
Second-Order Abstract Categorial Grammars

Makoto Kanazawa

July 28, 2009

1 Some “Context-Free” Grammar Formalisms

1.1 Top-Down Rewriting and Bottom-Up Deduction

When Chomsky first introduced the context-free grammar (CFG), it was
defined to be a restricted type of semi-Thue system or unrestricted rewriting
system. An unrestricted rewriting system has rules of the form:

α→ β,

where α and β are strings of terminal and nonterminal symbols. Such a rule
is interpreted as a permission to rewrite a string γαδ to γβδ. The language
of a rewriting system is then defined to be the set {w ∈ Σ∗ | S ⇒∗ w },
where Σ is the terminal alphabet, S is the designated start nonterminal of the
rewriting system, and⇒ is the relation of one-step rewriting. It is important
to note that even though the definition of the language generated by a
rewriting system only refers to the rewriting relation between nonterminals
and strings of terminals

B ⇒∗ w,

it is necessary to define the rewriting relation between strings of terminals
and nonterminals in general:

α⇒∗ β,

because it is not possible to define the former directly by induction.
The standard presentation of a context-free grammar is the same, except

for the restriction placed on the form of rules. All rules of a context-free
grammar must be of the form

B → α,

where B is a nonterminal and α is a string of terminals and nonterminals.
The definition of the relation ⇒ can be given in the same way as in the

1

unrestricted case. An important fact about context-free grammars, however,
is that the relation

B ⇒∗ w

between nonterminals and strings of terminals can be defined by direct in-
duction, completely bypassing the definition of the binary relation ⇒∗ on
(N ∪ Σ)∗:1

B ⇒∗ w iff for some rule B → v0B1v1 . . . vn−1Bnvn,
it holds that Bi ⇒∗ wi for i = 1, . . . , n and
w = v0w1v1 . . . vn−1wnvn.

In order to distinguish the above direct definition of the relation B ⇒∗ w
from the standard one, let us use a different piece of notation

B(w)

to express the same relation. A rule of a context-free grammar can now be
represented as a Horn clause:

B(v0x1v1 . . . vn−1xnvn) :− B1(x1), . . . , Bn(xn),

and the generated language can be defined as

L(G) = {w ∈ Σ∗ | `G S(w) },

where `G B(w) means that B(w) can be deduced from the set of rules of G
viewed as a Horn clause program.

The standard rewriting view of the CFG is very close to the nonde-
terminisitc pushdown automaton model equivalent to it, while the above
alternative “deductive” view leads to an alternating Turing machine (oper-
ating in logarithmic space).2 Another way to express the difference is that
the rewriting view is sequential, while the deductive view is parallel. The
former gives rise to an exponential-time, backtracking, stack-based recogni-
tion algorithm, and the latter naturally leads to a polynomial-time, tabular

1I use calligraphic N to denote the set of nonterminals.
2An alternating Turing machine is a generalization of a nondeterministic Turing ma-

chine that has universal and existential states. If a configuration is in an existential state,
at least one of its successor configurations must lead to acceptance, while if a configu-
ration is in a universal state, all of its successor configurations must lead to acceptance.
In establishing B(w), the choice of a rule B → v0B1v1 . . . vn−1Bnvn and the choice of
substrings wi of the given string w constitute existential (nondeterministic) moves, while
checking all of Bi(wi) is realized as a universal move.

2

B→
D

D E
B :-D(X),D(Y),E(Z)

X

Y Z

Figure 1: The top-down rewriting view (left) and the bottom-up deductive
view (right) of a context-free rule.

recognition algorithm. Or rather, the deductive view lies behind the simple
bottom-up tabular recognition algorithm for CFGs. The derivation tree of
w ∈ L(G) is, with subtle points aside, just the derivation tree of `G S(w).
The standard notion of a derivation S = α0 ⇒ α1 ⇒ · · · ⇒ αn = w need not
play any role in the definition of context-free grammars; it was just a histor-
ical accident that the CFG was introduced as a restriction of the semi-Thue
system.3

The notion of a context-free grammar can be generalized to various ob-
jects other than strings. (See Figure 1.) Under the top-down rewriting view,
the right-hand side of a rule is a complex object made up of terminal and
nonterminal symbols. Under the bottom-up deductive view, the argument
to the nonterminal on the left-hand side is a complex object made up of ter-
minal symbols and variables appearing on the right-hand side (ranging over
complex objects made up of terminal symbols). An important notion, under
both views, is the operation of substitution of complex objects for nontermi-
nals or variables, in the free algebra of objects of an appropriate type (e.g.,
strings, trees, tree contexts, etc.). If M is a complex object made up of
terminal symbols and variables X1, . . . , Xn, and P1, . . . , Pn are complex ob-
jects made up of terminal symbols, then we write M [X1 :=P1, . . . , Xn :=Pn]
for the result of substituting P1, . . . , Pn for X1, . . . , Xn, respectively, in M .
If

B(M) :− B1(X1), . . . , Bn(Xn)

is a rule in a context-free grammar G on an appropriate type of object, then
3The Horn-clause representation of a CFG is a special case of an elementary formal

system, which Smullyan (1961) introduced to develop recursion theory on the basis of
strings, rather than natural numbers. Elementary formal systems were later rediscovered
by Groenink (1997), who called them literal movement grammars. In a better possible
world, Smullyan’s dissertation would have appeared a few years earlier and Chomsky
would have based his theory of formal grammars on Smullyan’s work, rather than on the
work of Thue and Post.

3

the interpretation of this rule is the implication from

`G B1(P1), . . . ,`G Bn(Pn)

to
`G B(M [X1 := P1, . . . , Xn := Pn]),

for all objects P1, . . . , Pn of the appropriate type. The language of G (i.e.,
set of objects of the appropriate type generated by G) is defined to be
{M | `G S(M) }, where S is the distinguished nonterminal (start symbol)
of G.

