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1.Introduction

• Context:

Nonlinear dynamic problems
−→ difficulties to treat problems (control etc.) dealing with nonlinear dynamic systems

2



1.Introduction

• Context:

Nonlinear dynamic problems
−→ difficulties to treat problems (control etc.) dealing with nonlinear dynamic systems

• Principle presented:

Methodology to make operatorial transformations of dynamic systems to simplify associ-
ated problems

−→ framwork : functional equations (trajectories)
−→ simplification of abstract equation by graph parametrizing
−→ particular case: operatorial parametrizing of dynamic systems
−→ concret usuable operators and associated tools
−→ application to fed-batch bioreactor equations
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2.Operatorial formulation of dyn. eq.

Classical local formulation of differential equations:

dx(t)
dt

= f(u(t), x(t)), t ∈]0, T [

with u(t) ∈ Rm, x(t) ∈ Rn, f : Rm × Rn → Rn.
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2.Operatorial formulation of dyn. eq.

Classical local formulation of differential equations:

dx(t)
dt

= f(u(t), x(t)), t ∈]0, T [

with u(t) ∈ Rm, x(t) ∈ Rn, f : Rm × Rn → Rn.

−→ Can be considered as trajectorial equations:
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2.Operatorial formulation of dyn. eq.

Classical local formulation of differential equations:

dx(t)
dt

= f(u(t), x(t)), t ∈]0, T [

with u(t) ∈ Rm, x(t) ∈ Rn, f : Rm × Rn → Rn.

−→ Can be considered as trajectorial equations:

∂tx = f(u, x)

where u, x are belonging to functionnal spaces (e.g: L2([0, T ],U), C1([0, T ],X), etc.)
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2.Operatorial formulation of dyn. eq.

Classical local formulation of differential equations:

dx(t)
dt

= f(u(t), x(t)), t ∈]0, T [

with u(t) ∈ Rm, x(t) ∈ Rn, f : Rm × Rn → Rn.

−→ Can be considered as trajectorial equations:

∂tx = f(u, x)

where u, x are belonging to functionnal spaces (e.g: L2([0, T ],U), C1([0, T ],X), etc.).

−→ Trajectories are points those spaces, function of those points are operators
−→ More global view, more powerfull
−→ Richer class of dynamic systems than classical differential systems

Example of dynamic operator: integration operator

∂−1
t :

C0([0, T ],X) → C1([0, T ],X)
x 7−→ (∂−1

t x)(t) =
∫ t
0 x
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3.Operatorial parametrizing of dyn. sys.

Graph parametrizing of an abstract equation (1)

• We consider the following abstract equation of unknown X, depending on data u:

Φ(u,X) = 0, u ∈ U , X ∈ X ,

with U and X two manifolds.
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3.Operatorial parametrizing of dyn. sys.

Graph parametrizing of an abstract equation (1)

• We consider the following abstract equation of unknown X, depending on data u:

Φ(u,X) = 0, u ∈ U , X ∈ X ,

with U and X two manifolds.

• supposed to be well-posed, i.e: there exists a continuous application F such that:

X = F(u)

−→ In general, F cannot be explicited, or is too complex to be used (with nonlinear
equations for example...)
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3.Operatorial parametrizing of dyn. sys.

Graph parametrizing of an abstract equation (2)

• Let consider an operator:
A : U × X → Y

such that A| graph(F) is an homeomorphism between graph(F) and Y.

11



3.Operatorial parametrizing of dyn. sys.

Graph parametrizing of an abstract equation (2)

• Let consider an operator:
A : U × X → Y

such that A| graph(F) is an homeomorphism between graph(F) and Y.

• We denote
(B,C) := (A| graph(F))

−1 : Y → U × X
and

y := A(u,X).

−→ Then, any solution of Φ(u,X) = 0 is parametrized by y ∈ Y

−→ Solutions are directly accessible without resolving Φ(u,X) = 0.
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3.Operatorial parametrizing of dyn. sys.

Interest of graph parametrizing

• Consider for exemple the constrained optimisation problem:

min
u∈U

{J(u,X), Φ(u,X) = 0};
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3.Operatorial parametrizing of dyn. sys.

Interest of graph parametrizing

• Consider for exemple the constrained optimisation problem:

min
u∈U

{J(u,X), Φ(u,X) = 0};

• Then, by using graph parametrizing relations:

J(u,X) = J(B(y),C(y)) := J̃(y)

−→ min
y∈Y

J̃(y)

the constraint Φ(u,X) = 0 being finalelly resumed in the fact that y ∈ Y.

