Syntactic Features for Regular
Constraints and an Approximation
of Directional Slashes in Abstract

Categorial Grammars

Makoto Kanazawa
National Institute of Informatics, Tokyo, Japan
SOKENDAI (Graduate University for Advanced Studies)

2 This talk will have a di'erence
Plan emphasis than my paper in the
proceedings.

¥ What is ACG?

¥ How to obtain syntactic features expressing regular
constraints

¥ Gapping

AIEDIUS d

Program
Tuesday September 18th Wednesday September 19th
[10:00 [Welcome and opening lo9:40|Makoto [[Almost Linear Abstract Categorial Grammars and
Kanazawa |Attribute Grammars (slides)
10:20 [Reinhard lEngi . ‘slides)
29 |Muskens glish as a formal system 10:20|Michael —[Lexical and derivational semantics for Lambek-Grishin
7700 Broak Moorigat_|caleulus
. [Giad Bon- 11.00 Break
[11:30 [Avi/Yoad Winter [A-sound intensienalization pracedure 11:30 (Carl [The Logics of Overt and Covert Movement in
Philippe de Pollard |aRelational Type-Theoretic Grammar (lides)
12:10 [Yet another dynamic logic (slides) Grammar and Incremental processing of Dutch word
112:10 |Glyn Morrill d lid
12:50 [Lunch lorder (slides)
1430 |Sebastien c approaches to discourse 12:50 [Lunch
[Hinderer lructures (slides) 14450 lon analyses of Lambek grammars (slides)
[15:10|Christina Unger |E82lure-driven movement as delimited control alvati
8 98T | slides) 15:25|RY0 [On two extensions of Abstract Categorial Grammars
15:50 Break [Yoshinaka |(slides)
16:05] [Closing
116:20 Chris Barker ) about contexts in Lambek Grammars




OWhy is it called abstractcategorial grammar?0

BAnna Chernilovskaya

Abstract Categorial Grammar (de Groote 2001, 5 ThIS Slide iS from a talk | gaVe in 2005"
Muskens 2001 _ The title of my talk was OAbstract
¥ not a new kind of categorial grammar
¥ represents basic building blocks of the grammar as well as Categorial Gl’am mar and Linear
grammatical operations on them with typed linear ! -terms A
¥ a general formalism  meant to be restricted in various ways to LOg|CO.
produce more constrained grammars MitSUhirO Okada introduced me
¥ generalizes
D CFG (contextfree grammar) saying | was going to talk about the
g -I\I;Iéjie(m(anewjﬁé?;nt]c?ngzr-:rrzzr)grammar) (or LCFRS lateSt eXCItIng developments in

(linear context-free rewriting system)) H
D but not Lambek categorial grammar Categorlal grammar'

¥ is like categorial grammar in that semantic composition is a
homomorphic image of syntactic derivation

¥ treats form and meaning symmetrically

6 The connection of ACGs with
context-free/tree-adjoining grammars
and mainstream formal language
theory is more important than the
aspects of ACGs inherited from the
categorial grammar tradition."
OAbstract context-free grammarO or
Oabstract tree-adjoining grammarO
would have been at least as
appropriate.

ACG is not a categorial grammar.




S

/\
np vp
\
Leslie v3 s.int

wonders whether s
S
np vp
[

Robin  v1

np v3! sint! vp
Leslie] Leslie ® V2o " 2 ‘ 12 ae

v3 s! s.int
wonders‘ 1y92¢.wonder &ty 1 23t whether” z ‘ tatynthaz,

np! wp! s

CFG derivation

np

hates Terry

np vi! np! vp
ACG derivation Robin| Robin © Ve 2 O ety

v np
hates‘ 1y hate® © 'y Terry ‘ Terry ©

=

Building Blocks

S > str
np — str
vp = str

s_bar +— str
s.int ~ str

syntactic type

np—vp—s
1z 34725121 0 2, ‘ 12 $28' Y2071

form meaning
vl s str st vl —
V2 — str np — e v2
v3 — str pr=e—=t vl —
s_bar —t
s_int — q

e—e—t
t—e—t
q—e—t

np—vp—s
1z 25 21 02, | 12§28 224

An ACG need not be lexicalized.

