
Syntactic Features for Regular
Constraints and an Approximation
of Directional Slashes in Abstract

Categorial Grammars

Makoto Kanazawa
National Institute of Informatics, Tokyo, Japan

SOKENDAI (Graduate University for Advanced Studies)

1

Plan

¥ What is ACG?

¥ How to obtain syntactic features expressing regular
constraints

¥ Gapping

2 This talk will have a di!erence
emphasis than my paper in the
proceedings.

8/12/15, 21:274th Lambda Calculus and Formal Grammar Workshop

Page 2 of 7http://www.loria.fr/equipes/calligramme/acg/workshops/lcfg-04/index.html.utf8

Gilad Ben-Avi
Luciana Benotti
Patrick Blackburn
Anna Chernilovskya
Marie-Renée Fleury
Philippe de Groote
Bruno Guillaume
Sébastien Hinderer
Guillaume Hoffmann
Makoto Kanazawa
François Lamarche
Alain Lecomte
Sarah Maarek
Glyn Morrill
Michael Moortgat
Reinhard Muskens
Sylvain Pogodalla
Carl Pollard
Myriam Quatrini
Sylvain Salvati
Lutz Strassburger
Christina Unger
Yoad Winter
Ryo Yoshinaka

Program

Tuesday September 18th

10:00 Welcome and opening

10:20 Reinhard
Muskens English as a formal system (slides)

11:00 Break

11:30 Gilad Ben-
Avi/Yoad Winter A sound intensionalization procedure

12:10 Philippe de
Groote Yet another dynamic logic (slides)

12:50 Lunch

14:30 Sébastien
Hinderer

Compositional approaches to discourse
representation structures construction (slides)

15:10 Christina Unger Feature-driven movement as delimited control
(slides)

15:50 Break

16:20 Chris Barker Reasonning about contexts in Lambek Grammars
(slides)

8/12/15, 21:274th Lambda Calculus and Formal Grammar Workshop

Page 3 of 7http://www.loria.fr/equipes/calligramme/acg/workshops/lcfg-04/index.html.utf8

Wednesday September 19th

09:40 Makoto
Kanazawa

Almost Linear Abstract Categorial Grammars and
Attribute Grammars (slides)

10:20 Michael
Moortgat

Lexical and derivational semantics for Lambek-Grishin
calculus

11:00 Break

11:30 Carl
Pollard

The Logics of Overt and Covert Movement in
aRelational Type-Theoretic Grammar (slides)

12:10 Glyn Morrill Grammar and Incremental processing of Dutch word
order (slides)

12:50 Lunch

14:45 Sylvain
Salvati On grammatical analyses of Lambek grammars (slides)

15:25 Ryo
Yoshinaka

On two extensions of Abstract Categorial Grammars
(slides)

16:05 Closing

Abstracts
Reinhard Muskens: English as a Formal System

Slides

Back to the program.

Gilad Ben-Avi: A sound intensionalization procedure

(Joint work with Yoad Winter)

In this talk we present a procedure that takes a simple version of extensional
semantics and generates from it an equivalent possible-world semantics that
is suitable for treating intensional phenomena in natural language. This
process of intensionalization is proved to be sound in the sense that it
preserves entailments between derivations of sentences.

The intensionalization process allows to treat intensional phenomena as
stemming exclusively from the lexical meaning of words like believe, need or
fake. We illustrate the proposed intensionalization technique using an
extensional toy fragment. This fragment is used to show that independently
motivated extensional mechanisms for scope shifting and verb-object
composition, once properly intensionalized, are strictly speaking responsible
for certain intensional effects, including de dicto/de re ambiguities and
coordinations containing intensional transitive verbs. While such extensional-
intensional relations have often been assumed in the literature, this talk

8/12/15, 21:274th Lambda Calculus and Formal Grammar Workshop

Page 1 of 7http://www.loria.fr/equipes/calligramme/acg/workshops/lcfg-04/index.html.utf8

Presentation
The LCFG workshop series aims at promoting research results on formal
grammars and natural language models from a type-theoretic point of view. It
gives a special emphasis to the grammatical formalism of Abstract Categorial
Grammar, Lambda Grammar and related formalisms.

Participants
Carlos Areces
Chris Barker
Paul Bédaride

Lambda Calculus and Formal
GrammarLambda Calculus and Formal
Grammar

4th workshop

Sep. 18-19 2007, Nancy (France)

With gratefully acknowledge support of

The INRIA Associate Team program

Lambda & Grammars

The NWO Internationalisation in the Humanities program

A Global Network for Lambda Grammars and Abstract Categorial Grammars

3

ÐAnna Chernilovskaya

ÒWhy is it called abstract categorial grammar?Ó

4

Abstract Categorial Grammar (de Groote 2001,

Muskens 2001)

¥ not a new kind of categorial grammar

¥ represents basic building blocks of the grammar as well as

grammatical operations on them with typed linear ! -terms

¥ a general formalism meant to be restricted in various ways to

produce more constrained grammars

¥ generalizes

Ð CFG (context-free grammar)

Ð TAG (tree-adjoining grammar)

Ð MCFG (multiple context-free grammar) (or LCFRS

(linear context-free rewriting system))

Ð but not Lambek categorial grammar

¥ is like categorial grammar in that semantic composition is a

homomorphic image of syntactic derivation

¥ treats form and meaning symmetrically

5 This slide is from a talk I gave in 2005."
The title of my talk was ÒAbstract
Categorial Grammar and Linear
LogicÓ."
Mitsuhiro Okada introduced me
saying I was going to talk about the
latest exciting developments in
categorial grammar.

ACG is not a categorial grammar.

6 The connection of ACGs with
context-free/tree-adjoining grammars
and mainstream formal language
theory is more important than the
aspects of ACGs inherited from the
categorial grammar tradition."
ÒAbstract context-free grammarÓ or
Òabstract tree-adjoining grammarÓ
would have been at least as
appropriate.

s ! np vp !vp" ! np"

vp ! v1 np ! xe.! v1" ! np" x

vp ! v2 s bar ! xe.! v2" ! s bar" x

vp ! v3 s int ! xe.! v3" ! s int " x

s bar ! that s !s"

s int ! whethers yn t! q ! s"

np ! Leslie Leslie e

np ! Robin Robin e

np ! Terry Terry e

v1 ! hates ! yexe.hate e! e! t y x

v1 ! likes ! yexe.like e! e! t y x

v2 ! thinks ! yt xe.think t! e! t y x

v2 ! claims ! yt xe.claim t! e! t y x

v3 ! wonders ! yqxe.wonder q! e! t y x

v3 ! knows ! yqxe.know q! e! t y x

Figure 1: A CFG with Montague semantics.

s

np

Leslie

vp

v3

wonders

s int

whether s

np

Robin

vp

v1

hates

np

Terry

Figure 2: A CFG derivation tree.

the meanings of its immediate constituents. I use lower-case italic letters for nonterminals
(i.e., syntactic categories) and sans serif for terminals (i.e., words). The type of a constant
or variable is indicated by a superscript at its Þrst occurrence. Here,e is the type of
individual, t is the type of proposition, q is the type of question, and the constantyn
denotes a function that turns a proposition into a yes-no (polar) question. According
to this context-free grammar, the string Leslie wonders whether Robin hates Terryhas the
derivation tree in Figure 2 and its meaning is calculated to be

((! yqxe.wonder q! e! t y x)(yn t! q (((! yexe.hate e! e! t y x) Terry e) Robin e))) Leslie e

= wonder q! e! t (yn t! q (hate e! e! t Terry e Robin e)) Leslie e. (1)

Figure 3 lists the grammar entries of the ACG that encodes the CFG in Figure 1.
Each rule of the CFG corresponds to an entry of the ACG. The correspondence should be
fairly obvious. When a CFG has a ruleX ! w0X 1w1 . . . X nwn, where X, X 1, . . . , X n are
nonterminals andw0, w1, . . . , wn are strings of terminals, the corresponding ACG entry has
the syntactic type X 1 ! á á á! X n ! X and the ! -term ! zstr

1 . . . zstr
n .w0 " z1 " w1 " á á á" zn " wn

in the form dimension. The ! -term in the meaning dimension of the entry is obtained from
the ! -term attached to the CFG rule by replacing !X 1", . . . , !X n" with appropriately typed
variables z1, . . . , zn and abstracting over them.

