selection’ looks like it might be semantically motivated.
 Could ‘c-selection’ be completely reduced to ‘s-selection’?
 Chomsky’95 speculates: “there is a syntactic residue” (p.33)

- For any CFG, path language regular (Thatcher’67)
Paths in naive English

Naive English is slightly complicated, so consider this ‘tiny English’...
Tiny English

Edward Stabler (MCFG+, Tokyo, 2010)
Path sets strictly 2-local (2-SL), as for any CFG

- Last symbol a terminal category, which never dominates anything.
- ‘spine”: at binary branches, the right sister; otherwise left sister.
Spinal paths
Spinal paths

tiny English: C, V, D:

Naive English: C, T, v, V, D, N:
• (Cartographic hypothesis CH1) UG fixes Cat_\leq so that

 If fg appears in a spinal path
 and $f \neq g$, then either f covers $\leq g$ or g minimal \leq.

 If fg appears in a non-spinal path initiated at a spec position, and
 $f \neq g$, then either f covers $\leq g$ or g minimal \leq.

Edward Stabler (MCFG+, Tokyo, 2010)
Movement order universals

- Naive English *which idea* moves twice, with –ep –wh

 the teachers knew which idea; the students ti praised ti

(BOIM) Other orders are ‘improper’, yielding ungrammaticality

 * Who; seems ti will ti leave?
 * Who; seems it is likely ti to ti leave?

- ep ◁ scrambling ◁ wh ◁ top (Abels’07)
Movement order universals: naive English –wh and –ep–wh

MGs would allow –ep to –wh–ep equally easily, but that never happens!
Path restrictions 2

(Cartographic hypothesis CH2) Movement features $E_p \triangleleft$ are ordered so that if a component moves for g and then for f, $f \triangleleft g$

MG allows Lex to generate paths violating these conditions, but we can block that...
Ordered MGs

\[OMG = \langle \Sigma, \text{Cat}_\leq, \text{Ep}_\triangleleft, Df, \mu, \text{Lex}, M, S \rangle \]

\(\Sigma = \{ \text{John, Mary, who, criticize, praise, -s, -ed, } \ldots \} \) (vocabulary)
\(\text{Cat} = \langle \{ N, V, A, P, \ldots \}, \leq \rangle \) (categories)
\(\text{Ep} = \langle \{ \text{case, wh, q, foc, top, } \ldots \}, \triangleleft \rangle \) (licensors)
\(Df : \text{Cat} \to \text{Cat} \cup \text{Ep} \) (deficiencies)
\(\mu = \) meanings, e.g. \(\text{TH}(E, 2, S) \) (extends to \([\cdot]\))
\(\text{Lex} \subseteq \Sigma^e \times \text{Cat} \times \wp(\text{Ep}) \times \mu \) (lexicon)
\(M = \text{merge, the union of EM and IM rules} \)
\(S \in \text{Cat} \) (start)

- \(a \) selects \(b \) iff \(a \) covers\(\leq \) \(b \) or \(b \) minimal\(\triangleleft \)
- Semantic type may restrict selection and deficiency
- \(Df \) maps each \(\text{Cat} \) to at most one value – at most one specifier.

Many linguists assume \(UG = \langle \text{Cat}_\leq, \text{Ep}_\triangleleft, Df, M, S \rangle \); all variation in \(\text{Lex} \).
Ordered MGs

<table>
<thead>
<tr>
<th>the</th>
<th>=N D</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>=N D -ep</td>
</tr>
<tr>
<td>students</td>
<td>N</td>
</tr>
<tr>
<td>idea</td>
<td>N</td>
</tr>
<tr>
<td>praised</td>
<td>=D V</td>
</tr>
<tr>
<td>ϵ</td>
<td>=V =D ϵ</td>
</tr>
<tr>
<td>ϵ</td>
<td>=v +ep T</td>
</tr>
<tr>
<td>ϵ</td>
<td>=T C</td>
</tr>
<tr>
<td>which</td>
<td>=N D -wh</td>
</tr>
<tr>
<td>which</td>
<td>=N D -ep -wh</td>
</tr>
<tr>
<td>teachers</td>
<td>N</td>
</tr>
<tr>
<td>ϵ</td>
<td>=T +wh C</td>
</tr>
<tr>
<td>knew</td>
<td>=C V</td>
</tr>
</tbody>
</table>

