

Entailment Detection Techniques Applied for Argument Mining

COLIEE 2018

Juliano Rabelo

Postdoctoral Fellow

rabelo@ualberta.ca

Outline

- The COLIEE case law entailment task
- Our approach
- Results
- Argument mining
- Application of our case law model to argument mining
- Other possible approaches

- Until 2017 had tasks on Statute Law
 - Given a legal bar exam question, retrieve related Civil Code articles
 - Augment above task by answering if the articles entail or not the given question
- In 2018, two new tasks focusing on Case Law
 - Identify which cases should be noticed in respect to a given base case
 - Identify which paragraph(s) of a related case entail a base case decision
 - Data drawn from an existing collection of Canadian case laws provided by vLex Canada

Entailment Task Description

Given:

a base case b, represented by its decision d, summary s and facts F, and

a related case r, represented by its paragraphs $P = \{p_1, p_2, ..., p_n\}$, such that noticed(b, r) is true

The task is to find the set

$$E = \{p_1, p_2, \dots, p_m \mid p_i \in P \land entails(p_i, d)\}$$

where $entails(p_i, d)$ denotes a relationship which is true when p_i entails d

Data Overview

- 181 cases, each with a noticed case
- XML <u>file</u> describing the dataset
- Each base case consists of its <u>summary</u>, a <u>fact file</u> and its <u>decision</u>
- Each candidate is a list of <u>paragraph</u>s of the original case
- 8,794 candidates, with 239 true positives (2.71%)
- 1.3 entailment paragraphs per case (stddev 0.7)

amii Our Method

- Ideally:
 - In depth domain + common sense knowledge
 - Reasoning capability
- More feasible:
 - Extract features which correlate with the entailment relationship
- Problem:
 - Severe data scarcity and class imbalance

Preprocessing Preprocessing

- Regular techniques (stop words, accents, digits removal, etc)
- Language detection to remove French paragraphs
 - 6 expected answers "lost"
 - Reasonable limitation

Pairwise Paragraph Comparison

- Leverages the idea that the main concept of a case law is encoded in specific paragraphs
- The comparison step produces a matrix
- We create features based on the similarities:
 - Histogram of similarities
 - Standard deviation
 - Paragraph similarities considering only the "legal terms"
- Data fed to a Random Forest classifier

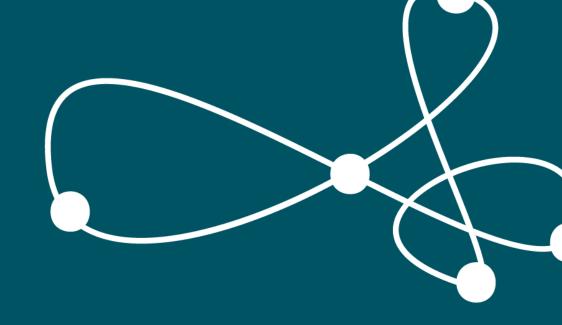
Embeddings Augmented Pairwise Paragraph Comparison

- Similar concepts may be expressed with different words
- Two approaches:
 - Pre-trained, general purpose embedding
 - Embedding trained on public available Canadian Supreme Court Case Laws
- Document similarity calculated by the Word Mover's Distance
- Similar feature matrices generated and fed to a classifier
- Computationally expensive

Similarity Based

- Similarity calculated between the candidate paragraph and the base case:
 - Decision
 - Summary
 - Paragraphs (histogram)
- Tested with two classifiers: Random Forest and Gradient Boosting
- Post processing
 - Adding "context" to the method by considering the priors
 - Established a safe range for each base case result

The Imbalance Problem


- Less than 3% of the samples are true entailment cases
- To cope with that:
 - Undersampling on the negative class
 - Oversampling on the positive class
 - Cost sensitive classifier