The derivation trees of the ACG are almost isomorphic to the derivation trees of the
CFG. Each node of an ACG derivation tree is licensed by a grammar entry. Figure 4

(np ! vp ! s, �zstr
1 zstr

2 .z1 � z2, �ze1ze!t
2 .z2z1)

(v1 ! np ! vp, �zstr
1 zstr

2 .z1 � z2, �ze!e!t
1 ze2xe.z1z2x)

(v2 ! s bar ! vp, �zstr
1 zstr

2 .z1 � z2, �zt!e!t
1 zt2xe.z1z2x)

(v3 ! s int ! vp �zstr
1 zstr

2 .z1 � z2, �zq!e!t
1 zq2xe.z1z2x)

(s ! s bar, �zstr
1 .that � z1, �zt1.z1)

(s ! s int , �zstr
1 .whether� z1, �zt1.yn t!q z1)

(np, Leslie, Leslie e)
(np, Robin, Robin e)
(np, Terry, Terry e)
(v1, hates, �yexe.hate e!e!t y x)
(v1, likes, �yexe.like e!e!t y x)
(v2, thinks, �ytxe.think t!e!t y x)
(v2, claims, �ytxe.claim t!e!t y x)
(v3, wonders, �yqxe.wonder q!e!t y x)
(v3, knows, �yqxe.know q!e!t y x)

Figure 3: The ACG encoding of the CFG in Figure 1.

np ! vp ! s

! zstr1 z

str
2 .z1 " z2 ! ze

1z
e! t
2 .z2z1

np

Leslie Leslie e

v3 ! s int ! vp

! zstr1 z

str
2 .z1 " z2 ! zq! e! t

1 z

q
2x

e
.z1z2x

v3

wonders ! yq
x

e
.wonder q! e! t

y x

s ! s int

! zstr1 .whether" z1 ! zt
1.yn t ! q

z1

np ! vp ! s

! zstr1 z

str
2 .z1 " z2 ! ze

1z
e! t
2 .z2z1

np

Robin Robin e

v1 ! np ! vp

! zstr1 z

str
2 .z1 " z2 ! ze! e! t

1 z

e
2x

e
.z1z2x

v1

hates ! ye
x

e
.hate e! e! t

y x

np

Terry Terry e

Figure 4: An ACG derivation tree representing a CFG derivation tree.

CFG derivation

ACG derivation

7

Building Blocks

syntactic type

form meaning

np → vp → s

!z str

1 zstr

2 .z1 ◦ z2 !z e
1ze! t

2 .z2z1

s !→ str v1 !→ str

np !→ str v2 !→ str

vp !→ str v3 !→ str

s bar !→ str

s int !→ str

s !→ t v1 !→ e→ e→ t

np !→ e v2 !→ t → e→ t

vp !→ e→ t v3 !→ q→ e→ t

s bar !→ t

s int !→ q

8

An ACG need not be lexicalized.

np → vp → s

!z str

1 zstr

2 .z1 ◦ z2 !z e
1ze! t

2 .z2z1

9 One important respect in which ACG
is not a categorial grammar.

ACG is a generalization of TAG.

10

s

np! vp

v

wonders

s int !

np

Leslie
s int

wh! s

np! vp

v

hates

np

!

wh

who

np

Terry

s

np! vp

v

thinks

s bar

that s!np

Robin

TAG derivation

11 ACGs are a generalization of TAGs."
Elementary trees = trees (initial trees) /
unary functions on trees (auxiliary
trees)."
ACGs have elementary #-terms
instead of elementary trees.

s

np! vp

v

wonders

s int !

np

Leslie
s int

wh! s

np! vp

v

hates

np

!

wh

who

np

Terry

s

np! vp

v

thinks

s bar

that s!np

Robin

TAG derivation

s int ! np ! sA ! s

!z str
1 zstr

2 zstr →str
3 .z3(z2 " (wonders " z1)) !z q

1ze
2zt→t

3 .z3(wonderq→e→t z1 z2)

np ! wh ! sA ! s int

!z str
1 zstr

2 zstr →str
3 .z2 " (z3(z1 " (hates " "))) !z e

1z(e→t)→q
2 zt→t

3 .z2(!x e.z3(hatee→e→t x z1))

np

Terry Terrye

wh

who !y e→twho(e→t)→q(!x e.yx)

np ! sA ! sA

!z str
1 zstr

2 xstr .z2(z1 " (thinks " (that " x))) !z e
1zt→t

2 xt .z2(think x z1)

np

Robin Robine

sA

!x str .x !x t .x

np

Leslie Lesliee

sA

!x str .x !x t .x

ACG derivation

12 Sylvain Pogodalla has written many
papers on the relation between TAGs
and ACGs.

Building Blocks

np ! wh ! sA ! s int

!z str
1 zstr

2 zstr ! str
3 .z2 " (z3(z1 " (hates" "))) !z e

1z(e! t) ! q
2 zt ! t

3 .z2(!x e.z3(hate e! e! t x z1))

syntactic type

form meaning

s !" str

np !" str

s int !" str

wh !" str

sA !" str " str

s �� t

np �� e

s int �� q

wh �� (e � t) � q

sA �� t � t

13

An atomic syntactic type can be mapped to a
complex ÒprosodicÓ type.

sA �� str � str

14 Another important respect in which
ACG is not a categorial grammar."
The complexity of the substitution is
an important parameter according to
which ACGs form a hierarchy.

A constituent with a gap may have an atomic
syntactic type.

np ! sA ! sA

λzstr1 zstr2 xstr .z2(z1 " (thinks " (that " x))) λze
1z

t ! t
2 xt .z2(thinkx z1)

np

Robin Robin
e

sA

λxstr .x λxt .x

15 An arbitrarily complex #-term can be
derived from an atomic-typed
subterm of a derivation.

s

np! vp

v

wonders

s int !

np

Leslie
s int

wh! s

np! vp

v

hates

np

!

wh

who

np

Terry

s

np! vp

v

thinks

s bar

that s!np

Robin

16 This illustrates a TAG-analysis of wh-
movement originally due to Anthony
Kroch."
One could easily imagine a TAG-
inspired analysis of Right Node
Raising in an ACG."
Gapping may be handled by a simple
context-free grammar of rank $ 2."

Abstract Syntactic Types

CFG-style TAG-style ÒLambek-styleÓ

unsaturated
standard

constituents
atomic functional functional

modiÞers atomic atomic functional

continuous
non-standard
constituents

- - functional

discontinuous
constituents

- functional /
atomic

functional

constituents
with gaps atomic (GPSG) atomic functional

17 You can classify various styles of
analyses possible in ACGs in terms of
atomic/functional distinction.

The ACG formalism supports many styles of
linguistic analysis.

