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Equivalence issues in AI and 
Program Development

Identification: identifying different 
knowledge bases developed by different 
experts 
Verification: correct implementation of a 
given declarative specification
Optimization: transforming a program to an 
efficient coding 
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Program Equivalence in LP

P1 and P2 are weakly equivalent if they 
have the same declarative meaning. 
P1 and P2 are strongly equivalent if   
P1∪R and P2∪R have the same 
declarative meaning for any program R. 

† These equivalence relations compare 
capabilities of deductive reasoning 
between programs.



4

Comparing non-deductive 
capabilities between programs

Intelligent agents perform               
non-deductive commonsense reasoning 
as well as deductive reasoning. 
Comparing capabilities of non-deductive 
reasoning such as abduction and
induction is meaningful to measure  
intelligence of agents.



5

Abduction and Induction 

Abduction and induction both produce 
hypotheses to explain observations using 
background theories.  
There are at least 3 parameters in this 
task: background theories, explanations, 
and observations.  
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Equivalence of background theories: 
Two background theories are equivalent if they 
produce the same explanations for any 
observation.  
Equivalence of explanations: 
Two explanations are equivalent if they account 
for the same observation under a given 
background theory.  
Equivalence of observations: 
Two observations are equivalent if they produce 
the same explanations under a given background 
theory.  

Equivalence issues 
in abduction and induction 
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Abductive Equivelence
[Inoue and Sakama, IJCAI-05, MBR-06]

Explainable equivalence considers 
whether two theories have the same 
explainability for any observation. 
Explanatory equivalence considers 
whether two theories have the same 
explanations for any observation.

Necessary and sufficient conditions are 
provided for abductive equivalence in 
FOL and abductive logic programming.
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Example
B1={ rained → wet-grass } and 
B2={ sprinkler-on → wet-grass } with 
H={ rained, sprinkler-on }
are explainably equivalent, because 
wet-grass,  rained,  sprinkler-on
are all explainable in both (B1,H) and (B2,H).
Two theories are not explanatorily equivalent, 
because wet-grass  is explained by rained in 
B1, but it is not explained by rained in B2. 
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Inductive Equivalence
[Sakama & Inoue, ILP-05]

A background theory is inductively 
equivalent to another background theory 
if they induce the same hypothesis in face 
of any example. 
Conditions for inductive equivalence are 
compared in different ILP systems.  



Remaining Issues

Conditions for equivalence of explanations.    
Conditions for equivalence of observations.  
Conditions for explainable equivalence in 
skeptical abduction. 
Computational complexities of testing those 
equivalences.  

We investigate these issues in both FOL and 
(nonmonotonic) logic programming. 



Abduction in FOL 

Abductive theory (B, H) where B and H are sets 
of first-order formulas, respectively representing 
a background theory and a candidate hypothesis.  

Given an observation O as any formula, E(⊆H) 
is an explanation of O if 

B ∪ E |= O
B ∪ E is consistent.



Remark

The above definition also characterizes 
(explanatory) induction. 
Given a finite set G of examples, induction finds 
a hypothesis E satisfying 

B ∪ E |= G  where B ∪ E is consistent. 

Put O=∧g∈G g  and  H=F,  where F is the set of 
all formulas. 

Then, induction is characterized as abduction, 
and we do not distinguish them hereafter. 



General Extended Disjunctive 
Program (GEDP)

Rules  
L1 ;…; Lk ; not Lk+1 ;…; not Ll

← Ll+1 ,…, Lm , not Lm+1 ,…, not Ln

where Li are literals. 

Meaning 
If all Ll+1 ,…, Lm  hold and all Lm+1 ,…, Ln do not 
hold, then some of L1 ,…, Lk hold or some of 
Lk+1 ,…, Ll do not hold.   



Answer Set Semantics

A declarative meaning of a GEDP is given by the 
answer set semantics (Gelfond and Lifschitz). 
A program is consistent if it has a consistent answer 
set. The set of answer sets of P is denoted by AS(P). 
A literal L is a consequence of skeptical/credulous
reasoning in a program P if L is included in 
every/some answer set of P. 
For a consistent program P, define 

skp(P)=∩S∈AS(B U E) S and   crd(P)=∪S∈AS(B U E) S



Abductive Logic Program 

Abductive program 〈P, A〉 where P and A are 
GEDPs, respectively representing a background 
theory and a candidate hypothesis. 
Every element in A is called an abducible.  

Given an observation O as a ground literal, 
E(⊆H) is a credulous/skeptical explanation of O 
in 〈P, A〉 if O is included in some/every
consistent answer set of B ∪ E .  
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Example

P: watchTV ; sleeping ← holiday, not busy,
working ← holiday, busy, 
holiday ←. 

A: busy .
P has two answer sets: {holiday, watchTV } 
and {holiday, sleeping }. So, O1=watchTV
has the credulous explanation E1={} .  
P U { busy } has the single answer set: 
{holiday, busy, working }. So, O2=working
has the skeptical explanation E2={ busy }. 



Remark

The above definition also characterizes inductive 
logic programming. 
Given a finite set G of ground literals as 
examples, build a rule O ← G and put 
B’ = B U { O ← G }.  Then, 

B U E |= G  iff B’ U E |= O .
Again, induction is characterized as abduction in 
the context of logic programming.  



