
Toward a Logic of 
Cumulative Quantification

Makoto Kanazawa and Junri Shimada

1



Scha (1984), “Distributive, Collective 
and Cumulative Quantification”
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The notion of cumulative quantification was first introduced by Remko Scha.
Distinct from subject-wide-scope and object-wide-scope readings.



Cumulation in Generalized 
Quantifier Theory

Cum(Q1, Q2) R ⇔ Q1x ∃y R(x, y) ∧ Q2y ∃x R(x, y)

600 Dutch firms use 5000 American computers.
Three boys kissed five girls.

⟦n N⟧ = { Y | |⟦N⟧ ∩ Y| = n }
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Cum takes two type <1> quantifiers and returns a type <2> quantifier.



Meanings of Numerals

John kissed five girls

|⟦girl⟧ ∩ { x | ⟦kissed⟧(John, x) }| = 5

|⟦girl⟧ ∩ { x | ⟦kissed⟧(John, x) }| ≥ 5
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“John kissed five girls” is consistent with “John kissed more than five girls”.



Scalar Implicatures
⦙

John kissed seven girls

John kissed six girls

John kissed five girls

John kissed four girls
⦙

“John kissed five girls” implicates “¬(John kissed six girls)”
5

Stronger alternatives to the utterance are negated.



Meanings of Numerals
John kissed five girls

|⟦girl⟧ ∩ { x | ⟦kissed⟧(John, x) }| = 5

|⟦girl⟧ ∩ { x | ⟦kissed⟧(John, x) }| ≥ 5

∃X ⊆ ⟦girl⟧(|X| = 5 ∧ **⟦kissed⟧(John, X)) 

⟦n N⟧ = { Y | ∃X⊆⟦N⟧(|X| = n ∧ X ∈ Y)}

⟦n N⟧ = { Y | |⟦N⟧ ∩ Y| ≥ n }
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Meanings of Cumulative 
Sentences

⟦m N1  V  n N2⟧ ⇔ 

∃X⊆⟦N1⟧(|X| = m ∧ ∃Y⊆⟦N2⟧(|Y| = n ∧ **⟦V⟧(X, Y))) 

**R(X, Y) ⇔ ∀x∈X ∃y∈Y R(x, y) ∧ ∀y∈Y ∃x∈X R(x, y)

Krifka 1999, Landman 2000

⇔ ∃Rʹ⊆R(X = dom(Rʹ) ∧ Y = ran(Rʹ))
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**R is the “cumulative closure” of R.



Meanings and 
Implicatures(?)

⟦m N1  V  n N2⟧ 
⇔ ∃Rʹ⊆R(|dom(Rʹ)| = m ∧ |ran(Rʹ)| = n) 

where R = ⟦V⟧ ∩ (⟦N1⟧ × ⟦N2⟧) 

Krifka-Landman semantics amounts to:

which is weaker than Scha’s truth conditions:
|dom(R)| = m ∧ |ran(R)| = n 

8



Pragmatic Scale for 
Cumulative Sentences

three   boys kissed   five   girls

⦙
six
five
four

⦙
eight
seven

six

two
one

four
three

⦙

9



⟦m N1  V  n N2⟧ ⇔ R(m, n)
where R = ⟦V⟧ ∩ (⟦N1⟧ × ⟦N2⟧) 

What is said:

Krifka-Landman implicature:

∀mʹ∀nʹ(R(mʹ, nʹ) → (mʹ ≤ m ∧ nʹ ≤ n))

Abbreviation: Write R(m, n) for

∃Rʹ⊆R(|dom(Rʹ)| = m ∧ |ran(Rʹ)| = n) 

∀mʹ∀nʹ(R(mʹ, nʹ) → 
(mʹ < m ∨ nʹ < n ∨ (mʹ = m ∧ nʹ = n)))

or, equivalently,
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The idea is that if mʹ ≥ m ∧ nʹ ≥ n ∧ ¬(mʹ = m ∧ nʹ = n), then R(mʹ,nʹ) is “higher up” in the 
scale than R(m,n), so the assertion of R(m,n) implicates ¬R(mʹ,nʹ).  By taking contrapositive, 
we get R(mʹ,nʹ) → mʹ < m ∨ nʹ < n ∨ (mʹ = m ∧ nʹ = n), which is the first formulation of the 
Krifka-Landman implicature.
To see that the first formulation implies the second, suppose R(m,n) ∧ R(mʹ,nʹ).  Then **R(X,Y) 
and **R(Xʹ,Yʹ) with |X| = m, |Y| = n, |Xʹ| =  mʹ, |Yʹ| = nʹ.  From this we get **R(X ∪ Xʹ,Y ∪ Yʹ), so 
R(mʹʹ,nʹʹ) with mʹʹ ≥ max(m,mʹ) and nʹʹ ≥ max(n,nʹ).  If mʹ > m, then mʹʹ > m and nʹʹ ≥ n, so 
¬R(mʹʹ,nʹʹ) should be an implicature, contradicting R(mʹʹ,nʹʹ).  So we must have mʹ ≤ m.  
Similarly, we can derive nʹ ≤ n.
This shows that in the presence of R(m,n), the two formulations of the implicature are 
equivalent.



b1

b2

b3

b4

g2

g1

g3

g4

g5

Three boys kissed five girls

To be maximally informative, should say
“Four boys kissed five girls”.
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b1

b2

b3

b4

g2

g1

g3

g4

g5

Four boys kissed five girls

four boys kissed five girls ⊭ three boys kissed five girls
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When does R(m, n) logically imply R(k, l)? 