One important respect in which ACG
is not a categorial grammar.



ACG is a generalization of TAG.

10

S 1 ACGs are a generalization of TAGs."
SR Elementary trees = trees (initial trees) /
,/ v sdnt! . .
w N unary functions on trees (auxiliary
wonders \ "
Lesie S trees).
N ACGs have elementary #terms
w’ e instead of elementary trees.
| pe N PN
who fvo mpl v
n‘p hates ! // ’ V/E)ar
Terry np/ 1 |
| thinks that s
Robin
TAG derivation
A 12 Sylvain Pogodalla has written many
Lo papers on the relation between TAGs
= and ACGs.
TAG derivation wh n,,!/\vp .
IV TN
: ""/ ha‘les “ ""‘/Vp\
Te‘rvy np’/ T S/ﬁ{‘
‘ thinks that s
ACG derivation 4 sint! mp! sl s N
(2538 & za(22 " (wonders ™ 22) | 12 {2824 " za(wonder" " 7,2, |

np!

wh! ss! sint 0

v (s )
1280280 230 2, (za(z " (hates” ") | 12 5280024 ",Z;(‘xE,Z;(hatce”e"xl)))J Leslie | Leslie’) L“X x| !X‘xj

wh

(mw 4 YR
LTerry [ Terry® Lwho [y >twho®=0=4(1x ny)J 127 25 X 2,2z, " (thinks " (that " x))) | 1z §25 X" Zz(thinkxzn)

np s
Robin | Robin® | ( 1x " x [ x 'x




13

Building Blocks

syntactic type

np! wh! sy! s.int
150 25 280! ST 2, (z3(z1 " (hates" ")) ‘ 1z ez V' 9zl tzy(1x @ zg(hate ® © 'xzy))

form meaning
s " str st
np !" str np — e
sint I" str s_int — q
wh!" str wh — (e > t) = ¢
sy !I"ostr ostr spa >t —t

14 Another important respect in which
ACG is not a categorial grammar."
The complexity of the substitution is
Sa — Str — str an important parameter according to
which ACGs form a hierarchy.

An atomic syntactic type can be mapped to a
complex OprosodicO type.

15 An arbitrarily complex #-term can be
derived from an atomic-typed
npl sal sa . .
[A< " hinks " (that” ) [ A:5:4 w.zz(cmnku.J subterm of a derivation.

np SA
Robin | Robin® | | A2z | At

A constituent with a gap may have an atomic
syntactic type.




np! vp
i
// v sdnt!
/ ~
n|
‘p wonders N
\
Leslie \
s.int
wh! s
-~
e PN
wh np!
7
who / v
/ [
n‘p hates !
Terry

16 This illustrates a TAG-analysis of wh-
movement originally due to Anthony
Kroch."
One could easily imagine a TAG-
inspired analysis of Right Node
Raising in an ACG."
Gapping may be handled by a simple
context-free grammar of rank $ 2."

Abstract Syntactic Types

CFG-style TAG-style OLambek-styleO
unsaturated
standard atomic functional functional
constituents
modibers atomic atomic functional
continuous
non-standard functional
constituents
dlscon_tmuous functloqal/ functional
constituents atomic
constituents . . .
with gaps atomic (GPSG) atomic functional

17 You can classify various styles of
analyses possible in ACGs in terms of
atomic/functional distinction.

The ACG formalism supports many styles of
linguistic analysis.

18 To take advantage of the full potential
of ACGs, dilerent styles of analyses
should be explored.



np! vp! s

25 7"

Second-Order vs. Higher-Order Abstract Syntax

2, | 12525 ‘202,

sint ! vp

np V3! )
LES|IE‘ Leslie ® 12325 2" 2, ‘ iz ‘zgxe.zjzsz

v3
wonders‘ ly 9xe.wonder @ ¢ 'yx

wh! (np! s)! s.int
12828 2 (2,) [ 12 O 928z (ix e 2x)

derivation !-term

wh

who | ly © twho ¢ V! d(1x eyx)

1Z50 25" .z, "

np! vp!
7, | 12528 Lz

s

St

np vi! np! vp
Terry ‘ Terry © 1z 258" 2" 2, ‘ 12§ ¢ 1Z8x8.2125%

vl

hates| ly ®x®.hate ® © 'yx b

19

e Obuilding language connections with
derivations " - computer
blockO !-terms complexity .
science
(almost) linear | LOGCFL  formal language
second-order trees ) theory,
1l (= BCIW) decidable program schemes
(almost) linear ?
higher-order |linear !-terms BVASS
1l (= BCIW) ?