Task 2 Results

id	Precision	Recall	F-measure
Smartlaw	0.046512	0.150943	0.071111
UA	0.238095	0.283019	0.258621
UA-100estimators	0.190476	0.226415	0.206897
UA-500estimators	0.238095	0.283019	0.258621
UBIRLED-1	0.048352	0.830189	0.091381
UBIRLED-2	0.049495	0.924528	0.093960
UBIRLED-3	0.046667	0.792453	0.088143
UNCC0	0.032967	0.056604	0.041667

Baseline: precision: 0.0291, recall: 1.0, f-measure: 0.0428

Argument Mining

Argument Mining

- Task of identifying argumentative structures in natural language texts
- Usual model
 - Premises
 - Conclusions (claims)
- Pipeline
 - Segmentation
 - Identification of argumentative sentences
 - Classification (premises/claims)

Usual Approaches

- Sentence segmentation
- Hand crafted rules
 - Specific lexicon
 - Specific text structure
 - Part of speech
 - Parse trees
- Machine learning
 - SVM, Naïve Bayes, Maximum Entropy...
 - Careful feature engineering
 - Deep learning seldom used

Similarity Based Models on AM

- The overall framework could be applied:
 - Tagged corpus
 - Identification of argumentative sentences
 - Pairwise similarity calculated between sentences
 - Word embeddings
 - Classifier learns the relationship
- Reasonable results might be achieved

Other Machine Learning Approaches

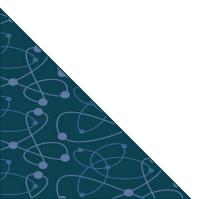
- Challenge: not many tagged corpora available
 - AraucariaDB: 641 documents, 3,798 sentences
 - ECHR: 47 documents, 2,571 sentences
 - 3 annotators for more than 1 year
 - 75% agreement
- LUIMA
 - Law-specific semantic extraction toolbox

Deep Learning Approaches

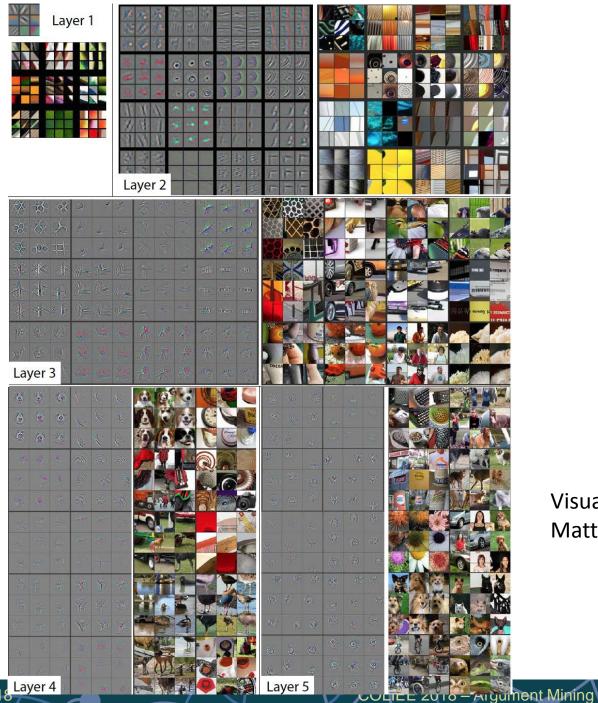
- DL-based NLP traditional approaches
 - Pre-trained word embeddings as a representation layer
 - Subsequent layers trained on a specific domain
- Useful, but limited
 - Data x specific hand crafted mechanisms

Transfer Learning

- "NLP's <u>ImageNet</u> Moment"
 - ~1.3M images
 - ULMFit: leverages pre-training based on language modeling
- LM has limitations
 - Anaphora/coreference resolution
 - Common sense knowledge


Entailment Detection Techniques Applied for Argument Mining

COLIEE 2018


Juliano Rabelo

Postdoctoral Fellow

rabelo@ualberta.ca

Visualizing and Understanding Convolutional Networks Matthew D. Zeiler and Rob Fergus