R(m, n) ⇔ ∃Rʹ⊆R(|dom(Rʹ)| = m ∧ |ran(Rʹ)| = n) 

m N1  V  n N2 ⊨ k N1  V  l N2

R(m, n) ⊨ R(k, l)
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Deterministic Reducts

• If R is a binary relation, its deterministic 
reduct is:

• d(R) = { (x, y)∈R | ∀y′((x, y′)∈R→y′=y) }.

• (x, y)∈d(R) means that y is the only element 
related to x by R.

• d(R) is a partial function.
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Deterministic Reducts
b1

b2

b3

b4

b5

g2

g1

g3

g4
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Deterministic Reducts
b1

b2

b3

b4

b5

g2

g1

g3

g4
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Deterministic Reducts

• (d(R))−1 is the inverse image of d(R):

• (d(R))−1(y) = { x | (x, y)∈d(R) }.
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d(R)
b1

b2

b3

b4

b5

g2

g1

g3

g4
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(d(R))−1

b1

b2

b3

b4

b5

g2

g1

g3

g4 (d(R))−1(g4) = {b4, b5}

(d(R))−1(g3) = ∅

(d(R))−1(g2) = ∅

(d(R))−1(g1) = {b1}
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Entailments

Lemma 11

If m > n, then R(m, n) ⊨ R(m−1, n).
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R
b1

b2

b3

b4

b5

g2

g1

g3

g4

• Suppose
B = dom(R),
G = ran(R),
|B| = m,
|G| = n,
so R(m, n).
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R−1

b1

b2

b3

b4

b5

g2

g1

g3

g4
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d(R−1)
b1

b2

b3

b4

b5

g2

g1

g3

g4

• Since d(R−1) is a 
partial function 
from G to B and 
since |B| > |G|...
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(d(R−1))−1

b1

b2

b3

b4

b5

g2

g1

g3

g4

• ...there must be 
some b ∈ B s.t.
(d(R−1))−1(b) = ∅.

(Here, we have
 (d(R−1))−1(b3) = ∅
 for instance.)
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R
b1

b2

b3

b4

b5

g2

g1

g3

g4

• Think of the 
relation R′ 
obtained from R 
by removing that 
element b
(= b3 in this case). 
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R′
b1

b2

b3

b4

b5

g2

g1

g3

g4

• Since R′(m−1, n), 
R(m−1, n). QED.
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Entailments
Lemma 12

If m ≥ n > 1, then R(m, n) ⊨ R(m−⎣m/n⎦, n−1).

Here, ⎣m/n⎦ denotes the quotient of m 
divided by n (e.g., ⎣12/5⎦ = 2).
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R
b1

b2

b3

b4

b5

g2

g1

g3

• Suppose
B = dom(R),
G = ran(R),
|B| = m,
|G| = n,
so R(m, n).

b6

b7
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d(R)
b1

b2

b3

b4

b5

g2

g1

g3b6

b7
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(d(R))−1
b1

b2

b3

b4

b5

g2

g1

g3

• There must be
some g ∈ G s.t.
|(d(R))−1(g)| ≤ ⎣m/n⎦.

(In this case, 
 |(d(R))−1(g2)| = |{b3}|
 = 1 ≤ ⎣7/3⎦ = 2.)b6

b7
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R
b1

b2

b3

b4

b5

g2

g1

g3

• Think of the 
relation R′ 
obtained from R 
by removing that 
element g
(= g2 in this case).

b6

b7
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R′
b1

b2

b3

b4

b5

g2

g1

g3

• Think of the 
relation R′ 
obtained from R 
by removing that 
element g
(= g2 in this case).

b6

b7
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R′
b1

b2

b3

b4

b5

g2

g1

g3

• In R′, the elements 
of (d(R))−1(g) have 
also been removed.

b6

b7
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R′
b1

b2

b3

b4

b5

g2

g1

g3

• Since |(d(R))−1(g)| 
≤ ⎣m/n⎦, we have
R′(m′, n−1) and 
hence R(m′, n−1)
for some
m′ ≥ m−⎣m/n⎦.

b6

b7
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• Since m ≥ n,
      m′ ≥ m − ⎣m/n⎦
      m′ ≥ n⋅⎣m/n⎦ − ⎣m/n⎦
      m′ ≥ (n − 1)⋅⎣m/n⎦
      m′ ≥ n − 1.