Higher-order ACGs are problematic.

Linearity is overrated.

20

Second-order ACGs have almost no
resemblance with categorial
grammars."

Problems that KLM pointed out have
to do with higher-order ACGs."

Higher-order ACGs are problematic in
other ways.

Symmetry

sint! mpl st s

sz 25725 7 z3(2," (wonders' 2,)) | 1z 2528 .zs(wonder @ © 'z, zz))

np! whi sy ! sint }( np N s N
12525 25 V2" (za(a” (hates” ")) 12 8257 O 2 Czp(ix Cza(hate ® 'xz]))J _Leslief Leslie® ] { x*x [ix 'x ]

np wh np! sal sa
LTenyherry J who [ty @ twho @ V" 9(1x ny)J Lzz 25X 25z, " (thinks” (that" x))) [ 1z $25" 'x'.zo(think xz1)

np Sa
Robin | Robin © XS x| Ix fx

Leslie wonders who Rob
thinks that Terry hates

wonder & ¢ t(who (¢ V' 9(1 x® think © ¢ !

(hate ® © tx Terry ©)Robin ©)) Leslie ®

21



Parsing

sint! np! si! s
1237 25" 25! 57 25(2, " (wonders 21)) | 1z {252y ".zs(wonder @ ©' '212,
iz 2 17524

np! whi si! sint N w ) s
232 2 2" (@l (hates” ) [ 252 V' 2 Lz za(hate® © '><Z1))J {(testef Lestie® | (T x[ix x|

( np \ wh ! osa! s
Ueny\'revry e) who [ty @ twho ® V' d(1x ny)) k!z 25X 25z " (thinks” (that" x))) | 1z 525 'x'.zo(think x2z;)

np s
Robin| Robin © | { tx % x [ 1x 'x

wonder @ ¢ *(who ' V" 9( x®.think * ¢ !
(hate ® ® 'x Terry °)Robin ®)) Leslie ®

Leslie wonders who Rob
thinks that Terry hates

22

Two of the most important problems
concerning grammars are parsing and
surface realization (generation).

Surface Realization

sint! np! sl s
sz 725" 257 S z3(z, " (wonders' ) | 1z §2§2L t.zs(wonder @ ¢ 'z]zz)J

np! whi syt sint ) S
1250 23 257 SV 2, (z3(2, " (hates” ")) \wzszf‘ O Azt tz(1x e.z5(hate © © 'xzj))J Uesne\ Lesnee) xS x| !x‘x)

( np wh nplosal sa
Ueny\'reny e) who [ty @ twho ® V' “(‘x*yx)) k!z 257X 2520 " (thinks” (that* x)) | 1z $25 'x'.zo(think x2z1)

np s
Robin| Robin © | { 1x " x [ 1x 'x

wonder @ ¢ t(who (¢ V' 9(1 x® think " © ¢
(hate ® © tx Terry ©)Robin ©)) Leslie ®

Leslie wonders who Rob
thinks that Terry hates

23

Parsing

sint! mpl st s

sz 25725 7 z3(2," (wonders' 2,)) | 1z 2528 .zs(wonder @ © 'z, zz))

npl whi syl osdnt }( np N Sa N
12525 25 V2" (za(a” (hates” ")) 12 8257 O 2 Czp(ix Cza(hate ® 'xz]))J _Leslief Leslie® ] { x*x [ix 'x ]

np wh \ np! sa! s
LTenyherry J who [ty @ twho © V" “(‘xeyx)J Lzz 25X 25z, " (thinks” (that" x))) [ 1z $25" 'x'.zo(think xz1)

np Sa
Robin | Robin © XS x| Ix fx

Leslie wonders who Rob
thinks that Terry hates

wonder & ¢ t(who (¢ V' 9(1 x® think © ¢ !