Equivalence of Explanations in 
First-Order Abduction

Definition Given an abductive theory 
(B,H), two explanations E1 and E2 are 
equivalent if, for any observation O,   
E1 is an explanation of O in (B,H) iff
E2 is an explanation of O in (B,H). 
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Result

Theorem Let (B,H) be an abductive theory. 
Then, two explanations E1 and E2 are 
equivalent iff B ∪ E1 ≡ B ∪ E2 . 

Given 
B:  p ⊃ q , q ⊃ p , p∧q ⊃ r  
H:  p , q , 

E1={ p }, E2={ q }, E3={ p, q } 
are all equivalent explanations. 
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Equivalence of Explanations in 
Abductive LP

Theorem Let 〈P, A〉 be an abductive
program. Then, two explanations E1 and E2 
are equivalent if AS(P ∪ E1)=AS(P ∪ E2)
where  P ∪ E1 and P ∪ E2 are consistent. 
Given 
P :    p ← not q , q ← not p , r ← not r
A : r ← p , r ← not q , 

E1={ r ← p }, E2={ r ← not q }, E3={r ← p ,
r ← not q } are all equivalent explanations. 



Equivalence of Observtions in 
First-Order Abduction

Definition Given an abductive theory 
(B,H), two observations O1 and O2   
are equivalent if, for any E(⊆H),               
E is an explanation of O1 in (B,H) 
iff E is an explanation of O2 in (B,H). 
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Result

Theorem Let (B,H) be an abductive theory. 
Then, two observations O1 and O2 are 
equivalent iff B ∪ E |= O1 ≡ O2 for any 
E⊆H such that B ∪ E is consistent. 
Given 
B1:  p ⊃ q , H1:  p , q , 

O1= p   and O2=p∧q  are equivalent.  
But O1 and O2 are not equivalent in  
B2:  p ∨q , H2:  p , q  .
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Equivalence of Observations in 
Abductive LP

Theorem Let 〈P, A〉 be an abductive
program, O1 and O2 be observations. 

O1 and O2 are equivalent in credulous 
abduction iff O1∈crd(P ∪ E) ⇔ O1∈crd(P
∪ E) 
O1 and O2 are equivalent in skeptical 

abduction iff O1∈skp(P ∪ E) ⇔ O2∈skp(P
∪ E) 

for any E⊆A  s.t. P ∪ E is consistent.
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Example

Given 
P :    wet ← rain, not ￢ wet ,
￢ wet ← rain, not wet   

A : rain 
Putting E={}, P ∪ E has the answer set {}. 
Putting E={rain }, P ∪ E has two answer sets 
{rain, wet } and {rain, ￢ wet }. 

Then, O1=wet and O2= ￢wet are equivalent 
in both credulous/skeptical abduction.  



Summary of Results
necessary and sufficient conditions

Logic Background Theory Explanation Observation

explainable explanatory

FOL
(B1,H1)  
v.s.  (B2,H2)

Ext(B1,H1)
=Ext(B2,H2)*

B1≡B2 B ∪ E1       
≡ B ∪ E2

B ∪ E |= 
O1 ≡ O2 for 
any E⊆H 

ALP (credulous)
〈P1, A1〉
v.s. 〈P2, A2〉

UE∈A1 crd(B1 

∪E) ＝UF∈A2

crd(B2 ∪ F) 

B1 and B2 
are strongly 
equivalent 
wrt A1=A2. 

AS(P ∪ E1)
=AS(P ∪ E2)

O1∈crd(P ∪
E) ⇔
O1∈crd(P ∪
E) 

(skeptical) ∃E∈A1,  
∃F∈A2 s.t.
skp(P1∪ E) 
=skp(P2 ∪F)

B1 and B2 
are strongly 
equivalent 
wrt A1=A2. 

AS(P ∪ E1)
=AS(P ∪ E2)

O1∈skp(P ∪
E) ⇔
O2∈skp(P ∪
E) 

* Ext(B,H)=Th(B ∪ S) where S is a maximal subset of H  s.t. B ∪S is consistent. 



Summary of Results
Computational Complexities 

(Propositional Case)

Logic Background Theory Explanation Observation

explainable explanatory

FOL
(B1,H1)  
v.s.  (B2,H2)

ΠP
2-

complete*
coNP-
complete 

coNP-
complete

coNP-
complete

ALP (credulous)
〈P1, A1〉
v.s. 〈P2, A2〉

ΠP
2-hard

(in ΔP
３）

ΠP
2-

complete
ΠP

2-
complete 

∑P
2-complete 

(skeptical) ΠP
2-hard

(in ΔP
4）

ΠP
2-

complete 
ΠP

2-
complete 

ΠP
2-complete 

*Testing explainable equivalence of Horn programs is tractable. 



Conclusion

Logical equivalence characterizes equivalence problems in 
first-order abduction. In abductive LP, strong equivalence, 
weak equivalence, and other equivalence notions 
characterize different problems. 
What makes comparison of abductive programs more 
complicated is nonmonotonicity in ALP, which also makes 
computational task of equivalence testing harder than 
first-order abduction in general.   
From the viewpoint of program development, program 
transformations such as unfold/fold do not preserve 
strong equivalence of programs. Hence, they are not 
used for optimizing background theories without changing 
the results of abduction/induction in general.  
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