−→ unconstrained optimisation problem

−→ the solution u∗ of initial problem is deduced with u∗ = B(y∗), without resolving
Φ(u,X) = 0
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3.Operatorial parametrizing of dyn. sys. Link with

curve parametrizing

x2 + u2 = 1, x ≥ 0, u ≥ 0
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3.Operatorial parametrizing of dyn. sys. Link with

curve parametrizing

x2 + u2 = 1, x ≥ 0, u ≥ 0

−→ resolution : x =
√

1− u2
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3.Operatorial parametrizing of dyn. sys. Link with

curve parametrizing

x2 + u2 = 1, x ≥ 0, u ≥ 0

−→ resolution : x =
√

1− u2

−→ parametrizing : y =Arctan(u
x)
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3.Operatorial parametrizing of dyn. sys. Link with

curve parametrizing

x2 + u2 = 1, x ≥ 0, u ≥ 0

−→ resolution : x =
√

1− u2

−→ parametrizing : y =Arctan(u
x)

⇒
{

u = cos(y)
x = sin(y)
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3.Operatorial parametrizing of dyn. sys. Link with

curve parametrizing

x2 + u2 = 1, x ≥ 0, u ≥ 0

−→ resolution : x =
√

1− u2

−→ parametrizing : y =Arctan(u
x)

⇒
{

u = cos(y)
x = sin(y)

Φ(u,X) = 0, u ∈ U , X ∈ X

−→ x = F(u) (implicit)
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3.Operatorial parametrizing of dyn. sys. Link with

curve parametrizing

x2 + u2 = 1, x ≥ 0, u ≥ 0

−→ resolution : x =
√

1− u2

−→ parametrizing : y =Arctan(u
x)

⇒
{

u = cos(y)
x = sin(y)

Φ(u,X) = 0, u ∈ U , X ∈ X

−→ x = F(u) (implicit)

y := A(u,X) with A : U × X → Y
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3.Operatorial parametrizing of dyn. sys. Link with

curve parametrizing

x2 + u2 = 1, x ≥ 0, u ≥ 0

−→ resolution : x =
√

1− u2

−→ parametrizing : y =Arctan(u
x)

⇒
{

u = cos(y)
x = sin(y)

Φ(u,X) = 0, u ∈ U , X ∈ X

−→ x = F(u) (implicit)

y := A(u,X) with A : U × X → Y

⇒
{

u = B(y)
x = C(y)
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3.Operatorial parametrizing of dyn. sys.

Static example

• Consider the static equation:

Φ(u,X) = 0 :
{

x2 − u cos(x1) = 0
ex2 − x1x2 = 0

, u ∈ R, X = (x1, x2)T

−→ hard resolution (i.e: relation X = F(u) is implicit)
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3.Operatorial parametrizing of dyn. sys.

Static example

• Consider the static equation:

Φ(u,X) = 0 :
{

x2 − u cos(x1) = 0
ex2 − x1x2 = 0

, u ∈ R, X = (x1, x2)T

−→ hard resolution (i.e: relation X = F(u) is implicit)

−→ We consider de parametrizing y = A(u,X) = u cos(x1)
−→ Then, we have the expression of solutions:





u = y

cos( ey

y
)

= B(y)

X =

(
y
ey

y

)
= C(y)
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3.Operatorial parametrizing of dyn. sys.

Static example

• Consider the static equation:

Φ(u,X) = 0 :
{

x2 − u cos(x1) = 0
ex2 − x1x2 = 0

, u ∈ R, X = (x1, x2)T

−→ hard resolution (i.e: relation X = F(u) is implicit)

−→ We consider de parametrizing y = A(u,X) = u cos(x1)
−→ Then, we have the expression of solutions:





u = y

cos( ey

y
)

= B(y)

X =

(
y
ey

y

)
= C(y)

• We want to use the formalism previously introduced to adopt the same approach with
dynamic systems

−→ numbers ”are replaced by” trajectories and, consequently, applications A, B, C
will be operators on those trajectories.

24



3.Operatorial parametrizing of dyn. sys.

Particular case of dynamic systems (1)

• Dynamic systems of the form:

HX −G(u,X) = Φ(u,X) = 0

with H linear dynamic operator, G static (nonlinear) operator.

25



3.Operatorial parametrizing of dyn. sys.