(hate ® © tx Terry ©)Robin ©)) Leslie ®

24

The problem boils down to bnding the
derivation from the input string.



_ 25 The semantic component of the
Parsing grammar is irrelevant.
( sint! np! sl s \
k'z 23 25" % z3(z, " (wonders' 2,)) | J
ol wh e N w -
[\z,ﬂ' 52N 2,7 (2502, (hates” ") | J [Les\ie\ } [Jx x| }
{Tem/ ‘nn ] {who‘ - J [\zi" X 250z, (tmnkr(!m:”!x))sr\ }
Leslie wonders who Rob
thinks that Terry hates
surf izt 26 The OformO component of the
urface Realization grammar is irrelevant.
( sint! np! sa! s }
C [12 {232 “zs(wonder @ * 2,2, |
np! wh! sy! sint w np Sa
[ [z 828" " 2 2l tghate ™ 'xza)) ) { ‘Lesllee} [ ‘!x‘x}
p wh A YRS
{ [Terry P} [ Tty e Cwino 07 81 ny)) { [z 525 X" zy(think xz;)j
wonder # ¢ t(who (¢ V' 9(1 x®think t ¢ !
(hate ® © tx Terry ©)Robin ©)) Leslie ®
27

Parsing = Surface Realization

ate ©
n ( wh N (e
erry © k‘y o T ywho ™ 07 u(rxeyx)) Uz 12 X za(think xz,) |

p s
Robin © | ( x x

wonder & ¢ t(who (¢ V' 9(1 x® think © ¢ !

(hate ® © tx Terry ©)Robin ©)) Leslie ®

Leslie wonders who Rob
thinks that Terry hates

In a fairly broad, interesting class of
cases, the problems of parsing and
surface realization have been solved.”



s(x1):
saint(x1) :
Sa(X1,Xs) !
Sa (X1, X1) ¢
np(xa) :
np(xa) :
np(xa) :
wh(xy) :

Tabular Parsing

2 s(0! 8).

s-int (x4), Np(Xs), Sa (X1, X2), " (X2, X3, X4), " (X4, X5, X6), wondergxs).
Nnp(Xs), Wh(x2), Sa (X3, X4), " (X1, X2, X3), " (X4, X5, X6), " (X6, X7, Xg), hategx7), ! (Xg).
np(X3), Sa (X1, X2), " (X2, X3, X4), " (X4, X5, Xs), " (X6, X7, Xg), thinks(xs), that(x7).

Terry(x1).
Robin(x1).
Lesligxy).
who(x1).

Leslig¢0! 1). wondergl! 2). who(2! 3). Robin(3! 4). thinks(4! 5). that(5! 6). Terry(6! 7). hateg7! 8).
A kit gt k).

1t ).

28

29
Tabular Realization
2 s(1).
s(x1) ! s.int(x3), np(X4), Sa (X1, X2), wonder (X2, X3, X4).
s.int (x1) ! np(Xs), wh(X1, X2, Xa), Sa (X1, X2), hate (X3, X4, Xs).
Sa(X1,X3) i np(Xa),sa (X1, X2), think (X2, X3, X4).
sa(x1,x1) ! .
np(xy) :! Terry (Xq).
np(x1) :! Robin (x1).
np(xy) :! Leslie (x1).
wh(X1,X2,X3) ;! who (X1, X2, X3).
wonder (1, 2,8). who (2, 3,5). think (3,4,5). hate (4,5, 6). Terry (6). Robin (7). Leslie (8).
30

Symmetry between form and meaning is at the

heart of ACG.




KLM

31

32
Right Node Raising

Lambek

((s/mp)\ (s/ np))/ (s/ np) : and: 1 z§ 28" txe. 1 % ¥ (7 x)(z2%)

ACG
(np! s)! (np! s)! np! s
1z ftr! str Z;tr! str Xstr -((ZZ ..).. (and" (Z1 n))) "X ‘ 1z %! ‘Z;‘ !Xe_! thoth ot (Zl X)(ZgX)
33 Right Node Raising."