1.2 Multiple Context-Free Grammars

One big advantage of the bottom-up deductive presentation is that it allows
for a straightforward generalization to grammars that generate tuples of
objects, rather than single objects, such as multiple context-free grammars
(MCFGs). An MCFG is a context-free grammar on tuples of strings. A rule
of an MCFG is a Horn clause of the form

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn),

where B,B1, . . . , Bn are nonterminals, x1,1, . . . , xn,rn are pairwise distinct
variables, and t1, . . . , tr are strings made up of terminals and variables on
the right-hand side. It is required that each xi,j appear exactly once on the
left-hand side, or, in symbols:

|t1 . . . tr|xi,j = 1 for all i ∈ [1, n] and j ∈ [1, ri],

where |w|c denotes the number of occurrences of c in w.4 Each nonterminal
is interpreted as an r-ary predicate on terminal strings, the arity r depending
on the nonterminal. The arity of the start nonterminal is 1. If the maximal
arity of nonterminals is ≤ m, the grammar is called an m-MCFG. Note that
1-MCFGs are just CFGs.

Formally, an m-MCFG is a quintuple G = (N ,Σ, α,P, S), where N is
a set of nonterminals, Σ is a set of terminals, α is a function from N to
{1, . . . ,m}, P is a set of rules, and S ∈ N has α(S) = 1. The arity of a
nonterminal B is given by α(B).

4In Seki et al.’s (1991) original definition, the requirement was that each xi,j appear
at most once on the left-hand side.

4

The following 2-MCFG generates resp = { am1 am2 bn1bn2am3 am4 bn3bn4 | m,n ≥
0 }:

S(x1y1x2y2) :− P (x1, x2), Q(y1, y2).
P (ε, ε).
P (a1x1a2, a3x2a4) :− P (x1, x2).
Q(ε, ε).
Q(b1y1b2, b3y2b4) :− Q(y1, y2).

The language of an MCFG is a multiple context-free language (MCFL).
There are many other formalisms characterizing the class of MCFLs (see,
e.g., Kanazawa 200x).

1.3 Regular Tree Grammars and Multiple Regular Tree
Grammars

A ranked alphabet is a finite set ∆ =
⋃
n∈N ∆(n), where ∆(m) ∩∆(n) = ∅ if

m 6= n. If f ∈ ∆(n), n is the rank of f . The set T∆ of trees over a ranked
alphabet ∆ is the smallest set satisfying the following condition:5

If f ∈ ∆(n) and T1, . . . , Tn ∈ T∆, then (fT1 . . . Tn) ∈ T∆.

Let X be a finite set of variables, disjoint from ∆. The notation T∆(X)
denotes the set T∆∪X, where (∆ ∪X)(0) = ∆(0) ∪X and (∆ ∪X)(n) = ∆(n)

for all n ≥ 1. Let Xk = {x1, . . . , xk}. If U1, . . . , Uk ∈ T∆ and T ∈ T∆(Xk),
then T [x1 := U1, . . . , xk := Uk] is the result of substituting U1, . . . , Uk for
x1, . . . , xk, respectively, in T , defined recursively as follows:

(fT1 . . . Tn)[x1 := U1, . . . , xk := Uk] =

(fT1[x1 := U1, . . . , xk := Uk] . . . Tn[x1 := U1, . . . , xk := Uk]) if f ∈ ∆(n),

xi[x1 := U1, . . . , xk := Uk] = Ui.

A tree T ∈ T∆(X) is a simple tree if each variable in X appears exactly
once in T , or, in symbols,

|T |x = 1 for all x in X.

A regular tree grammar (RTG) is a context-free grammar on trees over
some ranked alphabet ∆. Symbols of ∆ are terminal symbols. Nonterminals

5A common alternative notation for (fT1 . . . Tn) is f(T1, . . . , Tn).

5

of the grammar all have arity 1, as in the case of ordinary context-free
grammars. Rules of an RTG have the following form:

B(T) :− B1(x1), . . . , Bn(xn),

where T is a simple tree in T∆(Xn).
Formally, an RTG is a quadruple G = (N ,∆,P, S), where N is a set of

nonterminals, ∆ is a ranked alphabet of terminals, P is a set of rules, and
S ∈ N .

Here is an example of an RTG:

S(fxy) :− P (x), Q(y).
P (e).
P (gaxb) :− P (x).
Q(e).
Q(gcyd) :− Q(y)

Here, ∆ = ∆(0) ∪∆(2) ∪∆(3) = {a, b, c, d, e} ∪ {f} ∪ {g}. The language of
this RTG consists of all trees of the form

f(ga(. . . (ga︸ ︷︷ ︸
n times

e b) . . .)b︸ ︷︷ ︸
n times

)(gc(. . . (gc︸ ︷︷ ︸
m times

e d) . . .)d︸ ︷︷ ︸
m times

).

The language of an RTG is called a regular tree language (RTL). The
regular tree languages coincide with the languages recognizable by finite tree
automata.

The function yield from T∆ to (∆(0))∗ is defined recursively as follows:

yield(f) = f if f ∈ ∆(0),

yield(fT1 . . . Tn) = yield(T1) . . . yield(Tn) if f ∈ ∆(n) and n ≥ 1.

If L ⊆ T∆(X), we write yield(L) for { yield(T) | T ∈ L }. If L is a regular
tree language, yield(L) is a context-free (string) language. Conversely, every
context-free language is yield(L) for some regular tree language L.

A multiple regular tree grammar (MRTG) is a context-free grammar on
tuples of trees. Nonterminals of an MRTG have variying arity, and rules are
of the form:

B(T1, . . . , Tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn),

6

where T1, . . . , Tr are trees in T∆({xi,j | i ∈ [1, n], j ∈ [1, ri] }) such that

r∑
k=1

|Tk|xi,j = 1 for all i ∈ [1, n] and j ∈ [1, ri].

