Equivalence Issues in Abduction and Induction

Chiaki Sakama Wakayama University Katsumi Inoue National Institute of Informatics

AIAI'07, Aix-en-Provence, 15th Sept. 2007

Equivalence issues in AI and Program Development

- Identification: identifying different knowledge bases developed by different experts
- Verification: correct implementation of a given declarative specification
- Optimization: transforming a program to an efficient coding

Program Equivalence in LP

- P1 and P2 are weakly equivalent if they have the same declarative meaning.
- P1 and P2 are strongly equivalent if P1UR and P2UR have the same declarative meaning for any program R.
- † These equivalence relations compare capabilities of deductive reasoning between programs.

Comparing non-deductive capabilities between programs

- Intelligent agents perform non-deductive commonsense reasoning as well as deductive reasoning.
- Comparing capabilities of non-deductive reasoning such as abduction and induction is meaningful to measure intelligence of agents.

Abduction and Induction

 Abduction and induction both produce hypotheses to explain observations using background theories.

 There are at least 3 parameters in this task: background theories, explanations, and observations.

Equivalence issues in abduction and induction

- Equivalence of background theories: Two background theories are equivalent if they produce the same explanations for any observation.
- Equivalence of explanations:

Two explanations are equivalent if they account for the same observation under a given background theory.

• Equivalence of observations: Two observations are equivalent if the

Two observations are equivalent if they produce the same explanations under a given background theory.

Abductive Equivelence [Inoue and Sakama, IJCAI-05, MBR-06]

- Explainable equivalence considers whether two theories have the same explainability for any observation.
- Explanatory equivalence considers whether two theories have the same explanations for any observation.

Necessary and sufficient conditions are provided for abductive equivalence in FOL and abductive logic programming.

Example

- B1={ rained → wet-grass } and B2={ sprinkler-on → wet-grass } with H={ rained, sprinkler-on } are explainably equivalent, because wet-grass, rained, sprinkler-on are all explainable in both (B1,H) and (B2,H).
- Two theories are not explanatorily equivalent, because wet-grass is explained by rained in B1, but it is not explained by rained in B2.

Inductive Equivalence [Sakama & Inoue, ILP-05]

- A background theory is inductively equivalent to another background theory if they induce the same hypothesis in face of any example.
- Conditions for inductive equivalence are compared in different ILP systems.

Remaining Issues

- Conditions for equivalence of explanations.
- Conditions for equivalence of observations.
- Conditions for explainable equivalence in skeptical abduction.
- Computational complexities of testing those equivalences.

We investigate these issues in both FOL and (nonmonotonic) logic programming.

Abduction in FOL

- Abductive theory (B, H) where B and H are sets of first-order formulas, respectively representing a background theory and a candidate hypothesis.
- Given an observation O as any formula, E(⊆H) is an explanation of O if

$$\Box B \cup E \mid = O$$

 \square B \cup E is consistent.

Remark

- The above definition also characterizes (explanatory) induction.
- Given a finite set G of examples, induction finds a hypothesis E satisfying
 B ∪ E |= G where B ∪ E is consistent.
- Put $O = \Lambda_{g \in G} g$ and H = F, where F is the set of all formulas.
- Then, induction is characterized as abduction, and we do not distinguish them hereafter.

General Extended Disjunctive Program (GEDP)

Rules

 $\begin{array}{l} L_1 \ ;...; \ L_k \ ; \ \textbf{not} \ L_{k+1} \ ;...; \ \textbf{not} \ L_l \\ \leftarrow L_{l+1} \ ,..., \ L_m \ , \ \textbf{not} \ L_{m+1} \ ,..., \ \textbf{not} \ L_n \\ \end{array}$ where $\ L_i$ are literals.

Meaning

If all L_{l+1} ,..., L_m hold and all L_{m+1} ,..., L_n do not hold, then some of L_1 ,..., L_k hold or some of L_{k+1} ,..., L_l do not hold.

Answer Set Semantics

- A declarative meaning of a GEDP is given by the answer set semantics (Gelfond and Lifschitz).
- A program is consistent if it has a consistent answer set. The set of answer sets of P is denoted by AS(P).
- A literal L is a consequence of skeptical/credulous reasoning in a program P if L is included in every/some answer set of P.
- For a consistent program P, define
 skp(P) = ∩_{S∈AS(BUE)} S and crd(P) = U_{S∈AS(BUE)} S

Abductive Logic Program

- Abductive program (P, A) where P and A are GEDPs, respectively representing a background theory and a candidate hypothesis.
- Every element in A is called an abducible.
- Given an observation O as a ground literal,
 E(⊆H) is a credulous/skeptical explanation of O in (P, A) if O is included in some/every
 consistent answer set of B ∪ E.

Example

- P: watchTV; sleeping ← holiday, not busy, working ← holiday, busy, holiday ←.
 - A: busy.
- P has two answer sets: { holiday, watchTV } and { holiday, sleeping }. So, O1 = watchTV has the credulous explanation E1={}.
- P U { busy } has the single answer set: { holiday, busy, working }. So, O2= working has the skeptical explanation E2={ busy }.

Remark

- The above definition also characterizes inductive logic programming.
- Given a finite set G of ground literals as examples, build a rule O ← G and put
 B' = B U { O ← G }. Then,
 B U E |= G iff B' U E |= O.
- Again, induction is characterized as abduction in the context of logic programming.

