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1.Introduction

e Context:

Nonlinear dynamic problems
— difficulties to treat problems (control etc.) dealing with nonlinear dynamic systems

e Principle presented:

Methodology to make operatorial transformations of dynamic systems to simplify associ-
ated problems

— framwork : functional equations (trajectories)

— simplification of abstract equation by graph parametrizing

— particular case: operatorial parametrizing of dynamic systems

— concret usuable operators and associated tools

— application to fed-batch bioreactor equations
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Classical local formulation of differential equations:

dx(t)
dt

with u(t) € R™, z(t) € R, f: R™ x R" — R".

= f(u(t),z(t)), t €]0,T]
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2.0peratorial formulation of dyn. eq.

Classical local formulation of differential equations:

dx(t)
dt

with u(t) € R™, z(t) € R, f: R™ x R" — R".

= f(u(t),z(t)), t €]0,T]

— Can be considered as trajectorial equations:
or = f(u,x)

where u, x are belonging to functionnal spaces (e.g: L?([0,T],U), C1([0,T],X), etc.).

— Trajectories are points those spaces, function of those points are operators
— More global view, more powerfull
— Richer class of dynamic systems than classical differential systems

Example of dynamic operator: integration operator

C°([0,T],X) — C*([0,T],X)

-1
O e O ) () = fla



3.0peratorial parametrizing of dyn. sys.
Graph parametrizing of an abstract equation (1)

e We consider the following abstract equation of unknown X, depending on data u:
P(u,X)=0, ueld, X € X,

with U4 and X two manifolds.



3.0peratorial parametrizing of dyn. sys.
Graph parametrizing of an abstract equation (1)

e We consider the following abstract equation of unknown X, depending on data u:
P(u,X)=0, ueld, X € X,

with U4 and X two manifolds.

e supposed to be well-posed, i.e: there exists a continuous application F such that:

X =F(u)

— In general, F cannot be explicited, or is too complex to be used (with nonlinear
equations for example...)



3.0peratorial parametrizing of dyn. sys.
Graph parametrizing of an abstract equation (2)

e Let consider an operator:
A:UxX—>)Y

such that A|,.pn(r) is an homeomorphism between graph(F) and ).



3.0peratorial parametrizing of dyn. sys.
Graph parametrizing of an abstract equation (2)

e Let consider an operator:
A:UxX—>)Y

such that A|,.pn(r) is an homeomorphism between graph(F) and ).

e We denote
(B, C) = (JA\graph(F))i1 Y —-Ux X

and
y = A(u, X).

— Then, any solution of ®(u, X) = 0 is parametrized by y € Y

— Solutions are directly accessible without resolving ®(u, X) = 0.
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3.0peratorial parametrizing of dyn. sys.
Interest of graph parametrizing

e Consider for exemple the constrained optimisation problem:

{tneizl;l{J(u,X), ®(u,X) =0}

e Then, by using graph parametrizing relations:

J(u, X) = J(B(y),C(y)) == J(y)

in.J
— |min (v)

the constraint ®(u, X) = 0 being finalelly resumed in the fact that y € V.

— unconstrained optimisation problem

— the solution u* of initial problem is deduced with v* = B(y*), without resolving
®(u,X)=0
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curve parametrizing
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Lz

x = sin(y)



3.0peratorial parametrizing of dyn. sys. Link with
curve parametrizing

X X
graph(F)
~
u U
?4+ul=1,2>0,u>0 S(u,X)=0,ucld, X € X
— resolution : x = V1 — u? — = = F(u) (implicit)

— parametrizing : y =Arctan(%)
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3.0peratorial parametrizing of dyn. sys. Link with
curve parametrizing

X X
graph(F)
~
u U
2?+ut=1,2>0u>0 ®(u,X)=0,ueld,XeX
— resolution : z = /1 — u? — x = F(u) (implicit)

y:=A(u,X) with A:UXxX =Y

— parametrizing : y =Arctan(%)

N { u = cos(y)

x = sin(y)



3.0peratorial parametrizing of dyn. sys. Link with
curve parametrizing

X X
graph(F)
~
u U
2?+ut=1,2>0u>0 ®(u,X)=0,ueld,XeX
— resolution : z = /1 — u2 — x = F(u) (implicit)
— parametrizing : y =Arctan(%) y:=A(u,X) with A: U X X — Y

Lzt ~{:2e0)
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Static example

e Consider the static equation:

xg —ucos(xy) =0
e*?

®(u, X)=0: { ,UGR,X:(xl,xg)T

—x122 =0
— hard resolution (i.e: relation X = F(u) is implicit)
— We consider de parametrizing y = A(u, X) = ucos(z1)
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3.0peratorial parametrizing of dyn. sys.
Static example

e Consider the static equation:

xg —ucos(xy) =0
e*?