Df: $C \mapsto \text{wh}, \ T \mapsto \text{ep}, \ v \mapsto \text{ep}$

<table>
<thead>
<tr>
<th>the</th>
<th>=N D</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>=N D {ep}</td>
</tr>
<tr>
<td>students</td>
<td>N</td>
</tr>
<tr>
<td>idea</td>
<td>N</td>
</tr>
<tr>
<td>praised</td>
<td>V</td>
</tr>
<tr>
<td>ϵ</td>
<td>v</td>
</tr>
<tr>
<td>ϵ</td>
<td>T</td>
</tr>
<tr>
<td>ϵ</td>
<td>C</td>
</tr>
<tr>
<td>which</td>
<td>=D {wh}</td>
</tr>
<tr>
<td>which</td>
<td>=D {ep,wh}</td>
</tr>
<tr>
<td>teachers</td>
<td>N</td>
</tr>
<tr>
<td>ϵ</td>
<td>C</td>
</tr>
<tr>
<td>knew</td>
<td>V</td>
</tr>
</tbody>
</table>
Ordered MGs

Expressive power

- \(\forall \text{UG}, \text{OML}_{\text{UG}} \subsetneq (|\text{Ep}|+1)\text{-MCFL}(2) \subsetneq \text{MCFL} \)
 (Seki et al’91; Rambow & Satta’99)

Learnability

- \(\forall \text{UG}, \text{OML}_{\text{UG}} \) finite, hence identifiable from positive text
- \(p \)-congruential MCFLs are identifiable from membership queries (yes or no to \(x \in L_* \)) and equivalence queries (yes or counterexample to \(L = L_* \)).
 (Yoshinaka & Clark’10)

\[G \in p\text{-MCFG}(r) \text{ is } p\text{-congruential iff} \]
(i) string functions linear and non-permuting, and
(ii) for every nonterminal \(A \), and any \(u, v \in L(G, A) \), \(L(G)/u = L(G)/v \).
Non-permuting OMGs

MGs, OMGs have this permuting rule, when $\delta_i = -f$, SMC:

$$im1: \langle 0, \alpha, \delta_1, \ldots, \delta_{i-1}, \delta_{i+1}, \ldots, \delta_j \rangle (s_is_0, s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_j) :-$$

$$\langle 0, +f \alpha, \delta_0, \ldots, \delta_j \rangle (s_0, \ldots, s_j)$$

? Can we change this to something like:

$$im1??: \langle 0, \delta_1, \ldots, \delta_{i-1}, \alpha \rangle (s_1, \ldots, s_{i-1}, si, s_0) :-$$

$$\langle 0, \delta_1, \ldots, \delta_i, +f \alpha \rangle (s_1, \ldots, s_i, s0)$$

Yes, for certain OMGs we can formulate (strongly equivalent) non-permuting rules. E.g. suppose \leq, \triangleleft total, Df total and 1-1...
Non-permuting OMGs

To form a constituent of category f with the components

$$\alpha f \beta, \delta_1, \ldots, \delta_i, \gamma_1, \ldots, \gamma_j.$$

Is it possible to determine the surface order of these elements? Yes.

Suppose $Cat = \{1, \ldots, n\}$ where $\forall c \in cat, c \mapsto +c$ and $\beta = -i-j-k$:

If $f \leq i$, then $-i$ checked at i, $(i - f)$ steps away.
Then if $j \leq i$, $-j$ checked at j, $(j - i) + (i - f)$ steps away.
Then if $k \leq j$, $-k$ checked at j, $(k - j) + (j - i) + (i - f)$ steps away.
Other cases similarly.
OMGs as MCFGs

em1: \(\langle 0, \delta_0, \ldots, \delta_{i-1}, \alpha, \delta_{i+1}, \ldots, \delta_j \rangle(t_0, \ldots, t_{i-1}, s_0, t_i, t_{i+1}, \ldots, t_j) : - \langle 1, =f\alpha \rangle(s_0), \)
\(\langle x, \delta_0, \ldots, \delta_{i-1}, f, \delta_{i+1}, \ldots, \delta_j \rangle(t_0, \ldots, t_j) \)