Particular case of dynamic systems (1)

• Dynamic systems of the form:

HX −G(u,X) = Φ(u,X) = 0

with H linear dynamic operator, G static (nonlinear) operator.

• For example, classical differential systems:
{

∂tX = g(t, u, X), t ∈]0, T [
X(0) = X0,

are particular cases by denoting:

H =
(

∂t

< δ, · >
)

, G(u,X) =
(

g(t, u, X)
X0

)
,

where < δ, · > is the dirac distribution operator, ∂t is the time-derivative operator, U and
X are manifolds of functionnal spaces, for example U ⊂ L∞(0, T ;Rm), X ⊂ C0([0, T ];Rn).
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3.Operatorial parametrizing of dyn. sys.

Particular case of dynamic systems (2)

• The previous formulation allows to consider more genreral dynamic systems by rem-
placing ∂t by a convolutive dynamic operator H(∂t), non necessary time-local

−→ larger class of nonlinear dynamic systems (Volterra, PDE’s, hybrid systems etc.)

−→ richer possibilities of transformations

−→ a mathematical framework must be chosen to manipulate operators: addition,
composition, inversion etc., that is an algebra of operators
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3.Operatorial parametrizing of dyn. sys.

Particular case of dynamic systems (2)

• The previous formulation allows to consider more genreral dynamic systems by rem-
placing ∂t by a convolutive dynamic operator H(∂t), non necessary time-local

−→ larger class of nonlinear dynamic systems (Volterra, PDE’s, hybrid systems etc.)

−→ richer possibilities of transformations

−→ a mathematical framework must be chosen to manipulate operators: addition,
composition, inversion etc., that is an algebra of operators

• Dynamic system are often associated to control problems, identification problems etc.

−→ Aim : find judicous operatorial parametrizing and operatorial transforma-
tions of the dynamic system that simplify the resolution of the problem

−→ specially interesting when the dynamic system is nonlinear and hard to deal with
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4.Concretely usuable operators

Brief summary (1)

Dynamic equations under the form:

Φ(u,X) = 0, u ∈ U , X ∈ X
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4.Concretely usuable operators

Brief summary (1)

Dynamic equations under the form:

Φ(u,X) = 0, u ∈ U , X ∈ X

Parametrizing :
y = A(u,X)

−→
{

u = B(y)
X = C(y)
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4.Concretely usuable operators

Brief summary (1)

Dynamic equations under the form:

Φ(u,X) = 0, u ∈ U , X ∈ X (1)

Parametrizing :
y = A(u,X)

−→
{

u = B(y)
X = C(y)

(2)

Then a control problem on (1), for example:

min
u∈U

{J(u,X), Φ(u,X) = 0}

becomes:
min
y∈Y

J̃(y)

−→ Resolution of this simplified problem in y

−→ Deduction of corresponding command u from (2) without resolving (1)

31



4.Concretely usuable operators

Brief summary (2)

Of course, the choice of parametrizing operator is important, because any parametriz-
ing doesn’t necessary simplify the problem, at least for two reasons:

1. The problem in y:
min
y∈Y

J̃(y) (with J̃(y) := J(B(y),C(y)))

must be concretely soluble

2. u and X must me concretely deduced from y

−→ Operators B and C must be practicable

−→ They must lead to a class of operators which we can deal with numerically,
with eventual contraint of computation cost for real-time applications
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4.Concretely usuable operators

Classe of usuable operators

Principal classes of interesting operators (algebras in fact):

• Static operators: (G(f))(t) = G(t, g(t)) with G classical function

−→ very simple to evaluate (as cheap as evaluating a function)
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4.Concretely usuable operators

Classe of usuable operators

Principal classes of interesting operators (algebras in fact):

• Static operators: (G(f))(t) = G(t, g(t)) with G classical function

−→ very simple to evaluate (as cheap as evaluating a function)

• Convolution opertors: large class of linear operators, often denoted H(∂t). Their
action on a function u, denoted H(∂t)u, can be evaluated with a reasonable cost with
Fast Fourrier Transform or Diffusive Representation (compatible with real-time appli-
cations)
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4.Concretely usuable operators

Classe of usuable operators

Principal classes of interesting operators (algebras in fact):

• Static operators: (G(f))(t) = G(t, g(t)) with G classical function

−→ very simple to evaluate (as cheap as evaluating a function)

• Convolution opertors: large class of linear operators, often denoted H(∂t). Their
action on a function u, denoted H(∂t)u, can be evaluated with a reasonable cost with
Fast Fourrier Transform or Diffusive Representation (compatible with real-time appli-
cations)