18 To take advantage of the full potential
of ACGs, di!erent styles of analyses
should be explored.

Second-Order vs. Higher-Order Abstract Syntax

np ! vp ! s

!z str
1 zstr

2 .z1 " z2 !z e
1ze! t

2 .z2z1

np

Leslie Leslie e

v3 ! s int ! vp

!z str
1 zstr

2 .z1 " z2 !z q! e! t
1 zq

2xe.z1z2x

v3

wonders !y qxe.wonder q! e! t y x

wh ! (np ! s) ! s int

!z str
1 zstr ! str

2 .z1 " (z2 ") !z (e! t) ! q
1 ze! t

2 .z1(!x e.z2x)

wh

who !y e! t .who (e! t) ! q (!x e.yx)
!x np

1

np ! vp ! s

!z str
1 zstr

2 .z1 " z2 !z e
1ze! t

2 .z2z1

np

Terry Terry e

v1 ! np ! vp

!z str
1 zstr

2 .z1 " z2 !z e! e! t
1 ze

2xe.z1z2x

v1

hates !y exe.hate e! e! t y x
xnp

1derivation !-term

19

Higher-order ACGs are problematic.

derivations
Òbuilding

blockÓ !-terms
language

complexity

connections with
computer
science

second-order trees
(almost) linear LOGCFL formal language

theory,
program schemes!I (= BCIW) decidable

higher-order linear !-terms
(almost) linear ?

BVASS
!I (= BCIW) ?

Linearity is overrated.

20 Second-order ACGs have almost no
resemblance with categorial
grammars."
Problems that KLM pointed out have
to do with higher-order ACGs."
Higher-order ACGs are problematic in
other ways.

Symmetry
s int ! np ! sA ! s

!z str
1 zstr

2 zstr ! str
3 .z3(z2 " (wonders" z1)) !z q

1ze
2zt ! t

3 .z3(wonder q! e! t z1 z2)

np ! wh ! sA ! s int

!z str
1 zstr

2 zstr ! str
3 .z2 " (z3(z1 " (hates" "))) !z e

1z(e! t) ! q
2 zt ! t

3 .z2(!x e.z3(hate e! e! t x z1))

np

Terry Terry e

wh

who !y e! t .who (e! t) ! q(!x e.yx)

np ! sA ! sA

!z str
1 zstr

2 xstr .z2(z1 " (thinks" (that " x))) !z e
1zt ! t

2 xt .z2(think x z1)

np

Robin Robin e

sA

!x str .x !x t .x

np

Leslie Leslie e

sA

!x str .x !x t .x

wonder q! e! t (who (e! t) ! q (! xe.think t ! e! t

(hate e! e! t x Terry e) Robin e)) Leslie e

Leslie wonders who Robin

thinks that Terry hates

21

Parsing
s int ! np ! sA ! s

!z str
1 zstr

2 zstr ! str
3 .z3(z2 " (wonders" z1)) !z q

1ze
2zt ! t

3 .z3(wonder q! e! t z1 z2)

np ! wh ! sA ! s int

!z str
1 zstr

2 zstr ! str
3 .z2 " (z3(z1 " (hates" "))) !z e

1z(e! t) ! q
2 zt ! t

3 .z2(!x e.z3(hate e! e! t x z1))

np

Terry Terry e

wh

who !y e! t .who (e! t) ! q(!x e.yx)

np ! sA ! sA

!z str
1 zstr

2 xstr .z2(z1 " (thinks" (that " x))) !z e
1zt ! t

2 xt .z2(think x z1)

np

Robin Robin e

sA

!x str .x !x t .x

np

Leslie Leslie e

sA

!x str .x !x t .x

wonder q! e! t (who (e! t) ! q (! xe.think t ! e! t

(hate e! e! t x Terry e) Robin e)) Leslie e

Leslie wonders who Robin

thinks that Terry hates

22 Two of the most important problems
concerning grammars are parsing and
surface realization (generation).

Surface Realization
s int ! np ! sA ! s

!z str
1 zstr

2 zstr ! str
3 .z3(z2 " (wonders" z1)) !z q

1ze
2zt ! t

3 .z3(wonder q! e! t z1 z2)

np ! wh ! sA ! s int

!z str
1 zstr

2 zstr ! str
3 .z2 " (z3(z1 " (hates" "))) !z e

1z(e! t) ! q
2 zt ! t

3 .z2(!x e.z3(hate e! e! t x z1))

np

Terry Terry e

wh

who !y e! t .who (e! t) ! q(!x e.yx)

np ! sA ! sA

!z str
1 zstr

2 xstr .z2(z1 " (thinks" (that " x))) !z e
1zt ! t

2 xt .z2(think x z1)

np

Robin Robin e

sA

!x str .x !x t .x

np

Leslie Leslie e

sA

!x str .x !x t .x

wonder q! e! t (who (e! t) ! q (! xe.think t ! e! t

(hate e! e! t x Terry e) Robin e)) Leslie e

Leslie wonders who Robin

thinks that Terry hates

23

Parsing
s int ! np ! sA ! s

!z str
1 zstr

2 zstr ! str
3 .z3(z2 " (wonders" z1)) !z q

1ze
2zt ! t

3 .z3(wonder q! e! t z1 z2)

np ! wh ! sA ! s int

!z str
1 zstr

2 zstr ! str
3 .z2 " (z3(z1 " (hates" "))) !z e

1z(e! t) ! q
2 zt ! t

3 .z2(!x e.z3(hate e! e! t x z1))

np

Terry Terry e

wh

who !y e! t .who (e! t) ! q(!x e.yx)

np ! sA ! sA

!z str
1 zstr

2 xstr .z2(z1 " (thinks" (that " x))) !z e
1zt ! t

2 xt .z2(think x z1)

np

Robin Robin e

sA

!x str .x !x t .x

np

Leslie Leslie e

sA

!x str .x !x t .x

wonder q! e! t (who (e! t) ! q (! xe.think t ! e! t

(hate e! e! t x Terry e) Robin e)) Leslie e

Leslie wonders who Robin

thinks that Terry hates

24 The problem boils down to Þnding the
derivation from the input string.

Parsing
s int ! np ! sA ! s

!z str
1 zstr

2 zstr ! str
3 .z3(z2 " (wonders" z1))

np ! wh ! sA ! s int

!z str
1 zstr

2 zstr ! str
3 .z2 " (z3(z1 " (hates" ")))

np

Terry

wh

who

np ! sA ! sA

!z str
1 zstr

2 xstr .z2(z1 " (thinks" (that " x)))

np

Robin

sA

!x str .x

np

Leslie

sA

!x str .x

Leslie wonders who Robin

thinks that Terry hates

25 The semantic component of the
grammar is irrelevant.

Surface Realization
s int ! np ! sA ! s

!z q
1ze

2zt ! t
3 .z3(wonder q! e! t z1 z2)

np ! wh ! sA ! s int

!z e
1z(e! t) ! q

2 zt ! t
3 .z2(!x e.z3(hate e! e! t x z1))

np

Terry e

wh

!y e! t .who (e! t) ! q(!x e.yx)

np ! sA ! sA

!z e
1zt ! t

2 xt .z2(think x z1)

np

Robin e

sA

!x t .x

np

Leslie e

sA

!x t .x

wonder q! e! t (who (e! t) ! q (! xe.think t ! e! t

(hate e! e! t x Terry e) Robin e)) Leslie e

26 The ÒformÓ component of the
grammar is irrelevant.

Parsing = Surface Realization

wonder q! e! t (who (e! t) ! q (! xe.think t ! e! t

(hate e! e! t x Terry e) Robin e)) Leslie e

Leslie wonders who Robin

thinks that Terry hates

s int ! np ! sA ! s

!z str
1 zstr

2 zstr ! str
3 .z3(z2 " (wonders" z1))

np ! wh ! sA ! s int

!z str
1 zstr

2 zstr ! str
3 .z2 " (z3(z1 " (hates" ")))

np

Terry

wh

who

np ! sA ! sA

!z str
1 zstr

2 xstr .z2(z1 " (thinks" (that " x)))

np

Robin

sA

!x str .x

np

Leslie

sA

!x str .x

s int ! np ! sA ! s

!z q
1ze

2zt ! t
3 .z3(wonder q! e! t z1 z2)

np ! wh ! sA ! s int

!z e
1z(e! t) ! q

2 zt ! t
3 .z2(!x e.z3(hate e! e! t x z1))

np

Terry e

wh

!y e! t .who (e! t) ! q(!x e.yx)

np ! sA ! sA

!z e
1zt ! t

2 xt .z2(think x z1)

np

Robin e

sA

!x t .x

np

Leslie e

sA

!x t .x

27 In a fairly broad, interesting class of
cases, the problems of parsing and
surface realization have been solved."

Tabular Parsing

s(x1) :! s int (x4), np(x3), sA (x1, x2), " (x2, x3, x4), " (x4, x5, x6), wonders(x5).