Equivalence of Explanations in First-Order Abduction

Definition Given an abductive theory (B,H), two explanations E1 and E2 are equivalent if, for any observation O, E1 is an explanation of O in (B,H) iff E2 is an explanation of O in (B,H).

Result

• <u>Theorem</u> Let (B,H) be an abductive theory. Then, two explanations E1 and E2 are equivalent iff $B \cup E1 \equiv B \cup E2$.

Given

B: $p \supset q$, $q \supset p$, $p \land q \supset r$ H: $p \land q$, E1={ p }, E2={ q }, E3={ p, q } are all equivalent explanations.

Equivalence of Explanations in Abductive LP

- <u>Theorem</u> Let $\langle P, A \rangle$ be an abductive program. Then, two explanations E1 and E2 are equivalent if $AS(P \cup E1) = AS(P \cup E2)$ where $P \cup E1$ and $P \cup E2$ are consistent.
- Given
 - P: $p \leftarrow not q$, $q \leftarrow not p$, $r \leftarrow not r$ A: $r \leftarrow p$, $r \leftarrow not q$,

E1={ $r \leftarrow p$ }, E2={ $r \leftarrow not q$ }, E3={ $r \leftarrow p$, $r \leftarrow not q$ } are all equivalent explanations.

Equivalence of Observtions in First-Order Abduction

Definition Given an abductive theory (B,H), two observations O1 and O2 are equivalent if, for any E(⊆H), E is an explanation of O1 in (B,H) iff E is an explanation of O2 in (B,H).

Result

• <u>Theorem</u> Let (B,H) be an abductive theory. Then, two observations O1 and O2 are equivalent iff $B \cup E \mid = O1 \equiv O2$ for any $E \subseteq H$ such that $B \cup E$ is consistent.

Given

B1: $p \supset q$, H1: p, q, O1= p and O2= $p \land q$ are equivalent. But O1 and O2 are not equivalent in B2: $p \lor q$, H2: p, q.

Equivalence of Observations in Abductive LP

- <u>Theorem</u> Let (P, A) be an abductive program, O1 and O2 be observations.
 - □ O1 and O2 are equivalent in credulous abduction iff O1 \in crd(P \cup E) \Leftrightarrow O1 \in crd(P \cup E)
 - □ O1 and O2 are equivalent in skeptical abduction iff O1 \in skp(P \cup E) \Leftrightarrow O2 \in skp(P \cup E)
 - for any $E \subseteq A$ s.t. $P \cup E$ is consistent.

Example

Given P: wet ← rain, not ¬ wet, ¬ wet ← rain, not wet A: rain

- Putting $E = \{\}, P \cup E$ has the answer set $\{\}$.
- Putting E={rain }, P ∪ E has two answer sets {rain, wet } and {rain, ¬ wet }.
- Then, O1 = wet and $O2 = \neg wet$ are equivalent in both credulous/skeptical abduction.

Summary of Results necessary and sufficient conditions

Logic	Background Theory		Explanation	Observation
	explainable	explanatory		
FOL (B1,H1) v.s. (B2,H2)	Ext(B1,H1) =Ext(B2,H2)*	B1≡B2	$B \cup E1 \\ \equiv B \cup E2$	$B \cup E =$ O1 ≡ O2 for any E⊆H
ALP (credulous) 〈P1, A1〉 v.s. 〈P2, A2〉	$U_{E \in A1} \operatorname{crd}(B1)$ $\cup E) = U_{F \in A2}$ $\operatorname{crd}(B2 \cup F)$	B1 and B2 are strongly equivalent wrt A1=A2.	$AS(P \cup E1) = AS(P \cup E2)$	$01 \in crd(P \cup E) \Leftrightarrow 01 \in crd(P \cup E)$
(skeptical)	$\exists E \in A1, \\ \exists F \in A2 \text{ s.t.} \\ skp(P1 \cup E) \\ = skp(P2 \cup F) \\ \end{cases}$	B1 and B2 are strongly equivalent wrt A1=A2.	$AS(P \cup E1) = AS(P \cup E2)$	$01 \in skp(P \cup E) \Leftrightarrow 02 \in skp(P \cup E)$

* Ext(B,H)=Th(B \cup S) where S is a maximal subset of H s.t. B \cup S is consistent.

Summary of Results Computational Complexities (Propositional Case)

Logic	Background Theory		Explanation	Observation
	explainable	explanatory		
FOL (B1,H1) v.s. (B2,H2)	ΠP_2^{-} complete*	coNP- complete	coNP- complete	coNP- complete
ALP (credulous) 〈P1, A1〉 v.s. 〈P2, A2〉	Π_{2}^{P} -hard (in Δ_{3}^{P})	Π ^P 2- complete	Π ₂ - complete	Σ ^P ₂ -complete
(skeptical)	$\frac{\Pi P_2 - hard}{(in \Delta P_4)}$	Π ^P 2- complete	Π _{P2} - complete	Π ^P ₂ -complete

*Testing explainable equivalence of Horn programs is tractable.

Conclusion

- Logical equivalence characterizes equivalence problems in first-order abduction. In abductive LP, strong equivalence, weak equivalence, and other equivalence notions characterize different problems.
- What makes comparison of abductive programs more complicated is nonmonotonicity in ALP, which also makes computational task of equivalence testing harder than first-order abduction in general.
- From the viewpoint of program development, program transformations such as unfold/fold do not preserve strong equivalence of programs. Hence, they are not used for optimizing background theories without changing the results of abduction/induction in general.