The arity of the start nonterminal is 1.
Formally, an m-MRTG is a quintuple G = (N ,∆, α,P, S), where α is a

function from N to {0, . . . ,m} and α(S) = 1.
Here is an example of a 2-MRTG:

S(fx1x2) :− P (x1, x2).
P (e, e).
P (gax1b, gcx2d) :− P (x1, x2).

Here, ∆ = ∆(0) ∪∆(2) ∪∆(3) = {a, b, c, d, e} ∪ {f} ∪ {g}. The language of
this MRTG consists of all trees of the form

f(ga(. . . (ga︸ ︷︷ ︸
n times

e b) . . .)b︸ ︷︷ ︸
n times

)(gc(. . . (gc︸ ︷︷ ︸
n times

e d) . . .)d︸ ︷︷ ︸
n times

).

The language of an MRTG is a multiple regular tree language (MRTL).
If L is an MRTL, then yield(L) is an MCFL. In fact, if

B(T1, . . . , Tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

is an MRTG rule, then

B(yield(T1), . . . , yield(Tr)) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

is an MCFG rule. Conversely, every MCFL is yield(L) for some MRTL L.

1.4 Linear Context-Free Tree Grammars and Multiple Lin-
ear Context-Free Tree Grammars

An n-ary tree context is an expression

λx1 . . . xn.T,

where T is a simple tree in T∆(Xn). The application of an n-ary tree context
U = λx1 . . . xn.T to trees T1, . . . , Tn is defined as

app(U, T1, . . . , Tn) = T [x1 := T1, . . . , xn := Tn].

7

A tree context is an n-ary tree context for some n. Note that a 0-ary tree
context is just a tree.

Let Y be a ranked alphabet disjoint from ∆. We let ∆ ∪ Y be the
ranked alphabet such that (∆ ∪ Y)(n) = ∆(n) ∪ Y(n). For i ∈ [1, l], let
Ui = λx1 . . . xni .Vi be an ni-ary tree context over ∆. Let yi ∈ Y(ni) and
let T ∈ T∆∪Y(X). The result of substituting U1, . . . , Ul for y1, . . . , yl in T ,
T [y1 := U1, . . . , yl := Ul] in symbols, is defined recursively as follows:

(fT1 . . . Tn)[y1 := U1, . . . , yl := Ul] =

fT1[y1 := U1, . . . , yl := Ul] . . . Tn[y1 := U1, . . . , yl := Ul] if f ∈ ∆(n),

x[y1 := U1, . . . , yl := Ul] = x if x ∈ X,

(yiT1 . . . Tni)[y1 := U1, . . . , yl := Ul] =
app(Ui, T1[y1 := U1, . . . , yl := Ul], . . . , Tni [y1 := U1, . . . , yl := Ul])

(yT1 . . . Tn)[y1 := U1, . . . , yl := Ul] =
yT1[y1 := U1, . . . , yl := Ul] . . . Tn[y1 := U1, . . . , yl := Ul] if y 6∈ {y1, . . . , yl}.

A linear context-free tree grammar (LCFTG) is a context-free grammar
on tree contexts.6 Each nonterminal is a (unary) predicate on n-ary tree
contexts for some fixed n, which is the nonterminal’s rank. The rank of
the start symbol S is 0. We write ρ(B) for the rank of nonterminal B. To
express a rule of an LCFTG, we use a set Y of ranked variables ranging
over tree contexts. A variable of rank n ranges over n-ary tree contexts. A
rule of an LCFTG is of the following form:7

B(λx1 . . . xn.T) :− B1(y1), . . . , Bl(yl),

where n = ρ(B), yi ∈ Y(ρ(Bi)) for each i ∈ [1, l], and T is a simple tree in
T∆∪Y(Xn) such that for all y ∈ Y,

|T |y =

{
1 if y = yi for some i ∈ [1, l],
0 otherwise.

6This is actually what is called a linear non-deleting context-free tree grammar in the
literature on context-free tree grammars.

7The usual formulation of a context-free tree grammar uses the top-down rewriting
view of rules, and does not use λ:

Bx1 . . . xn → T [y1 :=B1, . . . , yl :=Bl].

8

Formally, an LCFTG of rank m is a qunituple G = (N ,∆, ρ,P, S) such
that ρ is a function from N to {0, . . . ,m} and ρ(S) = 0. Note that an
LCFTG of rank 0 is just an RTG.

Here is an example of an LCFTG:

S(yee) :− P (y).
P (λx1x2.fx1x2).
P (λx1x2.a(y(bx1)(bx2))) :− P (y).

Here, ∆ = ∆(0) ∪ ∆(1) ∪ ∆(2) = {e} ∪ {a, b} ∪ {f}. The language of this
grammar consists of all trees of the form:

a(. . . (a︸ ︷︷ ︸
n times

(f(b(. . . (b︸ ︷︷ ︸
n times

e) . . .)︸ ︷︷ ︸
n times

)(b(. . . (b︸ ︷︷ ︸
n times

e) . . .)︸ ︷︷ ︸
n times

))) . . .)︸ ︷︷ ︸
n times

,

or, in abbreviated form:
an(f(bne)(bne)).

The yield images of the languages of LCFTGs coincide with the lan-
guages of non-duplicating macro grammars and with the languages of cou-
pled context-free tree grammars.8

A multiple linear context-free tree grammar (MLCFTG) is a context-free
grammar on tuples of tree contexts. Each nonterminal is associated with a
vector (n1, . . . , nr) of natural numbers, called its sort, and takes an r-tuple of
tree contexts as arguments; the i-th argument is an ni-ary tree context. We
write σ(B) for the sort of nonterminal B. The start symbol S is associated
with σ(S) = (0), i.e., S takes a tree as its sole argument. A rule of an
MLCFTG is of the form

B(U1, . . . , Ur) :− B1(y1,1, . . . , y1,r1), . . . , Bn(yn,1, . . . , yn,rn),

where σ(B) = (n1, . . . , nr), Ui is a ni-ary tree context over ∆∪Y for i ∈ [1, r],
σ(Bi) = (ni,1, . . . , ni,r1) for i ∈ [1, n], yi,j ∈ Y(ni,j), and

r∑
k=1

|Uk|y =

{
1 if y = yi,j for some i ∈ [1, n] and j ∈ [1, ri],
0 otherwise.