s int (x1) :! np(x5), wh(x2), sA (x3, x4), " (x1, x2, x3), " (x4, x5, x6), " (x6, x7, x8), hates(x7), ! (x8).

sA (x1, x8) :! np(x3), sA (x1, x2), " (x2, x3, x4), " (x4, x5, x6), " (x6, x7, x8), thinks(x5), that(x7).

sA (x1, x1) :! .

np(x1) :! Terry(x1).

np(x1) :! Robin(x1).

np(x1) :! Leslie(x1).

wh(x1) :! who(x1).

Leslie(0! 1). wonders(1! 2). who(2! 3). Robin(3! 4). thinks(4! 5). that(5! 6). Terry(6! 7). hates(7! 8).

" (i ! k, i ! j, j ! k).

! (i ! i).

?! s(0! 8).

28

Tabular Realization

s(x1) :! s int (x3), np(x4), sA (x1, x2), wonder (x2, x3, x4).

s int (x1) :! np(x5), wh(x1, x2, x4), sA (x1, x2), hate (x3, x4, x5).

sA (x1, x3) :! np(x4), sA (x1, x2), think (x2, x3, x4).

sA (x1, x1) :! .

np(x1) :! Terry (x1).

np(x1) :! Robin (x1).

np(x1) :! Leslie (x1).

wh(x1, x2, x3) :! who (x1, x2, x3).

wonder (1, 2, 8). who (2, 3, 5). think (3, 4, 5). hate (4, 5, 6). Terry (6). Robin (7). Leslie (8).

?! s(1).

29

Symmetry between form and meaning is at the
heart of ACG.

30

KLM

31

Right Node Raising

((s/ np)\ (s/ np)) / (s/ np) : and : ! ze! t
1 ze! t

2 xe. ! t ! t ! t (z1 x)(z2 x)

Lambek

(np ! s) ! (np ! s) ! np ! s

!z str ! str
1 zstr ! str

2 xstr .((z2 ") " (and" (z1 "))) " x !z e! t
1 ze! t

2 xe. ! t ! t ! t (z1 x) (z2 x)

ACG

32

((Terry ! (hates! !)) ! (and

! (! ! (likes! Leslie)))) ! Robin

! t ! t ! t (like e! e! t Leslie e Robin e)

(hate e! e! t Robin e Terry e)

ÒTerry hates Robin and Robin likes LeslieÓ

(np ! s) ! (np ! s) ! np ! s

!z str ! str
1 zstr ! str

2 xstr .((z2 ") " (and" (z1 "))) " x !z e! t
1 ze! t

2 xe. ! t ! t ! t (z1 x) (z2 x)

!x np
1

np ! vp ! s

!z str
1 zstr

2 .z1 " z2 !z e
1ze! t

2 .z2z1

xnp
1

v1 ! np ! vp

!z str
1 zstr

2 .z1 " z2 !z e
1ze! e! t

2 xe.z2z1x

v1

likes !y exe.like e! e! t y x

np

Leslie Leslie e

!x np
1

np ! vp ! s

!z str
1 zstr

2 .z1 " z2 !z e
1ze! t

2 .z2z1

np

Terry Terry e

v1 ! np ! vp

!z str
1 zstr

2 .z1 " z2 !z e
1ze! e! t

2 xe.z2z1x

v1

hates !y exe.hate e! e! t y x
xnp

1

np

Robin Robin e

33 Right Node Raising."
An example of overgeneration."
The other entry considered by KLM
gives ÒTerry hates and Robin likes
LeslieÓ.

!

!

!

Terry !

hates !

!

and !

! !

likes Leslie

Robin

The gap in each conjunct of RNR must be on the right
periphery.

34

If you have a good speciÞcation, the grammar
will write itself.

35

!

!

!

Terry !

hates !

!

and !

! !

likes Leslie

Robin

The gap in each conjunct of RNR must be on the right
periphery.

36

Who did [Max entice _ to read _] and [Ted ask _ to summarize
_] the latest paper by Chomsky?

37 A conjunct of RNR may contain two
gaps.

!

!

OR

!

Terry !

hates ! R

!

and OR

!

! R !

likes Leslie

Robin

! R must be the rightmost leaf of a subtree whose root label
is OR.

38

Good speciÞcation = regular set = Þnite tree automaton

(np ! s) ! (np ! s) ! np ! s

! zstr ! str
1 zstr ! str

2 xstr .((z2 ") " (and" (z1 "))) " x ! ze! t
1 ze! t

2 xe. ! t ! t ! t (z1 x) (z2 x)

! xnp
1

np ! vp ! s

! zstr
1 zstr

2 .z1 " z2 ! ze
1ze! t

2 .z2z1

np

Terry Terry e

v1 ! np ! vp

! zstr
1 zstr

2 .z1 " z2 ! ze
1ze! e! t

2 xe.z2z1x

v1

hates ! yexe.hate e! e! t y x
xnp

1

! xnp
1

np ! vp ! s

! zstr
1 zstr

2 .z1 " z2 ! ze
1ze! t

2 .z2z1

xnp
1

v1 ! np ! vp

! zstr
1 zstr

2 .z1 " z2 ! ze
1ze! e! t

2 xe.z2z1x

v1

likes ! yexe.like e! e! t y x

np

Leslie Leslie e

np

Robin Robin e

Figure 14: A derivation of Terry hates and likes Leslie Robinwith the meaning ÒTerry hates
Robin and Robin likes LeslieÓ.

at its right periphery, but the ACG entry (11) cannot enforce that requirement. Since the
requirement concerns the positions of the empty string symbol! in the form component
of generated pairs, we can try to use a syntactic feature to Þlter out unwanted sentences,
like we did with violations of island constraints on wh-extraction.

We need to enforce that a gap occur at the right edge of each conjunct in a Right
Node Raising construction. Since this is not a requirement on gaps in general, we have to
distinguish gaps ÒboundÓ by the RNR entry forand from gaps bound by, e.g.,wh-phrases.
For this purpose, we introduce a special symbol! R for a right-peripheral gap, and mark
the scope of its binder byOR. Note that these are markers we temporarily introduce to
automatically discover a suitable feature mechanism; these are part of the speciÞcation,
not the delivered product. The " -term in the form dimension of the entry (11) is modiÞed
with these markers as follows:24

((np ! s) ! (np ! s) ! np ! s,

" zstr ! str
1 zstr ! str

2 xstr .(OR (z2 ! R) " (and" OR (z1 ! R))) " x, . . .)
(13)

With this change, the derivation in Figure 14 now generates the following pair:

((OR (Terry " (hates" ! R)) " (and" OR (! R " (likes" Leslie)))) " Robin,

! t ! t ! t (like e! e! t Leslie e Robin e) (hate e! e! t Robin e Terry e)) .

