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sentences with indefinite noun phrases may have readings which cannot be
represented by means of a formula which has one quantifier for every
noun phrase - for instance, when (4a) is read as (4b).

(4a) 600 Dutch firms use 5000 American computers.
(4b) The total number of Dutch firms that use an American computer

is 600 and the total number of American computers used by a
Dutch firm is S000.

This phenomenon has been called cumulative quantification (cf. Scha,
1978). In order to generate cumulative readings, our grammar can trans-
late a sequence of noun phrases into one single quantifier, ranging over the

cartesian product of the extensions of the nouns.

The notion of cumulative quantification was first introduced by Remko Scha.
Distinct from subject-wide-scope and object-wide-scope readings.



Cumulation in Generalized
Quantifier Theory

600 Dutch firms use 5000 American computers.
Three boys kissed five girls.

Cum(Q1, Q2) R < Qix Jy R(x,¥) A Qay Ix R(x, y)

[nN]={Y||[IN]InY|=n}

Cum takes two type <1> quantifiers and returns a type <2> quantifier.



Meanings of Numerals

John kissed five girls

Lgirl] n { x | [kissed](John,x) }| = 5

“John kissed five girls” is consistent with “John kissed more than five girls”.



Scalar Implicatures

John kissed seven girls

v A

John kissed six girls

v A

John kissed five girls

v A

John kissed four girls

“John kissed five girls” implicates “—1(John kissed six girls)”

Stronger alternatives to the utterance are negated.



Meanings of Numerals

John kissed five girls

I[girl] n { x | [kissed](John,x) }| = 5
[InN]={Y]||IN]nY| =n}
3X ¢ [girl](IX| =5 A **[kissed](John, X))

[n NT={Y|3X<[NI(X|=n A X e Y)}



Meanings of Cumulative
Sentences

ImN; V nNyJ]
IXCINGI(X] = m A IYSINI(Y] = n A FIVIX, Y)))

#R(X,Y) & VxeX yeY R(x,y) A VYyeY AxeX R(x, y)
& JR'CR(X = dom(R’) A Y = ran(R'))

Krifka 1999, Landman 2000

**R is the “cumulative closure” of R.



Meanings and
Implicatures(?)

Krifka-Landman semantics amounts to:

Im N V n N,]
& JR'CR(Jdom(R)| = m A [ran(R")| = n)

where R =[V] n (INi] x [N2])

which is weaker than Scha’s truth conditions:
ldom(R)| = m A |ran(R)| = n



Pragmatic Scale for
Cumulative Sentences

three boys kissed five girls



Abbreviation: Write R(m, n) for
JR'CR(Jdom(R")| = m A [ran(R")| = n)

What is said:

Im N1 V n Nz2] & R(m, n)
where R =[V] n (IN:] x [N2])

Krifka-Landman implicature:
Vm'Vn'(R(m',n") —
(m"<mvn <nv(m' =mAan"=n)))
or, equivalently,

Vm'Vn'(R(m',n") = (m" < m A n" < n))

10
The ideaisthatif m = maAan" = n A ~-(m" = m A n’ = n), then R(m’,n’) is “higher up” in the
scale than R(m,n), so the assertion of R(m,n) implicates =R(m’,n’). By taking contrapositive,
we get Rm’,n) > m"<mvn <nv(im =man’”=n), which is the first formulation of the
Krifka-Landman implicature.
To see that the first formulation implies the second, suppose R(m,n) A R(m’ n’). Then **R(X,Y)
and **R(X",Y’) W|th IX] = m, |[Y| = n, |X| = m’, |Y'| = n’. From this we get *R(X u X’Y Y’), so
R(m”,n”) with m” = max(m,m’) and n” > max(n n). If m" > m, then m” > m and n” = n, so
—R(m”,n”) should be an |mpI|cature contradicting R(m”,n"). So we must have m’ < m.
Similarly, we can derive n” < n.

This shows that in the presence of R(m,n), the two formulations of the implicature are
equivalent.



Three boys kissed five girls

D . g

To be maximally informative, should say
“Four boys kissed five girls”.



Four boys kissed five girls

D . g

four boys kissed five girls K= three boys kissed five girls



R(m, n) & JR'CR(Jdom(R")| = m A [ran(R")| = n)

MmNV nN2EKN; V [N

!

R(m, n) = R(k, |)

When does R(m, n) logically imply R(k, I)?