• So Lemma 11 implies
      R(m′, n−1) ⊨ R(m−⎣m/n⎦, n−1).

• Hence R(m−⎣m/n⎦, n−1). QED.
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Inference Rules

• We write R(m, n) ⊢ R(k, l) iff
R(k, l) can be deduced from R(m, n) by the 
following rules of inference:

(R2-1)                        (R2-2)
  R(m, n)   m > 1             R(m, n)   n > 1
 R(m−1, n−⎣n/m⎦)         R(m−⎣m/n⎦, n−1)
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Inference Rules
Theorem (soundness and completeness).

R(m, n) ⊢ R(k, l) iff R(m, n) ⊨ R(k, l).

• When m ≥ n, the entailment relation is 
characterized by

k ≤ m ⋀ l ≤ n ⋀
l ≤ k ≤ l⋅⎣m/n⎦ + min(m mod n, l).
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Inference Rules
(8, 1)

(7, 1)

(6, 1)

(5, 1)

(4, 1)

(3, 1)

(2, 1)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

(1, 7)

(1, 8) (8, 2)

(7, 2)

(6, 2)

(5, 2)

(4, 2)

(3, 2)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(2, 6)

(2, 7)

(2, 8) (8, 3)

(7, 3)

(6, 3)

(5, 3)

(4, 3)

(3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(3, 8) (8, 4)

(7, 4)

(6, 4)

(5, 4)

(4, 4)

(4, 5)

(4, 6)

(4, 7)

(4, 8) (8, 5)

(7, 5)

(6, 5)

(5, 5)

(5, 6)

(5, 7)

(5, 8) (8, 6)

(7, 6)

(6, 6)

(6, 7)

(6, 8) (8, 7)

(7, 7)

(7, 8) (8, 8)

Figure 2: A Hasse diagram of entailment between binary cumulative sen-
tences (from Shimada, to appear).

Proof. This set is satisfied by any binary relation R such that R(m,n, p)
and ⇡

1,2(R) is a function.

Lemma 17. Suppose m  n+ p� 2. Then

{R(m,n, p)} [ {¬R(m0
, n, p) | m0

< m }

is satisfiable.

Proof. Let A = {a
1

, . . . , am}, B = {b
1

, . . . , bn}, C = {c
1

, . . . , cp}, and

R = { (a
min(j,m)

, bj , cp) | 1  j  n� 1 } [
{ (a

min(n�1+k,m)

, bn, ck) | 1  k  p� 1 }.

Then ⇡

1

(R) = A,⇡

2

(R) = B,⇡

3

(R) = C, so R(m,n, p). Note that for
all x 2 A, either (d(⇡

2,1(R)))�1(x) 6= ? or (d(⇡
3,1(R)))�1(x) 6= ?. Sup-

pose m

0
< m and R(m0

, n, p), so that ⇡

1

(R0) ⇢ A,⇡

2

(R0) = B,⇡

3

(R0) =
C for some R

0 ✓ R. Let a 2 A � ⇡

1

(R0). Then �

$1 6=a(R) ◆ R

0,
so ⇡

2

(�
$1 6=a(R)) = B and ⇡

3

(�
$1 6=a(R)) = C. Lemma 7 then implies

(d(⇡
2,1(R)))�1(a) = (d(⇡

3,1(R)))�1(a) = ?, a contradiction.

Proposition 18. The following inference rule is valid:

R(m,n, p) m > n m > p m > n+ p� 2

R(m� 1, n, p)
(R3–1)

Proof. Assume m > n,m > p,m > n+p�2, and let R be a ternary relation
such that A = ⇡

1

(R), B = ⇡

2

(R), C = ⇡

3

(R) and |A| = m, |B| = n, |C| = p.

10

A Hasse diagram of entailment
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Ternary Cumulative 
Sentences

(R3-1)
 R(m, n, p)   m > n   m > n+p−2
              R(m−1, n, p)

(R3-2) 
 R(m, n, p)   2(n−p+1) ≥ m > p
   2(m−p+1) ≥ n > p   p ≥ 2
            R(m−1, n−1, p)
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Ternary Cumulative 
Sentences

(R3-3) 
 R(m, n, p)   m−⎣(m−1)/(n−p+1)⎦ ≥ n+p−3
   n > p ≥ 2
         R(m−⎣(m−1)/(n−p+1)⎦, n−1, p)
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Concluding Remarks

• To be able to evaluate claims about scalar 
implicatures about cumulative sentences,
it is important to know when one such 
sentence entails another such sentence.
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Concluding Remarks

• For the entailment relation between binary 
cumulative sentences, we obtained

- a complete axiomatization with two 
inference rules.

- a characterization of this relation.
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Concluding Remarks

• For the entailment relation between 
ternary cumulative sentences,

- we found some valid inference rules.

- we hope to formulate a complete 
axiomatization in the future.
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Concluding Remarks

• Ultimately, we hope to find general results 
for k-ary cumulative sentences.
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THANK YOU!
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