We can express the constraint that needs to be satisÞed as follows:

¥ Any occurrence of! R must be the rightmost leaf of a subtree marked byOR.

The deterministic bottom-up Þnite tree automaton that captures this constraint again
has just two states, [rgap 0] and [rgap 1], which indicate the absence/presence of a right-
peripheral gap. Its transitions are as follows:

! R ! [rgap 1],

a ! [rgap 0] for each terminal symbola,

[rgap 0] " [rgap 0] ! [rgap 0],

[rgap 0] " [rgap 1] ! [rgap 1],

OR [rgap 1] ! [rgap 0].

(14)

24 We assumeOR binds stronger than ! , so that OR x ! y means (OR x) ! y.

!

!

OR

!

Terry !

hates ! R

!

and OR

!

! R !

likes Leslie

Robin

!

!

[rgap 0]

[rgap 1]

[rgap 0] [rgap 1]

[rgap 0] [rgap 1]

!

[rgap 0] OR

!

[rgap 1] [rgap 0]

[rgap 0] [rgap 0]

[rgap 0]

39 Cf. model-theoretic syntax of Jim
Rogers.

derivations surface forms

regular constraint

40 A generalization of the classic result
that the class of context-free
languages are closed under
intersection with regular sets."
Building block # -terms must be
almost linear.

(np[rgap 1] ! s[rgap 1]) ! (np[rgap 1] ! s[rgap 1]) ! np[rgap r] ! s[rgap r]

! zstr ! str
1 zstr ! str

2 xstr .(OR (z2 "R) " (and" OR (z1 "R))) " x ! ze! t
1 ze! t

2 xe. ! t ! t ! t (z1 x)(z2 x)

(np ! s) ! (np ! s) ! np ! s

! zstr ! str
1 zstr ! str

2 xstr .(OR (z2 "R) " (and" OR (z1 "R))) " x ! ze! t
1 ze! t

2 xe. ! t ! t ! t (z1 x)(z2 x)

(np ! s) ! (np ! s) ! np ! s

! zstr ! str
1 zstr ! str

2 xstr .((z2 ") " (and" (z1 "))) " x ! ze! t
1 ze! t

2 xe. ! t ! t ! t (z1 x)(z2 x)

(np[rgap 1] � s[rgap 1]) � (np[rgap 1] � s[rgap 1]) � np[rgap r] � s[rgap r]

! zstr�str
1 zstr�str

2 xstr .((z2 ") � (and� (z1 "))) � x ! ze�t
1 ze�t

2 xe. �t �t �t (z1 x)(z2 x)

add markers

intersect with regular set

remove markers

41

(np ! s) ! (np ! s) ! np ! s

! zstr ! str
1 zstr ! str

2 xstr .(OR (z2 "R) " (and" OR (z1 "R))) " x ! ze! t
1 ze! t

2 xe. ! t ! t ! t (z1 x)(z2 x)

intersect with regular set

!

!

OR

z2

! R

!

and OR

z1

! R

x

(np ! s) ! (np ! s) ! np ! s

! zstr ! str
1 zstr ! str

2 xstr .((z2 ") " (and" (z1 "))) " x ! ze! t
1 ze! t

2 xe. ! t ! t ! t (z1 x) (z2 x)

! xnp
1

np ! vp ! s

! zstr
1 zstr

2 .z1 " z2 ! ze
1ze! t

2 .z2z1

np

Terry Terry e

v1 ! np ! vp

! zstr
1 zstr

2 .z1 " z2 ! ze
1ze! e! t

2 xe.z2z1x

v1

hates ! yexe.hate e! e! t y x
xnp

1

! xnp
1

np ! vp ! s

! zstr
1 zstr

2 .z1 " z2 ! ze
1ze! t

2 .z2z1

xnp
1

v1 ! np ! vp

! zstr
1 zstr

2 .z1 " z2 ! ze
1ze! e! t

2 xe.z2z1x

v1

likes ! yexe.like e! e! t y x

np

Leslie Leslie e

np

Robin Robin e

Figure 14: A derivation of Terry hates and likes Leslie Robinwith the meaning ÒTerry hates
Robin and Robin likes LeslieÓ.

at its right periphery, but the ACG entry (11) cannot enforce that requirement. Since the
requirement concerns the positions of the empty string symbol! in the form component
of generated pairs, we can try to use a syntactic feature to Þlter out unwanted sentences,
like we did with violations of island constraints on wh-extraction.

We need to enforce that a gap occur at the right edge of each conjunct in a Right
Node Raising construction. Since this is not a requirement on gaps in general, we have to
distinguish gaps ÒboundÓ by the RNR entry forand from gaps bound by, e.g.,wh-phrases.
For this purpose, we introduce a special symbol! R for a right-peripheral gap, and mark
the scope of its binder byOR. Note that these are markers we temporarily introduce to
automatically discover a suitable feature mechanism; these are part of the speciÞcation,
not the delivered product. The " -term in the form dimension of the entry (11) is modiÞed
with these markers as follows:24

((np ! s) ! (np ! s) ! np ! s,

" zstr ! str
1 zstr ! str

2 xstr .(OR (z2 ! R) " (and" OR (z1 ! R))) " x, . . .)
(13)

With this change, the derivation in Figure 14 now generates the following pair:

((OR (Terry " (hates" ! R)) " (and" OR (! R " (likes" Leslie)))) " Robin,

! t ! t ! t (like e! e! t Leslie e Robin e) (hate e! e! t Robin e Terry e)) .

We can express the constraint that needs to be satisÞed as follows:

¥ Any occurrence of! R must be the rightmost leaf of a subtree marked byOR.

The deterministic bottom-up Þnite tree automaton that captures this constraint again
has just two states, [rgap 0] and [rgap 1], which indicate the absence/presence of a right-
peripheral gap. Its transitions are as follows:

! R ! [rgap 1],

a ! [rgap 0] for each terminal symbola,

[rgap 0] " [rgap 0] ! [rgap 0],

[rgap 0] " [rgap 1] ! [rgap 1],

OR [rgap 1] ! [rgap 0].

(14)

24 We assumeOR binds stronger than ! , so that OR x ! y means (OR x) ! y.

(np[0] ! vp[r] ! s[r], ! zstr
1 zstr

2 .z1 " z2, ! ze
1 ze! t

2 .z2z1)
(v1[0] ! np[r] ! vp[r], ! zstr

1 zstr
2 .z1 " z2, ! ze! e! t

1 ze
2 xe.z1z2x)

(v2[0] ! s bar[r] ! vp[r], ! zstr
1 zstr

2 .z1 " z2, ! zt ! e! t
1 zt

2xe.z1z2x)
(v3[0] ! s int [r] ! vp[r] ! zstr

1 zstr
2 .z1 " z2, ! zq! e! t

1 zq
2 xe.z1z2x)

(s[r] ! s bar[r], ! zstr
1 .that " z1, ! zt

1 .z1)
(s[r] ! s int [r], ! zstr

1 .whether" z1, ! zt
1 .yn t ! q z1)

(np[0], Leslie, Leslie e)
(np[0], Robin, Robin e)
(np[0], Terry, Terry e)
(v1[0], hates, ! yexe.hate e! e! t y x)
(v1[0], likes, ! yexe.like e! e! t y x)
(v2[0], thinks, ! yt xe.think t ! e! t y x)
(v2[0], claims, ! yt xe.claim t ! e! t y x)
(v3[0], wonders, ! yqxe.wonder q! e! t y x)
(v3[0], knows, ! yqxe.know q! e! t y x)
((np[1] ! s[1]) !

(np[1] ! s[1]) ! np[r] ! s[r],
! zstr ! str

1 zstr ! str
2 xstr .