Formally, an MLCFTG is a quintuple G = (N ,∆, σ,P, S), where σ is a
function from N to N+ and σ(S) = (0).

8One can think of non-duplicating macro grammars as context-free grammars on string
contexts.

9

Table 1: Context-free grammars on . . .

strings trees
unary tree contexts

C[x]
n-ary tree contexts

C[x1, . . . , xn]

single CFG RTG
TAG

(monadic LCFTG)
LCFTG

multiple MCFG MRTG MCTAG MLCFTG

RTG: regular tree grammar
LCFTG: linear (non-deleting) context-free tree grammar (Rounds 1970, En-
gelfriet and Schmidt 1977, Kepser and Mönnich 2006)
MCFG: multiple context-free grammar (Seki et al. 1991)
MRTG: multiple regular tree grammar (Raoult 1997, Engelfriet 1997)
MCTAG: (set-local) multi-component tree-adjoining grammar (Weir 1988)
MLCFTG: multiple linear context-free tree grammar (cf. Engelfriet and
Maneth 2000)

Here is a simple example of an MLCFTG:

S(f(y1ee)(y2ee)) :− P (y1, y2)
P (λx1x2.a(y1(bx1)(bx2)), λx1x2.a(y2(bx1)(bx2))) :− P (y1, y2)
P (λx1x2.fx1x2, λx1x2.fx1x2).

Here, the terminal alphabet is ∆ = ∆(0) ∪∆(1) ∪∆(2) = {e} ∪ {a, b} ∪ {f}
and σ(S) = (0) and σ(P) = (2, 2). The language of this grammar consists
of all trees of the form

f

(
a(. . . (a︸ ︷︷ ︸
n times

(f
(
b(. . . (b︸ ︷︷ ︸
n times

e) . . .)︸ ︷︷ ︸
n times

)(
b(. . . (b︸ ︷︷ ︸
n times

e) . . .)︸ ︷︷ ︸
n times

)
)) . . .)︸ ︷︷ ︸
n times

)
(
a(. . . (a︸ ︷︷ ︸
n times

(f
(
b(. . . (b︸ ︷︷ ︸
n times

e) . . .)︸ ︷︷ ︸
n times

)(
b(. . . (b︸ ︷︷ ︸
n times

e) . . .)︸ ︷︷ ︸
n times

)
)) . . .)︸ ︷︷ ︸
n times

)
,

or, in abbreviated form:

f(an(f(bne)(bne)))(an(f(bne)(bne))).

Table 1 contains all formalisms that have been discussed.

10

2 Second-Order ACGs: Context-Free Grammars
on Linear λ-Terms

A second-order abstract categorial grammar is a context-free grammar on
typed linear λ-terms and generalizes all preceding formalisms.

The terminal alphabet of an abstract categorial grammar (ACG) is a
higher-order signature Σ = (A,C, τ), where A is a set of atomic types, C is
a set of constants, and τ is a type assignment function from C to T (A). The
set T (A) of types built on A is defined inductively as the smallest superset
of A satisfying the condition that if α, β ∈ T (A), then α→ β ∈ T (A).

Abstract categorial grammars generate linear λ-terms over a given
higher-order signature. Let X be a countably infinite set of variables. The
set Λ(Σ) of (untyped) λ-terms over a higher-order signature Σ = (A,C, τ)
is the smallest superset of X ∪ C satisfying the following conditions:9

1. If M,N ∈ Λ(Σ), then (MN) ∈ Λ(Σ);

2. If M ∈ Λ(Σ) and x ∈ X, then (λx.M) ∈ Λ(Σ).

The set FV(M) of free variables of M is understood in the usual way. A
λ-term M is closed if FV(M) = ∅; it is pure if it contains no constants.

λ-terms come in different types, and when a λ-term has free variables
in it, its type is determined relative to an assignment of types to its free
variables. A type environment is a finite set Γ of variable declarations of the
form x : α (where x ∈ X, α ∈ T (A)) in which no variable is declared more
than once. A type environment is usually written as a list x1 :α1, . . . , xn :αn.
The following inference system, λ→Σ, derives typing judgments of the form
Γ `Σ M : α, where Γ is a type environment, M ∈ Λ(Σ), and α ∈ T (A):

`Σ c : τ(c) for c ∈ C, x : α `Σ x : α for x ∈ X and α ∈ T (A),

Γ `Σ M : β
Γ− {x : α} `Σ λx.M : α→ β

if Γ ∪ {x : α} is a type environment,

Γ `Σ M : α→ β ∆ `Σ N : α
Γ ∪∆ `Σ MN : β

if Γ ∪∆ is a type environment.

We write Γ `M : α when M is pure, omitting reference to Σ.10

9As usual, we omit the outermost parentheses and write MNP for (MN)P , λx.MN
for λx.(MN), and λx1 . . . xn.M for λx1.(. . . (λxn.M) . . .). The notation MNk abbreviates
MN . . .N with “N” repeated k times.

10Our use of the symbol ` corresponds to 7→ in Hindley 1997 and ⇒ in Mints 2000.
This inference system has the property that if x1 :α1, . . . , xn :αn `Σ M :α, then FV(M) =
{x1, . . . , xn}. However, Weakening is derivable in this system in the sense that Γ `Σ M :α
implies Γ, x : β `Σ (λy.M)x : α, where x, y 6∈ FV(M).