• Time-scaling transformations (TST) operators (cf next slide)
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4.Concretely usuable operators

Classe of usuable operators

Principal classes of interesting operators (algebras in fact):

• Static operators: (G(f))(t) = G(t, g(t)) with G classical function

−→ very simple to evaluate (as cheap as evaluating a function)

• Convolution opertors: large class of linear operators, often denoted H(∂t). Their
action on a function u, denoted H(∂t)u, can be evaluated with a reasonable cost with
Fast Fourrier Transform or Diffusive Representation (compatible with real-time appli-
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• Time-scaling transformations (TST) operators (cf next slide)

• Others operators like t-local realisation operators (diffusive operators), quasi-static op-
erators etc.
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Classe of usuable operators

Principal classes of interesting operators (algebras in fact):
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4.Concretely usuable operators

Classe of usuable operators

Principal classes of interesting operators (algebras in fact):

• Static operators: (G(f))(t) = G(t, g(t)) with G classical function

−→ very simple to evaluate (as cheap as evaluating a function)

• Convolution opertors: large class of linear operators, often denoted H(∂t). Their
action on a function u, denoted H(∂t)u, can be evaluated with a reasonable cost with
Fast Fourrier Transform or Diffusive Representation (compatible with real-time appli-
cations)

• Time-scaling transformations (TST) operators (cf next slide)

• Others operators like t-local realisation operators (diffusive operators), quasi-static op-
erators etc.

• and, of course any finite combinaison of those kind of operators

−→ A judicious parametrizing must (when possible of course) transform the nonlinear
dynamic problem (ie: F) into a problem that deals only with finite combinaison of dynamic
linear operators, static nonlinear operators etc.
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4.Concretely usuable operators

Few words on Time-Scaling Transformations (TST)

• Some problems can present an intrinsic time under which equations are simplified

• Classical change of time is an operator:

x 7→ x ◦ ϕ

where ϕ(t) is the new time scale, ϕ is an increasing function.
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4.Concretely usuable operators

Few words on Time-Scaling Transformations (TST)

• Some problems can present an intrinsic time under which equations are simplified

• Classical change of time is an operator:

x 7→ x ◦ ϕ

where ϕ(t) is the new time scale, ϕ is an increasing function.

• We consider that ϕ can be an operatorial transformation of a function v that pilot
the clock, that means ϕ = Φ(v) with Φ an operator.

−→ Moreover, the TST can directly depends on variables of the problem (for
example u and/or X)

−→ Rich class of TST

• Example: S : (v, x) 7→ x ◦ (∂−1
t v)−1
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5.Application to fed-batch bioreactors equations

Model under consideration

System of differential equations of fed-batch bioreactor:




∂tx = µ(X) x− xu

∂ts = −a1µ(X) x + (si − s) u

∂tp = a2µ(X) x− p u

X(0) = X0,

⇔
Φ(u,X0︸ ︷︷ ︸, X) = 0

data of the problem

with X := (x, s, p)T , x, s, p the respectives concentrations of biomass, substrate and
product, µ(X) the growth rate (Monod etc.), si the substrate concentration in feed, u (the
command) the dilution of feed and X0 initial conditions.

−→ nonlinear dynamic system
−→ difficulties to develop control techniques of such a model (optimization of product

production, that is optimal control, etc.)
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5.Application to fed-batch bioreactors equations

Model under consideration

System of differential equations of fed-batch bioreactor:




∂tx = µ(X) x− xu

∂ts = −a1µ(X) x + (si − s) u

∂tp = a2µ(X) x− p u

X(0) = X0,

⇔
Φ(u,X0︸ ︷︷ ︸, X) = 0

data of the problem

with X := (x, s, p)T , x, s, p the respectives concentrations of biomass, substrate and
product, µ(X) the growth rate (Monod etc.), si the substrate concentration in feed, u (the
command) the dilution of feed and X0 initial conditions.

−→ nonlinear dynamic system
−→ difficulties to develop control techniques of such a model (optimization of product

production, that is optimal control, etc.)