®(u,X)=0: { ,u€R, X = (z1,29)T

—x122 =0
— hard resolution (i.e: relation X = F(u) is implicit)

— We consider de parametrizing y = A(u, X) = ucos(z1)

—— Then, we have the expression of solutions:

u= oy =B)

cos(%)

X:<Z>=0@

e We want to use the formalism previously introduced to adopt the same approach with
dynamic systems

— numbers ”are replaced by” trajectories and, consequently, applications A, B, C
will be operators on those trajectories.
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3.0peratorial parametrizing of dyn. sys.
Particular case of dynamic systems (1)

e Dynamic systems of the form:

HX —Gu, X)=®(u,X)=0

with H linear dynamic operator, G static (nonlinear) operator.

e For example, classical differential systems:

X =g(t,u, X), t €0,T]
{ X(O) = XO,

are particular cases by denoting:

= (22) o)

where < §,- > is the dirac distribution operator, d; is the time-derivative operator, U and
X are manifolds of functionnal spaces, for example U C L>(0,T;R™), X c C°([0, T]; R™).



3.0peratorial parametrizing of dyn. sys.
Particular case of dynamic systems (2)

e The previous formulation allows to consider more genreral dynamic systems by rem-
placing J; by a convolutive dynamic operator H(d;), non necessary time-local

— larger class of nonlinear dynamic systems (Volterra, PDE’s, hybrid systems etc.)

— richer possibilities of transformations

— a mathematical framework must be chosen to manipulate operators: addition,
composition, inversion etc., that is an algebra of operators



3.0peratorial parametrizing of dyn. sys.
Particular case of dynamic systems (2)

e The previous formulation allows to consider more genreral dynamic systems by rem-
placing J; by a convolutive dynamic operator H(d;), non necessary time-local

— larger class of nonlinear dynamic systems (Volterra, PDE’s, hybrid systems etc.)
— richer possibilities of transformations
— a mathematical framework must be chosen to manipulate operators: addition,

composition, inversion etc., that is an algebra of operators

e Dynamic system are often associated to control problems, identification problems etc.

— Aim : find judicous operatorial parametrizing and operatorial transforma-
tions of the dynamic system that simplify the resolution of the problem

— specially interesting when the dynamic system is nonlinear and hard to deal with
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4.Concretely usuable operators
Brief summary (1)

Dynamic equations under the form:

P(u,X)=0, ueld,X X (1)
Parametrizing :
y=A(u,X)
u=B(y)
2
LV ?

Then a control problem on (1), for example:

IuIIGiZE{l{J(u, X), ®(u,X)=0}

becomes:

inJ
min (y)

— Resolution of this simplified problem in y

— Deduction of corresponding command u from (2) without resolving (1)



4.Concretely usuable operators
Brief summary (2)

Of course, the choice of parametrizing operator is important, because any parametriz-
ing doesn’t necessary simplify the problem, at least for two reasons:

1. The problem in y:

minJ(y) (with J(y) := J(B(y), C(y)))
must be concretely soluble

2. u and X must me concretely deduced from y

— Operators B and C must be practicable

— They must lead to a class of operators which we can deal with numerically,
with eventual contraint of computation cost for real-time applications
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4.Concretely usuable operators

Classe of usuable operators

Principal classes of interesting operators (algebras in fact):

Static operators: (G(f))(t) = G(t,¢(t)) with G classical function

— very simple to evaluate (as cheap as evaluating a function)

Convolution opertors: large class of linear operators, often denoted H(0;). Their
action on a function u, denoted H(0;)u, can be evaluated with a reasonable cost with
Fast Fourrier Transform or Diffusive Representation (compatible with real-time appli-
cations)

Time-scaling transformations (TST) operators (cf next slide)

Others operators like t-local realisation operators (diffusive operators), quasi-static op-
erators etc.

and, of course any finite combinaison of those kind of operators

— A judicious parametrizing must (when possible of course) transform the nonlinear
dynamic problem (ie: F) into a problem that deals only with finite combinaison of dynamic
linear operators, static nonlinear operators etc.
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Few words on Time-Scaling Transformations (TST)

e Some problems can present an intrinsic time under which equations are simplified
e (lassical change of time is an operator:

= Top

where ¢(t) is the new time scale, ¢ is an increasing function.



4.Concretely usuable operators
Few words on Time-Scaling Transformations (TST)

e Some problems can present an intrinsic time under which equations are simplified

e (lassical change of time is an operator:

= Top

where ¢(t) is the new time scale, ¢ is an increasing function.

e We consider that ¢ can be an operatorial transformation of a function v that pilot
the clock, that means ¢ = ®(v) with ® an operator.

— Moreover, the TST can directly depends on variables of the problem (for
example u and/or X)

—— Rich class of TST

e Example: S : (v,z) — x o (9; 'v)~!