11

ACGs only use linear λ-terms. A λ-term M is linear if the following
conditions both hold:

1. for any subterm λx.N of M , x ∈ FV(N);

2. for any subterm NP of M , FV(N) ∩ FV(P) = ∅.

We denote the set of linear λ-terms over Σ by Λlin(Σ). It is known that
for every Γ and α, there are only finitely many pure linear λ-terms M in
β-normal form such that Γ `M : α.

See Barendregt 1984, Hindley 1997, Sørensen and Urzyczyn 2006, or
Hindley and Seldin 2008 for other standard notions in λ-calculus, such as
substitution (of a λ-term for a free variable in a λ-term), α-conversion, β-
reduction, β-normal form, and η-long form. We write �β for β-reduction,
and =β for β-equality. We denote the β-normal form of M by |M |β.

In a second-order ACG (over a higher-order signature Σ = (A,C, τ)),
each nonterminal B is associated with its type σ(B) ∈ T (A). A rule of a
second-order ACG over a higher-order signature Σ is of the form

B(M) :− B1(X1), . . . , Bn(Xn).

where M is a linear λ-term such that

X1 : σ(B1), . . . , Xn : σ(Bn) `Σ M : σ(B).

Formally, a second-order ACG is a quintuple G = (N ,Σ, σ,P, S), where
Σ is a higher-order signature (A,C, τ) and σ is a function from N to T (A).
The language of G is defined to be L(G) = { |M |β | `G S(M) }. We say
that G has complexity n if the order of σ(B) is bounded by n.11 We denote
the class of second-order ACGs of complexity n by ACG(2,n).

This presentation of second-order ACGs is different from the official def-
inition of second-order ACGs and does not generalize to ACGs in general,
but makes it easier to compare second-order ACGs with other context-free
formalisms. If π is a rule

B(M) :− B1(X1), . . . , Bn(Xn),
11The order of a type α is defined recursively as follows:

ord(p) = 1 if p ∈ A,

ord(α→ β) = max(ord(α) + 1, ord(β)).

This convention is standard in the literature on higher-order unification and matching, but
there are a significant number of people who start counting at 0 rather than 1. Second-
order ACGs would then be called first-order ACGs.

12

then in official presentation there will be an abstract constant corresponding
to π whose type is B1 → · · · → Bn → B and whose object realization is
λX1 . . . Xn.M .

3 Encoding Context-Free Formalisms with
Second-Order ACGs

3.1 Encoding Tree Grammars

A ranked alphabet ∆ can be represented by a second-order signature Σtree
∆ =

({o},∆, τ∆), where for each f ∈ ∆(n), τ∆(f) = on → o. We call Σtree
∆ a

tree signature. We identify a tree in T∆ with a closed β-normal λ-term
in Λlin(Σtree

∆) of type o in the obvious way. It is then clear that regular
tree grammars and linear context-free tree grammars are special cases of
second-order ACGs.

A second-order ACG G = (N ,Σ, σ,P, S) is called tree-generating if Σ is
a tree signature and σ(S) = o.

If G is a class of ACGs, we let TR(G) denote the class of tree languages
generated by tree-generating ACGs in G. We have

TR(ACG(2,1)) = RTL

TR(ACG(2,2)) = LCFTL

In both cases, one direction is obvious given the representation of trees by
linear λ-terms. The other direction is also not difficult.

3.2 Encoding Strings

One way to encode strings with linear λ-terms is to view them as unary tree
contexts over a monadic ranked alphabet, where each symbol has rank 1.
Thus, a string a1 . . . an is represented by

/a1 . . . an/ = λz.a1(. . . (anz) . . .).

Strings over an alphabet Υ are represented by closed linear λ-terms of type
o→ o over the signature Σstring

Υ = ({o},Υ, τ), where τ(a) = o→ o for all
a ∈ Υ. We call a higher-order signature of the form Σstring

Υ a string signature.
A second-order ACG G = (N ,Σ, σ,P, S) is string-generating if Σ is a string
signature and σ(S) = o→ o.

13

Under the representation of strings by linear λ-terms, concatenation is
just the B combinator:

B = λxyz.x(yz).

It is easy to see that for all strings u, v,

B /u/ /v/ �β /uv/.

The yield function is represented by the homomorphism (or lexicon):

f 7→

{
λy1 . . . ynz.y1(. . . (ynz) . . .) if τ(f) = on→ o for some n ≥ 1,
λz.fz if τ(f) = o,

o 7→ o→ o.

If G is a tree-generating second-order ACG, applying the yield homomor-
phism to G gives a string-generating second-order ACG G′ generating the
yield image of the tree language of G. If G is of complexity n, the complexity
of G′ will be n+ 1.

If G is a class of ACGs, we let STR(G) denote the class of string languages
generated by string-generating ACGs in G. We have

STR(ACG2,2) = CFL,
STR(ACG2,3) = yCFTL,

where yCFTL is the class of yield images of CFTLs (i.e., non-duplicating
macro languages).12 The inclusion from right to left follows from the cor-
responding results about tree-generating ACGs (at complexity level decre-
mented by 1). The other direction also does not require too much work.

3.3 Encoding Tuples as Typed Linear λ-Terms

There is a standard way to represent tuples by λ-terms. An n-tuple
(M1, . . . ,Mn) of λ-terms of type α1, . . . , αn can be represented by a λ-term

〈M1, . . . ,Mn〉 = λw.wM1 . . .Mn,

which has type (α1→· · ·→αn→β)→β for any β. Note that if M1, . . . ,Mn are
linear λ-terms, then 〈M1, . . . ,Mn〉 is also linear. The projection functions

pi : 〈M1, . . . ,Mn〉 7→Mi

12According to the definition of string generating second-order ACGs, we have
STR(ACG2,1) = ∅.