(OR (z2 " R) " (and" OR (z1 " R))) " x,
! ze! t

1 ze! t
2 xe. ! t ! t ! t (z1 x) (z2 x))

Figure 15: An ACG with markers ! R and OR containing an entry for Right Node Raising.
Here, r ! { 0, 1} , and we write [0] and [1] for [rgap 0] and [rgap 1].

Using these transitions, we can calculate the features to assign to the occurrences of atomic
types in the syntactic type of the entry (13). In order for a feature-speciÞed syntactic type

(np[rgap r1] " s[rgap r2]) " (np[rgap r3] " s[rgap r4]) " np[rgap r5] " s[rgap r6]

to be legitimate, the tree automaton (14) augmented with the transitions

z1 [rgap r1] " [rgap r2],

z2 [rgap r3] " [rgap r4],

x " [rgap r5],

must accept the tree
!

!

OR

z2

! R

!

and OR

z1

! R

x

with Þnal state [rgap r6]. We see that we must have (r1, r 2) = (r 3, r 4) = (1 , 1), and
r5 = r6, obtaining a new entry

(np[rgap 1] " s[rgap 1]) " (np[rgap 1] " s[rgap 1]) " np[rgap r] " s[rgap r]

where r ! { 0, 1} .

Doing the same with the entries in Figure 3 results in the ACG in Figure 15. Note that the
ÒÞnal productÓ ACG is the result of removingOR and changing! R to ! in these entries.

I leave it as an exercise for the reader to combine the fragment in Figure 15 with the
one in Figure 12. This will require making a few decisions. You need to complete each of

(np[rgap r1] ! s[rgap r 2]) ! (np[rgap r3] ! s[rgap r4]) ! np[rgap r5] ! s[rgap r 6]

! zstr ! str
1 zstr ! str

2 xstr .(OR (z2 "R) " (and" OR (z1 "R))) " x ! ze! t
1 ze! t

2 xe. ! t ! t ! t (z1 x)(z2 x)

(np[rgap 1] ! s[rgap 1]) ! (np[rgap 1] ! s[rgap 1]) ! np[rgap r] ! s[rgap r]

! zstr ! str
1 zstr ! str

2 xstr .(OR (z2 "R) " (and" OR (z1 "R))) " x ! ze! t
1 ze! t

2 xe. ! t ! t ! t (z1 x)(z2 x)

42

Gapping

Hybrid

ACG

(((np\ s)/ np) ! s) ! (((np\ s)/ np) ! s) ! ((np\ s)/ np) ! s

!z str ! str
1 zstr ! str

2 zstr
3 .(z2z3) " (and" (z1 ")) !z (e2 ! t) ! t

1 z(e2 ! t) ! t
2 ze2 ! t

3 .
! t ! t ! t (z1(!y exe.z3yx)) (z2(!y exe.z3yx))

((np ! np ! s) ! s) ! ((np ! np ! s) ! s) ! (np ! np ! s) ! s

!z (str 2 ! str) ! str
1 z(str 2 ! str) ! str

2 zstr 2 ! str
3 .

(z2(!y str xstr .x " ((z3 " ") " y))) " (and" (z1(!y str xstr .x " (" " y))))
. . .

43

((np ! np ! s) ! s) ! ((np ! np ! s) ! s) ! (np ! np ! s) ! s

!z (str 2 ! str) ! str
1 z(str 2 ! str) ! str

2 zstr 2 ! str
3 .

(z2(!y str xstr .x " ((z3 " ") " y))) " (and" (z1(!y str xstr .x " (" " y))))
!z (e2 ! t) ! t

1 z(e2 ! t) ! t
2 ze2 ! t

3 . ! t ! t ! t (z1(!y exe.z3yx)) (z2(!y exe.z3yx))

!y np ! np ! s
1

ynp ! np ! s
1

np

Robin Robin e

np

Leslie Leslie e

!y np ! np ! s
1

ynp ! np ! s
1

np

Terry Terry e

np

Robin Robin e

!x np
2

!x np
1

np ! np ! s

!z str
1 zstr

2 .z2 " (likes" z1) !y exe.likes e2 ! t y x

xnp
1 xnp

2

(Robin! ((! ! (likes! !)) ! Terry)) !

(and! (Leslie! (! ! Robin)))

! t ! t ! t (like e! e! t Leslie e Robin e)

(like e! e! t Robin e Terry e)

ÒTerry likes Robin and Robin likes LeslieÓ

44

((np[0, r1] ! np[l1, 0] ! s [l1, r1]) ! s[0, r]) !
((np[0, r2] ! np[l2, 0] ! s[l2, r2]) ! s[l, 0]) !

(np[0, 1] ! np[1, 0] ! s[1, 1]) ! s [l, r]

�z(str ! str ! str) ! str
1 z(str ! str ! str) ! str

2 zstr ! str ! str
3 .

(z2(�ystrxstr .x " (OR (OL (z3 �R �L)) " y))) " (and " (z1(�ystrxstr .x " (� " y))))
. . .

!

!

Robin !

OR

OL

!

! R !

likes ! L

Terry

!

and !

Leslie !

! Robin

45

((np[0, 0] ! np[0, 0] ! s[0, 0]) ! s[0, 0]) ! ((np[0, 0] ! np[0, 0] ! s[0, 0]) ! s[0, 0]) ! (np[0, 1] ! np[1, 0] ! s[1, 1]) ! s[0, 0]

!z (str 2 ! str) ! str
1 z(str 2 ! str) ! str

2 zstr 2 ! str
3 .

(z2(!y str xstr .x " ((z3 " ") " y))) " (and" (z1(!y str xstr .x " (" " y))))
!z (e2 ! t) ! t

1 z(e2 ! t) ! t
2 ze2 ! t

3 . ! t ! t ! t (z1(!y exe.z3yx)) (z2(!y exe.z3yx))

!y np [0,0]! np [0,0]! s[0,0]
1

ynp [0,0]! np [0,0]! s[0,0]
1

np[0, 0]

Robin Robin e

np[0, 0]

Leslie Leslie e

!y np [0,0]! np [0,0]! s[0,0]
1

ynp [0,0]! np [0,0]! s[0,0]
1

np[0, 0]

Terry Terry e

np[0, 0]

Robin Robin e

!x np [0,1]
2

!x np [1,0]
1

np[0, 1] ! np[1, 0] ! s[1, 1]

!z str
1 zstr

2 .z2 " (likes" z1) !y exe.likes e2 ! t y x

xnp [1,0]
1 xnp [0,1]

2

(Robin! ((! ! (likes! !)) ! Terry)) !

(and! (Leslie! (! ! Robin)))

! t ! t ! t (like e! e! t Leslie e Robin e)

(like e! e! t Robin e Terry e)

ÒTerry likes Robin and Robin likes LeslieÓ

46

The right- or left-peripherality of a gap can be
enforced by a syntactic feature.

47

Reverse Word Order

Tom cooked the beans, and Bill, the potatoes.

Tom cooked the beans, and the potatoes, Bill.

48

B1. No. Today, Tom cooked the beans, and Bill, the potatoes.

B2. No. Today, Tom cooked the beans, and the potatoes, Bill.

A. Gee, the beans and the potatoes are good! Did Tom cook them
again?

49 The Þrst remnant can be a Focus.

Topicalization + Gapping

Tom cooked the beans, and Bill, the potatoes.

Tom cooked the beans, and the potatoes, Bill.

The beans, Tom cooked, and the potatoes, Bill.

Tom cooked the beans, and the potatoes, Bill.