em2: \(\langle 0, \eta_0, \ldots, \eta_{j+\ell+1} \rangle(u_0, \ldots, u_{j+\ell+1}) : - \langle 0, \delta_0, \ldots, \delta_{i-1}, =f\alpha, \delta_{i+1}, \ldots, \delta_j, \rangle(s_0, \ldots, s_j), \)
\(\langle x, \gamma_0, \ldots, \gamma_{j-1}, f, \gamma_{j+1}, \ldots, \gamma_{\ell} \rangle(t_0, \ldots, t_{\ell}) \)

where \(\eta_0, \ldots, \eta_{j+\ell+1} \) is the sort of \(\delta_0, \ldots, \delta_{i-1}, \alpha, \delta_{i+1}, \ldots, \delta_j, \gamma_0, \ldots, \gamma_{k-1}, \gamma_{k+1}, \ldots, \gamma_{\ell}, \) and \(u_0, \ldots, u_{j+\ell+1} \) the corresponding sort of \(s_0, \ldots, s_{i-1}, t_k s_i, s_{i+1}, \ldots, s_j, t_0, \ldots, t_{k-1}, t_{k+1}, \ldots, t_{\ell}. \)

em3: \(\langle 0, \eta_0, \ldots, \eta_{j+\ell+2} \rangle(u_0, \ldots, u_{j+\ell+2}) : - \langle x, \delta_0, \ldots, \delta_{i-1}, =f\alpha, \delta_{i+1}, \ldots, \delta_j, \rangle(s_0, \ldots, s_j), \)
\(\langle y, \gamma_0, \ldots, \gamma_{j-1}, f\beta, \gamma_{j+1}, \ldots, \gamma_{\ell} \rangle(t_0, \ldots, t_{\ell}) \)

where \(\eta_0, \ldots, \eta_{j+\ell+2} \) is the sort of \(\delta_0, \ldots, \delta_{i-1}, \alpha, \delta_{i+1}, \ldots, \delta_j, \gamma_0, \ldots, \gamma_{k-1}, \beta, \gamma_{k+1}, \ldots, \gamma_{\ell}, \) and \(u_0, \ldots, u_{j+\ell+2} \) the corresponding sort of \(s_0, \ldots, s_j, t_0, \ldots, t_{\ell}. \)
non-permuting ‘naive Zapotec’

\[\langle 0, C \rangle \text{ (praised the students the idea)} \]
\[\langle 0, -v, +vC \rangle \text{ (praised, the students the idea)} \]
\[\langle 1, =T + vC \rangle (\varepsilon) \quad \langle 0, -v, T \rangle \text{ (praised, the students the idea)} \]
\[\langle 0, -v, -ep, +epT \rangle \text{ (praised, the students, the idea)} \]
\[\langle 1, =v + epT \rangle (\varepsilon) \quad \langle 0, -v, -ep, v \rangle \text{ (praised, the students, the idea)} \]
\[\langle 0, -v, =Dv \rangle \text{ (praised, the idea)} \quad \langle 0, D-ep \rangle \text{ (the students)} \]
\[\langle 0, -v, -ep, +ep = Dv \rangle \text{ (praised, the idea, } \varepsilon \rangle \quad \langle 1, =ND-ep \rangle \text{ (the)} \quad \langle 1, N \rangle \text{ (students)} \]
\[\langle 1, =V + ep = Dv \rangle (\varepsilon) \quad \langle 0, V-v, -ep \rangle \text{ (praised, the idea)} \]
\[\langle 1, =DV-v \rangle \text{ (praised)} \quad \langle 0, D-ep \rangle \text{ (the idea)} \]
\[\langle 1, =ND-ep \rangle \text{ (the)} \quad \langle 1, N \rangle \text{ (idea)} \]

- Non-permuting, and well-nested!
- Unlike many Ep+1-MCFG hypotheses, ‘semantically coherent’
SpIC-violating non-permuting well-nested OMG

- non-permuting, well-nested movements may violating SpIC – when Spec components do not move higher than components of selecting clause

\[
\text{em2: } \langle 0, \eta_0, \ldots, \eta_{j+\ell+1} \rangle (u_0, \ldots, u_{j+\ell+1}) : -
\langle 0, \delta_0, \ldots, \delta_{i-1}, =f \alpha, \delta_{i+1}, \ldots, \delta_j, \rangle (s_0, \ldots, s_j),
\langle x, \gamma_0, \ldots, \gamma_{j-1}, f, \gamma_{j+1}, \ldots, \gamma_\ell \rangle (t_0, \ldots, t_\ell)
\]

where \(\eta_0, \ldots, \eta_{j+\ell+1} \) is the sort of \(\delta_0, \ldots, \delta_{i-1}, \alpha, \delta_{i+1}, \ldots, \delta_j, \gamma_0, \ldots, \gamma_{k-1}, \gamma_{k+1}, \ldots, \gamma_\ell \).