(np! s)! (np! s)! np! s
12§ g St (") " (and” (1)) " X ‘ 12§ 78 txe ot

i <z1x)<zsz

np

Robin| Robin ®

np! vp!
12§28 Lzp7y

1z 3" 8" .z,

7

.z
@( vi! np! vp np vi! np! vp
12528 7" 2, ‘ 12528 ¢ 'xC.zoz:x Terry ‘ Terry © 12328 7" 2, ‘ 12§28 'x.2,2:x

v np Vi
likes] ty exe.like © ¢ Tyx Leslie[ Leslie ® hates| ly *xe.hate® @ Lyx

((Terry! (hates! !))! (and
I (1! (likes! Leslig))) ! Robin

1t tike ® € U eslie ® Robin ©)
(hate ® © 'Robin ®Terry ©)

OTerry hates Robin and Robin likes Leslie

An example of overgeneration."
The other entry considered by KLM
gives OTerry hates and Robin likes

LeslieO.



The gap in each conjunct of RNR must be on the right
periphery.

34

If you have a good specibcation, the grammar
will write itself.

35

The gap in each conjunct of RNR must be on the right
periphery.

36



Who did [Max entice _to read _] and [Ted ask _ to summarize
_] the latest paper by Chomsky?

37

A conjunct of RNR may contain two
gaps.

! Robin
/\
OR

\ /\
! and OR
PN

Terry ! !

P VAN

hates 'R IR 1|

N

likes Lesli¢

IR must be the rightmost leaf of a subtree whose root label
is OR,

38

Good specibcation = regular set = Pnite tree automaton

! !

! Robin ! [rgap 0]
R/\
o ! [rgap 0] !
\ N \ N
! and OR [rgap 1] [rgap 0] OR
Terry ! ! [rgap 0] [rgap 1] ! *
hates IR 1R | [rgap 0] [rgap 1] [rgap 1] [rgap O]
N
likes  Leslie [rgap O] [rgap 0]
1IR1 [rgap 1],

a! [rgap 0] for each terminal symbola,
[rgap 0]" [rgap O]! [rgap O],
[rgap 0]" [rgap 1]! [rgap 1],
OR[rgap 1]! [rgap O].

39

Cf. model-theoretic syntax of Jim
Rogers.



40 A generalization of the classic result
. that the class of context-free
derivations surface forms
languages are closed under
intersection with regular sets."
Building block #-terms must be
_—* 1
almost linear.
.lllllllllI>
regular constraint
41
(np! s)! (np! s)! np! s
1z E St Zgtt syt ((z,") " (and” (z1"))) " X ‘ 128 28 e 1t Utz x)(2zp %)
* add markers
(np! s)! (np! s)! np! s
125! St g3t St yst (O (2, "R) " (and” OR (z; "R))) " x ‘ 128 tzg et Uz x) (25 %)
* intersect with regular set
(nplrgap 1]! sfrgap 1)! (nplrgap 1]! sfrgap 1])! nplrgap r]! sfrgap r]
LZ§U! St g5t St st (OR(z,"R) " (and” OF (z; "R))) " x ‘ 128 tzg ettt (2 x)(22 %)
* remove markers
(np[rcAP 1] — S[RGAP 1]) — (Np[RGAP 1] — S[RGAP 1]) — Np[RGAP ] — S[RGAPT]
| Ziit7‘~).swz.29w~>strxstr‘((Zz Yo (ando (21 ")) ox ‘ | Zfﬂtzgalxe. A (20 %)(22 X)
42

(np! s)! (np! s)! np! s

1Z5r! s ggtt st ystt (OR(z, "R) " (and” OR(z1 "R))) " x ‘ 1z tzg txe 1 ! Utz X)(2z2 X)

* intersect with regular set

(nplrgap ri]! slrgap ra))! (nplrgap rs]! slrgap ra])! nplrgap rs]! s[rgap re]

125! S gL Syt (OR (7, "R) " (and” OR (2 "R))) " x | 128 tzg' 'xe. 1 ' ' (2 x)(z2 %)
1 2 1 %

zi[rgap r1]" [rgap rz],

1
,AX zz[rgap r3]" [rgap ra],

N x" [rgap rs],
oR !

| IR1 [rgap 1],
7z, and OR a! [rgap O] for each terminal symbola,
IL \ [rgap 0]" [rgap 0]! [rgap O],
! 7

| [rgap 0]" [rgap 1]! [rgap 1],
IR OR [rgap 1]! [rgap O].