14

are usually defined by

pi = λy.y(λx1 . . . xn.xi),

but these are not linear λ-terms. In multiple context-free grammars, as well
as in multiple linear context-free tree grammars, each component of a tuple
is used exactly once in some context C[2, . . . ,2], and we have

C[M1, . . . ,Mn] =β 〈M1, . . . ,Mn〉(λx1 . . . xn.C[x1, . . . , xn]),

so the effect of projections and plugging into a context C[2, . . . ,2] is
achieved by feeding the linear λ-term λx1 . . . xn.C[x1, . . . , xn] to the tuple.

There is the problem of typing, however. In order to type the lin-
ear λ-term 〈M1, . . . ,Mn〉(λx1 . . . xn.C[x1, . . . , xn]), we have to assign to
〈M1, . . . ,Mn〉 the type (α1 → · · · → αn → β) → β, where β is the type
of C[x1, . . . , xn]. If one wants to use components of tuples in contexts
C[2, . . . ,2] of varying types, no single typing of 〈M1, . . . ,Mn〉 makes it
possible for 〈M1, . . . ,Mn〉 to apply to λx1 . . . xn.C[x1, . . . , xn]. However, we
have to represent the tuple of arguments of a nonterminal by a λ-term of
some fixed type.

Fortunately, since string- and tree-generating ACGs use a higher-order
signature with just one atomic type o, it suffices to use (α1→· · ·→αn→o)→o
as the type of 〈M1, . . . ,Mn〉, where α1, . . . , αn are the types of M1, . . . ,Mn.
Since the type of any context ends in o, we have

C[M1, . . . ,Mn] =βη λy1 . . . yk.〈M1, . . . ,Mn〉(λx1 . . . xn.C[x1, . . . , xn]y1 . . . yk),

and this is typable by assigning to y1, . . . , yk types β1, . . . , βk, respectively,
if C[x1, . . . , xn] has type β1→ . . . βk→ o.

Using this representation of tuples, our example MRTG can be encoded
by the following second-order ACG:

S(X(λx1x2.fx1x2)) :− P (X).
P (λw.wee).
P (λw.X(λx1x2.w(gax1b)(gcx2d))) :− P (X).

This ACG has σ(S) = o and σ(P) = (o2→o)→o, corresponding to α(S) = 1
and α(P) = 2 in the MRTG. In general, MRTGs can be encoded by an ACG
in AC(2,3).

TR(ACG(2,3)) ⊇ MRTL.

15

Applying the yield function to both sides, we can conclude

STR(ACG(2,4)) ⊇ MCFL.

Using the same technique, we can represent our example MLCFTG by
the following second-order ACG:

S(X(λy1y2.f(y1ee)(y2ee))) :− P (X).
P (λw.w(λx1x2.fx1x2)(λx1x2.fx1x2)).
P (λw.X(λy1y2.w(λx1x2.a(y1(bx1)(bx2)))(λx1x2.a(y2(bx1)(bx2))))) :− P (X).

In this second-order ACG, σ(S) = o and σ(P) = ((o2→o)→(o2→o)→o)→o,
corresponding to σ(S) = (0) and σ(P) = (2, 2) in the MLCFTG. In general,
a second-order ACG encoding an MLCFTG has complexity 4.

TR(ACG(2,4)) ⊇ MLCFTL.

Since strings are unary tree contexts, we can also encode MCFGs with ACGs
in ACG(2,4) as a special case. This gives an alternative proof of

STR(ACG(2,4)) ⊇ MCFL.

The inclusion of CFL, yCFTL, MCFL in ACG(2,2), ACG(2,3), ACG(2,4),
respectively, was first proved by de Groote and Pogodalla (2004).

4 Characterization of String and Tree Generating
Power

A typed linear λ-term over a string or tree signature in general stands for
a functional on strings and trees of higher type. A second-order term de-
notes a function, a third-order term denotes a function from functions to
strings/trees, etc. As one moves up the hierarchy ACG(2,n) of second-order
ACGs, more and more complex objects become available to grammars. Does
this increase in the complexity of objects handled by grammars lead to an
ever-growing hierarchy of string and tree language classes?

In 2006, Sylvain Salvati surprised the ACG community by showing that
the string language hierarchy collapses at complexity level 4 (Salvati 2007).
He was able to prove

STR(ACG(2,n)) ⊆ MCFL

16

for all n. Since this fact implies

STR(ACG(2,n)) = MCFL

for all n ≥ 4, second-order ACGs joined the long list of grammar formalisms
characterizing the class of multiple context-free languages, widely equated
with the class of mildly context-sensitive languages. Since then, two alter-
native proofs of Salvati’s theorem have been found, and a similar result has
been established for the tree language hierarchy (Kanazawa 200x, Kanazawa
and Salvati 2007):

TR(ACG(2,n)) = MLCFTL for all n ≥ 4.

The following method for the string case is from Kanazawa and Salvati
2007.

Let M ∈ Λlin(Σstring
Υ) be a linear λ-term in η-long β-normal form such

that Γ `
Σstring

Υ
M : α. We extract from M a tuple (w1, . . . , wm) of strings in

Υ+ and a pure λ-term P such that

Γ, z1 : o→ o, . . . , zm : o→ o ` P : α,
P [zi := /wi/]i∈[1,m] �β M.

We ensure m to be the minimal number for which there exist (w1, . . . , wn)
and P with these properties. Roughly, (w1, . . . , wm) consists of the maximal
consecutive strings of symbols from Υ that occur in M . In the following def-
inition, lh(~w) denotes the length (i.e., number of components) of a sequence
~w, and a denotes concatenation of sequences. The letters a and y range
over symbols in Υ and variables, respectively.

tuple(aM) =

(aw1, w2, . . . , wm) if M starts with a constant and

tuple(M) = (w1, . . . , wm),

(a)a tuple(M) otherwise,

pure(aM) =

{
pure(M) if M starts with a constant,
z1(pure(M)[zi := zi+1]1≤i≤m) otherwise, where m = lh(tuple(M)),

tuple(yM1 . . .Mn) = tuple(M1)a
. . .

a tuple(Mn),
pure(yM1 . . .Mn) = yQ1 . . . Qn, where Qj = pure(Mj)[zi := z

i+
Pj−1

k=1 mk
]1≤i≤mj ,

mk = lh(tuple(Mk)),

tuple(λy.M) = tuple(M),
pure(λy.M) = λy.pure(M)

17

For example, consider

M = λxyz.a(a(b(y(λz.b(c(x(cz))))(d(dz))))),

where a, b, c, d ∈ Υ. Note

`
Σstring

Υ
M : (o→ o)→ ((o→ o)→ o→ o)→ o→ o.