50 The last two based on HankamerÕs
(1979) examples.

Discontinuous Gapping
8/13/15, 07:30Gapping - Wikipedia, the free encyclopedia

Page 2 of 4https://en.wikipedia.org/wiki/Gapping

While the canonical cases of gapping have medial gaps, the gap can also be discontinuous, e.g.

Should I call you, or should you call me?
Will Jimmy greet Jill Þrst, or will Jill greet Jimmy Þrst?
He believes her to know the answer, and she believes him to know the answer.
I expect you to help, and you expect me to help.

Many syntacticians take stripping (= bare argument ellipsis) to be a particular manifestation of gapping
where only one remnant appears instead of two or more. If this assumption is correct, then the same ellipsis
mechanism is at work in the following cases:

Sam has done the work, and Bill has done the work, too.
Sophie barks at racoons in the morning, and Sophie barks at squirrels in the morning, too.
Did Frank get married Þrst, or did Larry get married Þrst?

In its manifestation as stripping, the gapping mechanism occurs frequently. Gapping is widely assumed to

obligatorily elide a Þnite verb. However, gapping can also occur when no Þnite verb is involved,[3] e.g.

With her keen on him, and him keen on her, the party should be fun.
It is impossible for Connor to be nice to Jilian, or Jilian to be nice to Connor.

The gap of gapping cannot, however, cut into a major constituent, e.g.

*I read the story about elves, and you read the story about dwarves.
*Pictures of friends should make you smile, and pictures of enemies should make you frown.

Theoretical analyses

Gapping challenges phrase structure theories of syntax because it is not evident how one might produce a
satisfactory analysis of the material that can be gapped. The problem concerns the fact that the elided

material often does not qualify as a constituent, as many of the examples above illustrate.[4] Faced with this
challenge, one prominent approach is to assume some sort of movement. The remnants are moved out of an
encompassing parent constituent so that the parent constituent can then be deleted. In other words, there is an
ordering of transformations. First the remnants are moved out of their parent constituent and then that parent
constituent is elided. The difÞculty with such movement analyses concerns the nature of the movement
mechanisms, since the movement mechanism needed to vacate the parent constituent would be unlike the
recognized movement mechanisms (fronting, scrambling, extraposition).

An alternative analysis of gapping assumes that the catena is the basic unit of syntactic analysis.[5] The
catena is associated with dependency grammars and is deÞned as any word or any combination of words that
is continuous with respect to dominance. The elided material of gapping always qualiÞes as a catena. This
situation is illustrated with the following tree, which shows the dependency structure of a well-known
example from Ross 1970:

-Wikepedia, Gapping

51

Discontinuous Gapping

This entry together with the entries of the Lambek grammar in (15) license a hybrid
derivation of the form-meaning pair

((Leslie! (likes! Robin)) ! (and! (Robin! (! ! Terry))) ,

! t ! t ! t (likes Robin Leslie) (likes Terry Robin)) .

A naive translation of this fragment into an ACG, with the following entry for and, would
make the sentenceLeslie likes Robin and Robin Terryambiguous between the actual reading
ÒLeslie likes Robin and Robin likes TerryÓ and the reading ÒRobin likes Leslie and Terry
likes RobinÓ:29

(((np " np " s) " s) " ((np " np " s) " s) " (np " np " s) " s,

" z(str ! str ! str)! str
1 z(str ! str ! str)! str

2 zstr ! str ! str
3 .

(z2(" ystr xstr .x ! ((z3 ! !) ! y))) ! (and! (z1(" ystr xstr .x ! (! ! y)))) ,

" z(e! e! t)! t
1 z(e! e! t)! t

2 ze! e! t
3 . ! t ! t ! t (z1(" yexe.z3yx)) (z2(" yexe.z3yx))) .

Again, we can use thelgap and rgap features to deal with this problem, without
abandoning the style of analysis employed by Kubota and Levine (2014b):30

(((np[0, r 1] " np[l1, 0] " s[l1, r 1]) " s[0, r]) "

((np[0, r 2] " np[l2, 0] " s[l2, r 2]) " s[l, 0]) " (np[0, 1] " np[1, 0] " s[1, 1]) " s[l, r],

" z(str ! str ! str)! str
1 z(str ! str ! str)! str

2 zstr ! str ! str
3 .

(z2(" ystr xstr .x ! (OR (OL (z3 ! R ! L)) ! y))) ! (and! (z1(" ystr xstr .x ! (! ! y)))) ,

" z(e! e! t)! t
1 z(e! e! t)! t

2 ze! e! t
3 .! t ! t ! t (z1(" yexe.z3yx)) (z2(" yexe.z3yx))) .

The way overgeneration is blocked here (Figure 20) is entirely analogous to the case of
transitive verb conjunction (Figure 18).

4.4 A Closer Look at Gapping

Kubota and LevineÕs (2014b) decision to exclusively use Lambek types liketv = (np\ s)/ np
as the possible categories of the gap (the elided material in the second conjunct of Gapping)
is puzzling. It has been widely recognized that the gap can be discontiguous:

(16) Max seemed to be trying to force Ted to leave the room, and Walt [seemedto
be trying to force] Ira [to leave the room] (Jackendo! , 1971, p. 25)

(17) Arizona elected Goldwater Senator, and Pennsylvania [elected] Schweiker
[Senator] (Jackendo! , 1971, p. 24)

(18) Jack begged Elsie to get married, and Wilfred [begged] Phoebe [to get married]
(Jackendo! , 1971, p. 24)

(19) Max wanted Ted to persuade Alex to get lost and [Max wanted] Walt [to
persuade] Ira [to get lost] (Hankamer, 1973, pp. 26Ð27)

(20) John took Harry to the movies, and Bill [took] Mike [to the movies] (Sag, 1976,
p. 218)

29 There is an alternative translation considered by Moot (2014) and Kubota and Levine (2014b) which
gives the sentence the reading ÒLeslie likes Robin and Terry likes RobinÓ. This entry is shown in Figure 21.

30 IÕm showing the grammar with markers for the convenience of the reader; the markers are not actually
present in the output ACG of the translation.

((np[0, 0] ! np[0, 0] ! s[0, 0]) ! s[0, 0]) ! ((np[0, 0] ! np[0, 0] ! s[0, 0]) ! s[0, 0]) ! (np[0, 1] ! np[1, 0] ! s[1, 1]) ! s[0, 0]

! z(str 2 ! str) ! str
1 z(str 2 ! str) ! str

2 zstr 2 ! str
3 .

(z2(! ystr xstr .x " ((z3 " ") " y))) " (and" (z1(! ystr xstr .x " (" " y))))
! z(e2 ! t) ! t

1 z(e2 ! t) ! t
2 ze2 ! t

3 . ! t ! t ! t (z1(! yexe.z3yx)) (z2(! yexe.z3yx))

! ynp [0,0]! np [0,0]! s[0,0]
1

ynp [0,0]! np [0,0]! s[0,0]
1

np[0, 0]

Robin Robin e

np[0, 0]

Leslie Leslie e

! ynp [0,0]! np [0,0]! s[0,0]
1

ynp [0,0]! np [0,0]! s[0,0]
1

np[0, 0]

Terry Terry e

np[0, 0]

Robin Robin e

! xnp [0,1]
2

! xnp [1,0]
1

np[0, 1] ! np[1, 0] ! s[1, 1]

! zstr
1 zstr

2 .z2 " (likes" z1) ! yexe.likes e2 ! t y x

xnp [1,0]
1 xnp [0,1]

2

Figure 20: Failed derivation of Leslie likes Robin and Robin Terrywith the meaning ÒRobin
likes Leslie and Terry likes RobinÓ.