5.Application to fed-batch bioreactors equations
Model under consideration
System of differential equations of fed-batch bioreactor:

Or =pu(X)z—zu
s = —au(X)x + (s; — s)u - ®(u, Xo, X) =0

Op = asp(X)z —pu data of the problem
X(0) = Xo,
with X := (z,s,p)7, x, s, p the respectives concentrations of biomass, substrate and

product, u(X) the growth rate (Monod etc.), s; the substrate concentration in feed, u (the
command) the dilution of feed and X initial conditions.

— nonlinear dynamic system

— difficulties to develop control techniques of such a model (optimization of product
production, that is optimal control, etc.)



5.Application to fed-batch bioreactors equations
Model under consideration
System of differential equations of fed-batch bioreactor:

Or =pu(X)z—zu
s = —au(X)x + (s; — s)u - ®(u, Xo, X) =0

Op = asp(X)z —pu data of the problem
X(0) = Xo,
with X := (z,s,p)7, x, s, p the respectives concentrations of biomass, substrate and

product, u(X) the growth rate (Monod etc.), s; the substrate concentration in feed, u (the
command) the dilution of feed and X initial conditions.

— nonlinear dynamic system
— difficulties to develop control techniques of such a model (optimization of product
production, that is optimal control, etc.)

— a judicious parametrizing (using TST) leads to a rather simple equivalent sys-
tem



5.Application to fed-batch bioreactors equations
Time transformation of bioreactor equations

e We consider a time-scale changing ¢ such that dyp = u > 0, with ¢(0) =0

— ¢ is an increasing function
— we remark that this change of time depends on the command w of the system
— Remark: it is equivalent to say: ¢ = 0, Yu



5.Application to fed-batch bioreactors equations
Time transformation of bioreactor equations

e We consider a time-scale changing ¢ such that dyp = u > 0, with ¢(0) =0
— ¢ is an increasing function

— we remark that this change of time depends on the command w of the system
— Remark: it is equivalent to say: ¢ = 0, Yu

e By denoting by - the quantities after change of time (i.e: in time 7), and using classical

differential relation ‘fl—f = g—f ‘C%, we remark this time-scale changing leads to the following
differential system:
o= g uBE
05 =—5+s —aM22
~ ~ X))z
0rp = —p + a2

— after changing time to intrinsic biological time, governed by dilution of feed,
by the system is simplified

— It appears that the quantity @ can be a judicious parametrizing



5.Application to fed-batch bioreactors equations
Associated TST operator

We define the operator of TST previously used by:
S:(u,z)—T:=xo0 (Qflu)_l
— the "reversal” TST operator S™!(u,¥) — = is given by:
T =700, u
— we can also express those transormation depending on u:
T=x00. 1%

~1
rT=2xo <8T1£>
u

Remark : those relations can (fortunatelly) be applied to u and u



5.Application to fed-batch bioreactors equations
Operatorial parametrization (1)
We define the following parametrization by y of bioreactor equations:

A:(u,z) — y = (AoS)(u,X)

with

T
,(0,2) 5 (4,5) <5713>>



5.Application to fed-batch bioreactors equations
Operatorial parametrization (1)
We define the following parametrization by y of bioreactor equations:
A:(u,z) — y = (AoS)(u,X)
with

A (X)) — (“(X)“%

T
(6,2) 5 (0,5) <5715>>

—— Under this parametrizing, the system of equations becomes:

0T =—-T+ « 9
0,8 = —5+ 8 — a1y » B BioNrT_a;tor S >
Orp = —p + a2y, —

Linear System

—— The initial nonlinear system has been transformed into an equivalent linear

one after the operatorial parametrizing y = A (u, X)
— Classical methods can be investigated on this equivalent system: stabilization, regu-

lation, optimal control etc.



5.Application to fed-batch bioreactors equations
Operatorial parametrization (2)

Operators (B, C) associated are given by:

0-x=—-2+uy

0,5=—-5+8 —a uoy _q-1,.m
0rp = *511_% ay1, o = { < Xo > Bly) =8B
+y=A(u,X) X
with:
(0 + 1) (y1) +y2e™
Cly)=| @r+1)Usi—aryr) +yse™
(0 + 1) Hazy1) +yae™

#(C(y)) Ci(y)
U1

B(y) = zz
Ya

— All involved operators are finite combinaison of static/linear dynamic/TST operators
— Concretely usuable



5.Application to fed-batch bioreactors equations
Operatorial parametrization (3)

e After operatorial parametrizing, classical control problems can be treated on this fed-
batch model. For example:

IlILleach{J(u,X), ®(u,X) =0}

with J(u, X) = p(T') (i.e: optimization of the production of the product), becomes:

max(C T
nax(Cy(y))(7)
— linear objective function (because Cj is a linear dynamic operator), to optimize
without contraint
— determination of y*
— u* = B(y*) : optimal open-loop command

e Many other possibilities: trajectory planification around optimal command, closed-loop
stabilisation, etc.



y*

5.Application to fed-batch bioreactors equations

Example of closed-loop using operatorial parametrizing

u

*x

u

>

Bioreactor
N.L.S

K

Feedback operator

X

predicted state X*