(nplrgap 1]! s[rgap 1])! (np[rgap 1]! s[rgap 1])! nplrgap r]! s[rgap r]

| ZStr ! str gstr! str ystr .(OR (22 --R) " (and” oR (22 --R))) | 1z tge tye ottt (z1 X)(22 X)
T 2 1 22




Gapping

Hybrid

(((np\'s)/np) ! s)! (((np\s)/np)! s)! ((np\s)/np)! s

I (lezw ! :Z(eg! 0ot

20t

1§t S gt St st (70229 " (and” (z,")) 2
P (za(ty °x®.zayx)) (Z2(ty °X°.23yX))

ACG

((np! np! s)! s)! ((np! np! s)! s)! (np! np! s)! s
1z (str 21 str)l str Z(strzl str)! str Zg"z‘ str

(Z20y 5 X5 X" (2™) " ) " (and” (zay X X" "y |

43

4 (P! mpl 91 9! (P! np! 9! ! (! mpl 9! s
1z {101 1D 2ty X zayx) (Z2(ty *X°20y%)

1 (S 7 Sl s (st sn)l St st sy
12§ % 7
t (22(ty x5 X" ((z5"") " y)) " (@nd” 2y * x* x " (" Y))
np

( Y (o ) (Cw ) (
(_Robin[Robin * | | Lesle[ Leslie® | | Tery [Terry = | | Robin[Robin © | | 12 17237 2, (ks 23) [ty “x=kes ™" 'yx

(Robin! ((! ! (likes! 1)) ! Terry)) ! 14t t(ike ® ® ! Leslie ® Robin ©)
(and! (Leslie! (! ! Robin)) (like ® © ' Robin ¢ Terry ©)

OTerry likes Robin and Robin likes Leslie

44

|
/\
! !
N N
Robin ! and !
PN AN
OR Terry Leslie !

\ PN
ot ! Robir
\

IR

likes !t

((np[0,r1] !t mplly, 0] s[ly,r1]) ! s[0,7])!
((np[0,m2] ! mpll2, 01! sllz,m2]) ! sl 0])!
(np[0,1]! mp[1,0]! s[1,1])! s[l,7]

45

strl strl str)l str_(strl strl str)l str_sgrl strl
/\Z§ ) A ) pstrl strl str

(220" 2" (OF (OF (392 <)) " )" (and " (1 0™ 2™ " (=" )




((np[0,0]! np[0,0]! s[0,0]))! s[0,0])! ((np[0,0]! np[0,0]! s[0,0])! s[0,0])! (np[0,1]! np[1,0]! s[1,1])! s[0,0] \

12 OO I (gt o 25y (zally X zzyX))J

(71 sl st (st St st sr
ES 2

S
&
(22(ty " x X" ((z5"") " y))) " (and” (za(ty " x*" X" (" " y))

(ool ) ( _neool ) 0,0 ) (_npo.0] ) 4 np[0,1]! np[L,0]! s[L1]
{_Robin[ Robin * | { Leslie[ Leslie” | Tery [ Terry © J | Robin[ Robin © U $28" 22" (likes” 22) |y *x®likes " Tyx

(Robin! (1! (likes! 1)) ! Terry)) ! 14t t(ike ® ¢ ! Leslie ® Robin ©)
(and! (Leslie! (! ! Robin)) (like ® © ' Robin ¢ Terry ©)

OTerry likes Robin and Robin likes Leslie

46

The right- or left-peripherality of a gap can be
enforced by a syntactic feature.

47

Reverse Word Order

Tom cooked the beans, and Bill, the potatoes.

Tom cooked the beans, and the potatoes, Bill.

48



49 The brst remnant can be a Focus.

A. Gee, the beans and the potatoes are good! Did Tom cook them
again?

B1. No. Today, Tom cooked the beans, and Bill, the potatoes.