We have

tuple(M) = (aab, bc, c, dd),
pure(M) = λxyz.z1(y(λz.z2(x(z3z)))(z4z)).

Lemma 1. Let M be an η-long β-normal λ-term in Λlin(Σstring
Υ) such that

y1 :α1, . . . , yk :αk `Σstring
Υ

M :β, and let tuple(M) = (w1, . . . , wm). Then the
following hold:

(i) y1 : α1, . . . , yk : αk, z1 : o→ o, . . . , zm : o→ o ` pure(M) : β.

(ii) pure(M)[zi := /wi/]1≤i≤m �β M.

(iii) m ≤ 1
2

(
|β|+

k∑
i=1

|αi|

)
.

Proof. Easy induction on M . For (iii), show that 2m ≤ |β| +
∑k

i=1|αi| − 2
if the head of M is a variable.13

Let G = (N ,Σstring
Υ , σ,P, S) be a second-order string-generating ACG.

We assume that all λ-terms that appear on the left-hand side of rules in P
are in η-long β-normal form. For α ∈ T ({o}), let Pα be the set of pure linear
λ-terms M in η-long β-normal form such that z1 :o→o, . . . , zr :o→o `M :α
for some r ≤ 1

2 |α|. Note that Pα is finite for all α. Define an MCFG
G′ = (N ′,Υ, α,P ′, S′) as follows:

13Readers of Kanazawa 2006 may realize that this rather technical lemma is in fact
an application of interpolation. Let cM [x1, . . . , xn] be a pure linear λ-term such thatcM [a1, . . . , an] = M , where a1, . . . , an ∈ Υ. Then tuple(M) and pure(M) may be com-
puted simply by applying the method of computing interpolants in Kanazawa 2006 to
y1 :α1, . . . , yk :αk, x1 :o→o, . . . , xn :o→o ` cM [x1, . . . , xn] :α with respect to the partition
(x1 : o→ o, . . . , xn : o→ o; y1 : α1, . . . , yk : αk) and replacing the variables xi by ai in the
interpolant thus found.

18

• N ′ = {S′} ∪ { (B,P) | B ∈ N , P ∈ Pσ(B) }, where α((B,P)) =
|FV(P)|.

• For each rule B(M) :− B1(X1), . . . , B(Xn) and Pi ∈ Pσ(Bi) with
|FV(Pi)| = ri (1 ≤ i ≤ n), P ′ contains the rule

(B, pure(Q))(tuple(Q)) :−
(B1, P1)(x1,1, . . . , x1,r1), . . . , (Bn, Pn)(xn,1, . . . , xn,rn),

where

Q = |M [X1 :=P1[zj :=/x1,j/]1≤j≤r1 , . . . , Xn :=Pn[zj :=/xn,j/]1≤j≤rn]|β

and tuple(Q), pure(Q) are defined with respect to the alphabet Υ ∪
{xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ri }.

• In addition, P contains the following rules:14

S′(ε) :− (S, λz.z). S′(x) :− (S, λz.z1z)(x).

Lemma 2. Let Υ and Ψ be alphabets, and h : Υ → Ψ+ be a non-erasing
homomorphism. For every η-long β-normal λ-term M in Λlin(Σstring

Υ), we
have

pure(|M [a := /h(a)/]a∈Υ|β) = pure(M),
tuple(|M [a := /h(a)/]a∈Υ|β) = tuple(M)[a := h(a)]a∈Υ.

Proof. Easy induction on M .

Lemma 3. Let G = (N ,Σstring
Υ , σ,P, S) be a string-generating second-order

ACG generating L ⊆ Υ∗ and G′ = (N ′,Υ, α,P ′, S′) be the MCFG obtained
by the above construction. Then L(G′) = L.

Proof. To show that L ⊆ L(G′), we prove by induction on derivations that
if `G B(M), then `G′ (B, pure(|M |β))(tuple(|M |β)). Suppose that the last
step of the derivation of `G B(M) is by the rule

B(M ′) :− B1(X1), . . . , Bn(Xn).
14This construction produces an MCFG where some nonterminals have arity 0. Such

nonterminals can be removed from the grammar by a standard technique to obtain an
MCFG that is in accordance with our definition.

19

Then there must be M1, . . . ,Mn such that M = M ′[X1 :=M1, . . . , Xn :=Mn]
and `G Bi(Mi) (i = 1, . . . , n). Let Pi = pure(|Mi|β), (wi,1, . . . , wi,ri) =
tuple(|Mi|β), and Q = |M ′[X1 := P1[zj := /x1,j/]j∈[1,r1], . . . , Xn := Pn[zj :=
/xn,j/]j∈[1,rn]]|β. Then G′ contains the rule

(B, pure(Q))(tuple(Q)) :−
(B1, P1)(x1,1, . . . , x1,r1), . . . , (Bn, Pn)(xn,1, . . . , xn,rn).

By induction hypothesis, `G′ (Bi, Pi)(wi,1, . . . , wi,ri) for i = 1, . . . , n, and
this implies

`G′ (B, pure(Q))(tuple(Q)[xi,j := wi,j]i∈[1,n],j∈[1,ri]).