−→ a judicious parametrizing (using TST) leads to a rather simple equivalent sys-
tem
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5.Application to fed-batch bioreactors equations

Time transformation of bioreactor equations

• We consider a time-scale changing ϕ such that ∂tϕ = u > 0, with ϕ(0) = 0

−→ ϕ is an increasing function
−→ we remark that this change of time depends on the command u of the system
−→ Remark: it is equivalent to say: ϕ = ∂−1

t u
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5.Application to fed-batch bioreactors equations

Time transformation of bioreactor equations

• We consider a time-scale changing ϕ such that ∂tϕ = u > 0, with ϕ(0) = 0

−→ ϕ is an increasing function
−→ we remark that this change of time depends on the command u of the system
−→ Remark: it is equivalent to say: ϕ = ∂−1

t u

• By denoting by ·̃ the quantities after change of time (i.e: in time τ), and using classical
differential relation dx

dt = dx
dτ

dτ
dt , we remark this time-scale changing leads to the following

differential system: 



∂τ x̃ = −x̃ + µ(X̃)x̃
ũ

∂τ s̃ = −s̃ + si − a1
µ(X̃)x̃

ũ

∂τ p̃ = −p̃ + a2
µ(X̃)x̃

ũ ,

−→ after changing time to intrinsic biological time, governed by dilution of feed,
by the system is simplified

−→ It appears that the quantity µ(X̃)x̃
ũ can be a judicious parametrizing
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5.Application to fed-batch bioreactors equations

Associated TST operator

We define the operator of TST previously used by:

S : (u, x) 7−→ x̃ := x ◦ (
∂−1

t u
)−1

−→ the ”reversal” TST operator S−1(u, x̃) 7−→ x is given by:

x = x̃ ◦ ∂−1
t u

−→ we can also express those transormation depending on ũ:

x̃ = x ◦ ∂−1
τ

1
ũ

x = x̃ ◦
(

∂−1
τ

1
ũ

)−1

Remark : those relations can (fortunatelly) be applied to u and ũ
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5.Application to fed-batch bioreactors equations

Operatorial parametrization (1)

We define the following parametrization by y of bioreactor equations:

A : (u, x) 7−→ y = (Ã ◦ S)(u,X)

with

Ã : (ũ, X̃) 7−→
(

µ(X̃)x̃
ũ

, 〈δ, x̃〉 , 〈δ, s̃〉 , 〈δ, p̃〉
)T
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5.Application to fed-batch bioreactors equations

Operatorial parametrization (1)

We define the following parametrization by y of bioreactor equations:

A : (u, x) 7−→ y = (Ã ◦ S)(u,X)

with

Ã : (ũ, X̃) 7−→
(

µ(X̃)x̃
ũ

, 〈δ, x̃〉 , 〈δ, s̃〉 , 〈δ, p̃〉
)T

−→ Under this parametrizing, the system of equations becomes:





∂τ x̃ = −x̃ + y1

∂τ s̃ = −s̃ + si − a1y1

∂τ p̃ = −p̃ + a2y1,

−→ The initial nonlinear system has been transformed into an equivalent linear
one after the operatorial parametrizing y = A(u,X)

−→ Classical methods can be investigated on this equivalent system: stabilization, regu-
lation, optimal control etc.
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5.Application to fed-batch bioreactors equations

Operatorial parametrization (2)

Operators (B,C) associated are given by:




∂τ x̃ = −x̃ + y1

∂τ s̃ = −s̃ + si − a1y1

∂τ p̃ = −p̃ + a2y1,

+ y = A(u,X)

⇒




(
u

X0

)
= B(y) = S−1 ◦ B̃

X = C(y) = S−1I3 ◦ C̃,

with:

C̃(y) =




(∂τ + 1)−1(y1) + y2 e−·

(∂τ + 1)−1(si − a1 y1) + y3 e−·

(∂τ + 1)−1(a2 y1) + y4 e−·




B̃(y) =




µ(C(y))C1(y)
y1

y2

y3

y4


 .

−→ All involved operators are finite combinaison of static/linear dynamic/TST operators
−→ Concretely usuable

48



5.Application to fed-batch bioreactors equations

Operatorial parametrization (3)

• After operatorial parametrizing, classical control problems can be treated on this fed-
batch model. For example:

max
u∈U

{J(u,X), Φ(u,X) = 0}

with J(u,X) = p(T ) (i.e: optimization of the production of the product), becomes:

max
y∈Y

(C3(y))(T )

−→ linear objective function (because C3 is a linear dynamic operator), to optimize
without contraint

−→ determination of y∗

−→ u∗ = B(y∗) : optimal open-loop command

• Many other possibilities: trajectory planification around optimal command, closed-loop
stabilisation, etc.
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5.Application to fed-batch bioreactors equations

Example of closed-loop using operatorial parametrizing
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