B2. No. Today, Tom cooked the beans, and the potatoes, Bill.

) . . ] 50 The last two based on HankamerOs
Topicalization + Gapping (1979) examples.

Tom cooked the beans, and Bill, the potatoes.
Tom cooked the beans, and the potatoes, Bill.

The beans, Tom cooked, and the potatoes, Bill.

Tom cooked the beans, and the potatoes, Bill.

51
Discontinuous Gapping

While the canonical cases of gapping have medial gaps, the gap can also be discontin

Should I call you, 0gy1gYOU co Me?

Will Jimmy greet Jill Prst, oy Jill greetdimmypsi?

He believes her to know the answer, andpghigeshim (o know the answer
I expect you to help, and y@upectMero help

-Wikepedia, Gapping




Discontinuous Gapping

(16) Max seemed to be trying to force Ted to leave the room, and Walt $eemedte
be-trying—to-foree] Ira | ] (Jackendd , 1971, p. 25)

17) Arizona elected Goldwater Senator, and Pennsylvania dlected] Schweikel
[Senater] (Jackendd , 1971, p. 24)

(18) Jack begged Elsie to get married, and Wilfred egged] Phoebetp-get-married]
(Jackendd , 1971, p. 24)

(19) Max wanted Ted to persuade Alex to get lost and Max—wanted] Walt [te
persuade] Ira fo-getlost] (Hankamer, 1973, pp. 26D27)

(20) John took Harry to the movies, and Bill [teek] Mike [te-the-mevies] (Sag, 1976
p. 218)

(21) John persuaded Dr. Thomas to examine Mary, and Bill persuaded] Dr. Jones
[to-examine-Mary] (Sag, 1976, p. 225)

(22) Joe covered the Roor with red paint, and Alice §evered] the walls fith-red-paint]
(Neijt, 1980, p. 79)

(23) Joe painted his boat red, and Alice painted] her car [red] (Neijt, 1980, p. 79)
(24) Some people want all doors to open to the left and othersqant] all windows [te

opento-theleft] (Neijt, 1980, p. 160)

52

53
(((np\s)/np) ! s)! (((np\s)/np)! s)! ((np\s)/np)! s
(25) Max ordered Ted to persuade Alex to get lost and f4ax—erdered] Walt [to
persuade] Ira fo-getlost]
(26) | asked Peter to take Susan home, andHasked] John fe-take] Wendy [heme]
(27) Rarely does John call Mary at home, and farely-dees] Mary a#] John [at-heme]
The type ofthegap=np! np! s
((np! np! s)! s)! ((np! np! s)! s)! ((np! np! s)! s N
17§ St S SU S (7,7 (and” (z,")) | 1z (162! PURSCEILY tzgzz t
P (ze(ly °x.zayx)) (z2(ly eXa-Zayx))/
Ol asked Peter to take Susan home and | asked Wendy to take John home.O
((np! np! s)! s)! ((np! np! s)! s)! ((np! np! s)! s N 54
1z ilvl str Z;lr! str thr -(ZZZS) " (and” (Zl .,)) I (1e2v ! (de% t)! tzgz‘ t,

LYty SxCzayx)) (Za(ly ®x°.2ayX))

In the brst conjunct of Gapping, the correspondent of the brst
remnant must precede the correspondent of the second remnant.

((np! np! s)! s)! ((np! np! s)! s)! ((np! np! s)! s
Iz (str! str! str)! str Z(str! str! str)! str ZS"! str! str

(2a(ty % X5 0% (23(Coy)(Cax)) " (and” (za(ty S x x* (" y)) |

If, as has often been argued (Kuno, 1976; Neijt, 1980; Coppock, 2001;
Johnson, 2014), the relative positions of the correspondents/remnants
obey some (but perhaps not all) of the island constraints governing
wh-extraction, those constraints can also be captured by the syntactic
feature, as long as they are regular.




Conclusion

¥ ACG supports non-categorial-style analyses.

¥ In a Lambek-style analysis, any regular constraint
on positions of gaps can be captured by syntactic
features.

55