Now

Q[xi,j := /wi,j/]i∈[1,n],j∈[1,ri]

=β M
′[X1 := P1[zj := /w1,j/]j∈[1,r1], . . . , Xn := Pn[zj := /wn,j/]j∈[1,rn]]

�β M
′[X1 := |M1|β, . . . , Xn := |Mn|β] by Lemma 1,

=β M.

By Lemma 2, then, pure(|M |β) = pure(Q) and tuple(|M |β) =
tuple(Q)[xi,j := wi,j]i∈[1,n],j∈[1,ri]. Hence we have `G′
(B, pure(|M |β))(tuple(|M |β)), as desired.

To show that L(G′) ⊆ L, we prove by induction on derivations that
if `G′ (B,P)(w1, . . . , wm), then there is an M ∈ Λlin(Σstring

Υ) such that
`G B(M) and M =β P [zi := /wi/]i∈[1,m]. Suppose that the last step of the
derivation of `G′ (B,P)(w1, . . . , wm) is by the rule

(B,P)(v1, . . . , vm) :− (B1, P1)(x1,1, . . . , x1,r1), . . . , (Bn, Pn)(xn,1, . . . , xn,rn)

and this rule came from the rule

B(M ′) :− B1(X1), . . . , Bn(Xn)

of G. Then we must have `G′ (Bi, Pi)(wi,1, . . . , wi,ri) (i = 1, . . . , n)
and (v1, . . . , vm)[xi,j := wi,j]i∈[1,n],j∈[1,ri] = (w1, . . . , wm) for some
w1,1, . . . , w1,r1 , . . . , wn,1, . . . , wnn, rn. Let

Q = |M ′[X1 := P1[zj := /x1,j/]j∈[1,r1], . . . , Xn := Pn[zj := /xn,j/]j∈[1,rn]]|β.

Then P = pure(Q) and (v1, . . . , vm) = tuple(Q). By induction hypothesis,
there areM1, . . . ,Mn ∈ Λlin(Σstring

Υ) such that `G Bi(Mi) andMi =β Pi[zj :=
/wi,j/]j∈[1,ri]. Then `G B(M ′[X1 :=M1, . . . , Xn :=Mn]) and

M ′[X1 :=M1, . . . , Xn :=Mn]

20

=β M
′[X1 := P1[zj := /w1,j/]j∈[1,r1], . . . , Xn := Pn[zj := /wn,j/]j∈[1,rn]]

=β Q[xi,j := /wi,j/]i∈[1,n],j∈[1,ri]

=β (P [zi := /vi/]1≤i≤m)[xi,j := /wi,j/]i∈[1,n],j∈[1,ri] by Lemma 1,

= P [zi := /wi/]i∈[1,m],

which completes the proof.

References

Barendregt, Hendrik Pieter. 1984. The Lambda Calculus. Amsterdam: North-
Holland. Revised Edition.

de Groote, Philippe and Sylvain Pogodalla. 2004. On the expressive power of
abstract categorial grammars: Representing context-free formalisms. Journal of
Logic, Language and Information 13(4):421–438.

Engelfriet, Joost. 1997. Context-free graph grammars. In G. Rozenberg and A. Sa-
lomaa, eds., Handbook of Formal Languages, Volume 3: Beyond Words, pages
125–213. Berlin: Springer.

Engelfriet, Joost and Sebastian Maneth. 2000. Tree languages generated by context-
free graph grammars. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
eds., Theory and Application of Graph Transformations, vol. 1764 of Lecture
Notes in Computer Science, pages 15–29. Berlin: Springer.

Engelfriet, J. and E. M. Schmidt. 1977. IO and OI, part I. Journal of Computer
and System Sciences 15:328–353.

Groenink, Annius V. 1997. Mild context-sensitivity and tuple-based generalizations
of context-free grammar. Linguistics and Philosophy 20(6):607–636.

Hindley, J. Roger. 1997. Basic Simple Type Theory . Cambridge: Cambridge Uni-
versity Press.

Hindley, J. Roger and Jonathan P. Seldin. 2008. Lambda-Calculus and Combinators:
An Introduction. Cambridge: Cambridge University Press.

Kanazawa, Makoto. 2006. Computing interpolants in implicational logics. Annals
of Pure and Applied Logic 142(1–3):125–201.

Kanazawa, Makoto. 200x. Second-order abstract categorial grammars as hyperedge
replacement grammars. To appear in Journal of Logic, Language and Informa-
tion.

Kanazawa, Makoto and Sylvain Salvati. 2007. Generating control languages with
abstract categorial grammars. In Preliminary proceedings of FG 2007: The 12th
Conference on Formal Grammar .

21

Kepser, Stephan and Uwe Mönnich. 2006. Closure properties of linear context-free
tree languages with an application to optimality theory. Theoretical Computer
Science 354:82–97.

Mints, Grigori. 2000. A Short Introduction to Intuitionistic Logic. New York:
Kluwer Academic/Plenum Publishers.

Raoult, Jean-Claude. 1997. Rational tree relations. Bulletin of the Belgian Mathe-
matical Society 4:149–176.

Rounds, William C. 1970. Mappings and grammars on trees. Mathematical Systems
Theory 4:257–287.

Salvati, Sylvain. 2007. Encoding second order string ACG with deterministic tree
walking transducers. In S. Wintner, ed., Proceedings of FG 2006: The 11th
conference on Formal Grammar , FG Online Proceedings, pages 143–156. CSLI
Publications.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991. On
multiple context-free grammars. Theoretical Computer Science 88(2):191–229.

Smullyan, Raymond M. 1961. Theory of Formal Systems. Princeton, N.J.: Prince-
ton University Press.

Sørensen, Morten Heine and Pawe l Urzyczyn. 2006. Lectures on the Curry-Howard
Isomorphism. Amsterdam: Elsevier.

Weir, David J. 1988. Characterizing Mildly Context-Sensitive Grammar For-
malisms. Ph.D. thesis, University of Pennsylvania.

22