(21) John persuaded Dr. Thomas to examine Mary, and Bill [persuaded] Dr. Jones
[to examineMary] (Sag, 1976, p. 225)

(22) Joe covered the ßoor with red paint, and Alice [covered] the walls [with red paint]
(Neijt, 1980, p. 79)

(23) Joe painted his boat red, and Alice [painted] her car [red] (Neijt, 1980, p. 79)

(24) Some people want all doors to open to the left and others [want] all windows [to
open to the left] (Neijt, 1980, p. 160)

In all of these examples, there is elided material to the right of the second remnant, so it
seems that a hybrid type-logical grammar would need to assign the gap either a hybrid
type np ! (np\ s) or a simple type np ! np ! s.31

Examples like the following seem to requirenp ! np ! s as the category of the gap:

(25) Max ordered Ted to persuade Alex to get lost and [Max ordered] Walt [to
persuade] Ira [to get lost]

(26) I asked Peter to take Susan home, and [I asked] John [to take] Wendy [home]

(27) Rarely does John call Mary at home, and [rarely does] Mary [call] John [at home]

This puts hybrid type-logical grammars in the same quandary that plagued the naive ACG
translation of a Lambek grammar (Section 4.3). Assuming hybrid entries in Figure 21, the
sentenceI asked Peter to take Susan home and John Wendywould come out as ambiguous
between the reading indicated in (26) and the reading ÒI asked Peter to take Susan home,
and I asked Wendy to take John homeÓ (among other readings).

Sentences like (25) and (26) seem to be generally acceptable. If so, the true general-
ization about the word order in Gapping may be the following:

(28) In the Þrst conjunct of Gapping, the correspondent of the Þrst remnant must
precede the correspondent of the second remnant.

It should be clear that (28) can be expressed as a regular constraint, if we mark the
positions of the correspondents in the Þrst conjunct of Gapping:

31 In HankamerÕs example (19), the hybrid typenp ! (np\ s) will work under the analysis where Gapping
occurs in the inÞnitival clause [Ted to persuade Alex to get lost and Walt [to persuade] Ira [to get lost]].

52

Discontinuous Gapping

((np[0, 0] ! np[0, 0] ! s[0, 0]) ! s[0, 0]) ! ((np[0, 0] ! np[0, 0] ! s[0, 0]) ! s[0, 0]) ! (np[0, 1] ! np[1, 0] ! s[1, 1]) ! s[0, 0]

! z(str 2 ! str) ! str
1 z(str 2 ! str) ! str

2 zstr 2 ! str
3 .

(z2(! ystr xstr .x " ((z3 " ") " y))) " (and" (z1(! ystr xstr .x " (" " y))))
! z(e2 ! t) ! t

1 z(e2 ! t) ! t
2 ze2 ! t

3 . ! t ! t ! t (z1(! yexe.z3yx)) (z2(! yexe.z3yx))

! ynp [0,0]! np [0,0]! s[0,0]
1

ynp [0,0]! np [0,0]! s[0,0]
1

np[0, 0]

Robin Robin e

np[0, 0]

Leslie Leslie e

! ynp [0,0]! np [0,0]! s[0,0]
1

ynp [0,0]! np [0,0]! s[0,0]
1

np[0, 0]

Terry Terry e

np[0, 0]

Robin Robin e

! xnp [0,1]
2

! xnp [1,0]
1

np[0, 1] ! np[1, 0] ! s[1, 1]

! zstr
1 zstr

2 .z2 " (likes" z1) ! yexe.likes e2 ! t y x

xnp [1,0]
1 xnp [0,1]

2

Figure 20: Failed derivation of Leslie likes Robin and Robin Terrywith the meaning ÒRobin
likes Leslie and Terry likes RobinÓ.

(21) John persuaded Dr. Thomas to examine Mary, and Bill [persuaded] Dr. Jones
[to examineMary] (Sag, 1976, p. 225)

(22) Joe covered the ßoor with red paint, and Alice [covered] the walls [with red paint]
(Neijt, 1980, p. 79)

(23) Joe painted his boat red, and Alice [painted] her car [red] (Neijt, 1980, p. 79)

(24) Some people want all doors to open to the left and others [want] all windows [to
open to the left] (Neijt, 1980, p. 160)

In all of these examples, there is elided material to the right of the second remnant, so it
seems that a hybrid type-logical grammar would need to assign the gap either a hybrid
type np ! (np\ s) or a simple type np ! np ! s.31

Examples like the following seem to requirenp ! np ! s as the category of the gap:

(25) Max ordered Ted to persuade Alex to get lost and [Max ordered] Walt [to
persuade] Ira [to get lost]

(26) I asked Peter to take Susan home, and [I asked] John [to take] Wendy [home]

(27) Rarely does John call Mary at home, and [rarely does] Mary [call] John [at home]

This puts hybrid type-logical grammars in the same quandary that plagued the naive ACG
translation of a Lambek grammar (Section 4.3). Assuming hybrid entries in Figure 21, the
sentenceI asked Peter to take Susan home and John Wendywould come out as ambiguous
between the reading indicated in (26) and the reading ÒI asked Peter to take Susan home,
and I asked Wendy to take John homeÓ (among other readings).

Sentences like (25) and (26) seem to be generally acceptable. If so, the true general-
ization about the word order in Gapping may be the following:

(28) In the Þrst conjunct of Gapping, the correspondent of the Þrst remnant must
precede the correspondent of the second remnant.

It should be clear that (28) can be expressed as a regular constraint, if we mark the
positions of the correspondents in the Þrst conjunct of Gapping:

31 In HankamerÕs example (19), the hybrid typenp ! (np\ s) will work under the analysis where Gapping
occurs in the inÞnitival clause [Ted to persuade Alex to get lost and Walt [to persuade] Ira [to get lost]].

The type of the gap = np ! np ! s

(((np\ s)/ np) ! s) ! (((np\ s)/ np) ! s) ! ((np\ s)/ np) ! s

((np ! np ! s) ! s) ! ((np ! np ! s) ! s) ! ((np ! np ! s) ! s

!z str ! str
1 zstr ! str

2 zstr
3 .(z2z3) " (and" (z1 ")) !z (e2 ! t) ! t

1 z(e2 ! t) ! t
2 ze2 ! t

3 .
! t ! t ! t (z1(!y exe.z3yx)) (z2(!y exe.z3yx))

ÒI asked Peter to take Susan home and I asked Wendy to take John home.Ó

53

In the Þrst conjunct of Gapping, the correspondent of the Þrst
remnant must precede the correspondent of the second remnant.

((np ! np ! s) ! s) ! ((np ! np ! s) ! s) ! ((np ! np ! s) ! s

!z str ! str
1 zstr ! str

2 zstr
3 .(z2z3) " (and" (z1 ")) !z (e2 ! t) ! t

1 z(e2 ! t) ! t
2 ze2 ! t

3 .
! t ! t ! t (z1(!y exe.z3yx)) (z2(!y exe.z3yx))

((np ! np ! s) ! s) ! ((np ! np ! s) ! s) ! ((np ! np ! s) ! s

!z (str ! str ! str) ! str
1 z(str ! str ! str) ! str

2 zstr ! str ! str
3 .

(z2(!y str xstr . O< (z3(C2 y)(C1 x)))) " (and" (z1(!y str xstr .x " (" " y))))
. . .

If, as has often been argued (Kuno, 1976; Neijt, 1980; Coppock, 2001;
Johnson, 2014), the relative positions of the correspondents/remnants
obey some (but perhaps not all) of the island constraints governing

wh-extraction, those constraints can also be captured by the syntactic
feature, as long as they are regular.

54

Conclusion

¥ ACG supports non-categorial-style analyses.

¥ In a Lambek-style analysis, any regular constraint
on positions of gaps can be captured by syntactic
features.

55