Cf. informal discussions of conditions on “surfing” movement (Sauerland’96, Abels’07, . . .)
Conclusions

- MGs provide a succinct notation for ‘strongly equivalent’ MCFGs
- OMGs provide posets $\text{Cat}_\leq, \text{Ep}_\sqsubseteq$
 - Selection can be restricted with \leq for ‘Order universals’
 - Movement can be restricted with \sqsubseteq for ‘BOIM’
 - More succinct than strongly equivalent MGs, MCFGs.
- Finite class $\text{OML}_{\text{UG}} \not\subseteq (|\text{Ep}| + 1)-\text{MCFL}(2) \not\subseteq \text{MCFL}$
- Some OMGs have non-permuting strong equivalents, intersecting with the range of Yoshinaka&Clark’s learner. And some of these are well-nested.

(Q) For which UG, $\subseteq \text{OMG}_{ug}$ non-permuting?

(Q) For which UG, $\subseteq \text{OMG}_{ug}$ well-nested?

(EQ4) ‘Semantically appropriate’ HG $\subseteq \text{MCFG}_{wn}$?
Abels, K.
Towards a restrictive theory of (remnant) movement: Improper movement, remnant movement, and a linear asymmetry.

Abels, K.
Some implications of improper movement for cartography.

Abner, N.
Selection in grammar: Evidence and consequences.

Chomsky, N.
Conditions on transformations.

Chomsky, N.
Knowledge of Language.

Chomsky, N.
The Minimalist Program.

Cinque, G.

Cinque, G.
Deriving Greenberg’s Universal 20 and its exceptions.

Fukui, N.
A note on improper movement.
Greenberg, J.
Some universals of grammar with particular reference to the order of meaningful elements.

Grimshaw, J.
Complement selection and the lexicon.

Harkema, H.
A characterization of minimalist languages.

Kaji, Y., Nakanishi, R., Seki, H., and Kasami, T.
The universal recognition problems for multiple context-free grammars and for linear context-free rewriting systems.

Kobele, G. M.
Inverse linking via function composition.
Natural Language Semantics 18 (2010), 183–196.

Kobele, G. M., and Kandybowicz, J.
A normal form theorem for minimalist grammars.

Kuno, S., and Takami, K.
Functional Constraints in Grammar: On the Unergative-Unaccusative Distinction.

Levin, B., and Rappaport Hovav, M.
Unaccusativity: At the Syntax-Lexical Semantics Interface.

Manzini, M. R., and Savoia, L. M.
Clitics: Cooccurrence and mutual exclusion patterns.

Manzini, M. R., and Savoia, L. M.
Syncretism and suppletion in clitic systems: Underspecification, silent clitics or neither?

May, R.
Must comp-to-comp movement be stipulated.

McNaughton, R., and Papert, S.
Counter-Free Automata.

Michaelis, J.
Derivational minimalism is mildly context-sensitive.

Michaelis, J.
Transforming linear context free rewriting systems into minimalist grammars.

Nakajima, H.
Adverbial cognate objects.

Obata, M., and Epstein, S. D.
Deducing improper movement from phase based C-to-T Phi transfer: Feature-splitting internal merge.

Ohara, M.
Essex Graduate Student Papers in Language and Linguistics 1 (1997).
Pesetsky, D.
Paths and Categories.

Rambow, O., and Satta, G.
Independent parallelism in finite copying parallel rewriting systems.
Theoretical Computer Science 223 (1999), 87–120.

Rizzi, L.
Locality and left periphery.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T.
On multiple context-free grammars.

Stabler, E. P.
Computational perspectives on minimalism.

Thatcher, J. W.
Characterizing derivation trees of context-free grammars through a generalization of finite automata theory.

Yoshinaka, R., and Clark, A.
Polynomial time learning of some multiple context-free languages with a minimally adequate teacher.