Deterministic Reducts

® |f Ris a binary relation, its deterministic
reduct is:

d(R) = { (x,y)eR | vy'((x,y")eR—y'=y) }.

® (x,y)ed(R) means that y is the only element
related to x by R.

® d(R) is a partial function.



Deterministic Reducts

D - 8l
b2><g2
b3 > g3




Deterministic Reducts

o] . g
b2 o)
b3 g3
b4 g4




Deterministic Reducts

® (d(R))!is the inverse image of d(R):
(d(R)™'(y) = { x| (x,y)ed(R) }.






(dR)(g1) = {b1}
(dR)(g2) = @
(dR)(g3) = @

(d(R))™"(g4) = {b4, bs}



Entailments

Lemma | |

If m > n, then R(m, n) = R(m—1, n).




b > 8l

® Suppose
B = dom(R),
b * 82 G = ran(R),

D3 \* g3 }2—\ Z':
\ so R(m, n).
/
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d(R™")

5! ® Since d(R™)is a
partial function

gZ from G to B and
b3 \ since |B| > |G]...



® ..there must be
some b € B s.t.

(d(R™))™'(b) = @.

(Here, we have
(d(R7)™'(b3) = @

for instance.)



o] {
b> - 82
b3 \ g3
b4 \ g4

® Think of the

relation R’
obtained from R
by removing that
element b

(= bz in this case).



® Since R'(m—1,n),
R(m—1, n). QED.



Entailments

Lemma |2

lfm = n>1,then Rm,n) & R(m-\_m/nJ, n—1).

Here, | m/n] denotes the quotient of m
divided by n (e.g., 12/5] = 2).



b, \ g|  ® Suppose
bs \ B = dom(R),
G = ran(R),
b4 \ gz ‘B‘ = m,
bs \ ! R=(n,
so R(m, n).
D¢ \t g3
b7 —






® There must be
some g € G s.t.

(d(R))™'(g)| =< Lm/nl.

(In this case,

(d(R))"'(g2)] = [{b3}
= | <|7/3]=2)



® Think of the

relation R’
obtained from R
by removing that
element g

(= g2in this case).



gi

® Think of the

relation R’
obtained from R
by removing that
element g

(= g2in this case).



gi

® |[n R, the elements
of (d(R))™!(g) have
also been removed.



g

® Since [(d(R))'(g)]
< \_m/nJ, we have
R'(m’, n—1) and
hence R(m’, n—1)
for some
m’ > m-Lm/n.



® Since m = n,
m’ = m — | min.
> n-Lmin] - Lmin]
> (n— 1)-Lmin]

>n-—|.

® So Lemma || implies
R(m’, n=1) & R(m=LmiInJ, n—1).

® Hence R(m—\_m/nJ, n—1). QED.



Inference Rules

® We write R(m, n) = R(k, ) iff
R(k,l) can be deduced from R(m, n) by the
following rules of inference:

(R2-1) (R2-2)
R(m,n) m>| R(m,n) n>1|
R(m—1, n-Ln/m.) R(m-Lm/nJ], n—1)




Inference Rules

Theorem (soundness and completeness).

R(m, n) = R(k, I) iff R(m, n)

= Rk, ).

® VWhen m = n, the entailment relation is

characterized by

k<mAI<nA

| <k <Ilminl+ min(m mod n, ).



Inference Rules
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A Hasse diagram of entailment



Ternary Cumulative

Sentences
(R3-1)
R(m,n,p) m>n m > n+p—2
R(m—1, n, p)
(R3-2)

R(m,n,p) 2(n—p+l) = m>p
2(m—p+l)=n>p p =12
R(m—1,n—1, p)




Ternary Cumulative
Sentences

(R3-3)
R(m,n,p) m—L(m=1)/(n—p+1)] = n+p-3
n>p=2

R(m—\_(m— 1)/ (n—p+ I)J, n—1, p)



Concluding Remarks

® Jo be able to evaluate claims about scalar
implicatures about cumulative sentences,
it is important to know when one such
sentence entails another such sentence.

41



Concluding Remarks

® For the entailment relation between binary
cumulative sentences, we obtained

- a complete axiomatization with two
inference rules.

- a characterization of this relation.

42



Concluding Remarks

® For the entailment relation between
ternary cumulative sentences,

- we found some valid inference rules.

- we hope to formulate a complete
axiomatization in the future.

43



Concluding Remarks

e Ultimately, we hope to find general results
for k-ary cumulative sentences.



THANK YOU!



