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Abstract. Historically condito sine qua non (c.s.q.n.) has been used as
a criteria to judge if a person is culpable or not, though this criteria is
known to be inadequate for some cases. Thus far, we have developed a
theory to decide whether a certain statement is surely caused by the given
antecedents in minimal abduction. However, the theory has included
several problems concerning the meanings of logical connectives such as
implication and logical-or. In this study, we employ minimal negation
and revise these issues. We strictly distinguish the logical implication
from causality, and consider the plausible semantics for the causation by
Kripke semantics.

1 Introduction

This study is motivated by condito sine qua non (c.s.q.n. hereafter), which means
‘if not’ in English, that has worked as a principle to judge causality.

“A caused B” if “if A had not happened, B would not have happened.”
(J. Glaser, 1858)

C.s.q.n. works as follows. Suppose that the lethal dose of a certain medicine is
100mg, and two persons A and B put 60mg of the medicine to a cup, respectively;
when person C drank it, C died. If A had not put 60mg, C would not have died;
thus, A is culpable for the death of C. So far so good; however, c.s.q.n. would
turn to be inadequate in the following example. This time, the lethal dose is
100mg again, but each of A and B put 120mg to a cup, and naturally, C would
die. If A had not put 120mg to the cup, would C have not die? No. Thus, A
has no causal relation to the C’s death in terms of c.s.q.n though A should be
culpable.

C.s.q.n is related to another principle called Occam’s razor, which states that
‘the more reasons are employed, the less plausible the result becomes.’ Namely,
this principle implies the economy of reasoning, i.e., we need to find the minimal
reason.

In this study, we are to propose a mechanism to find the minimal reason. But,
in order to do this, we need to solve the inadequacy of such logical connective
as negation, disjunction, and implication, as follows.



– Logical disjunction does not reflect the meaning of ‘or’ of natural language.
We strictly distinguish the ‘or’ of meta-language from the logical connective.

– Negation in natural language should be eased to tolerate relative conflict.
– In legal reasoning, we often need to include multiple kinds of implications.

We also distinguish the causal relation from the logical implication.

In our previous work, we clarified the distinction of meta-language ‘or’ and
‘∨’ [1]. In this paper, we tackle a framework to decide the minimal reason for the
causal relation with Graded Negation [2], together with the problems of logical
‘or’ and multiple implications.

2 C.S.Q.N. by Minimal explanation

We have tried to formalize the framework of minimal explanation by minimal
abduction [1]. In this section, we briefly summarize the work. Given





B Background theory
H Abducibles (a set of propositional formulae)
O A propositional formula

we say E (⊆ H) is an explanation if and only if

– B ∪ E |= O and B ∪ E 6|= ⊥.
– E is minimal if for any E′ ⊂ E, B ∪ E′ 6|= O.

Now, let us consider:

Example 1 There is a poison, the lethal dose of which is 100 mg, though
below the lethal dose it gives some medical effect. A put 60 mg of it into C’s
coffee without telling C. Later, B also put another 60 mg into the same coffee
without knowing A had already put the same poison. C drank the coffee and died.

In this case, A and B’s actions caused C’s death since without either of actions,
C would not have died. This example can be formalized in the following way in
abduction. 




A60:A put 60mg, B60: B put 60mg
Cdied:C died
B = {A60 ∧B60 ⊃ Cdied}
H1 = {A60, B60}
O = Cdied

When H1 = {A60, B60}, the minimal explanations of O becomes A60 ∧B60 and
this is the minimal cause.

Example 2 A put 120 mg into C’s coffee to kill C. B put another 120 mg
into the same coffee to kill C without knowing A put the same poison. C drank
the coffee and died.



In this case, we cannot say that either of A and B’s actions caused C’s death; even
if there weren’t A’s deed, C would have died. The second example is formalized
as follows.





A120: A put 120mg, B120: B put 120mg
B = {A120 ⊃ Cdied, B120 ⊃ Cdied, A120 ∧B120 ⊃ Cdied}
H2 = {A120, B120}
O = Cdied

When H1 = {A120, B120}, the minimal explanations of O becomes {{A120}, {B120}}.
That is, either A120 or B120 is the minimal cause. In other words, there are two
minimal explanations.

Example 3 The inspector only found that A or B put 120mg into C’s coffee.
No one knows which of the two the true culprit is.

The second example is formalized as follows.




B = {A120 ⊃ Cdied, B120 ⊃ Cdied}
H3 = {A120 ∨B120}
O = Cdied

When H2 = {A120 ∨ B120}, the minimal explanations of O becomes {{A120 ∨
B120}}. That is, A120 ∨B120 is the minimal cause.

In this work, we have clarified the problem of disjunction of causes and dis-
junctive causes. However, the method of minimal explanation needs to generate
a candidate explanation H ′ out of H rather in an ad hoc way, and does not
include the process of cutting the redundant reasons off with the razor. In this
study, we introduce the comparison process to decide which is less redundant.

Hereafter, to avoid notational confusion, we renounce the symbols of ab-
duction, in which ‘|=’ has been a valid proposition and ‘⊃’ has been a logical
implication. Instead, we employ ‘→’ for the logical implication.

3 Why graded negation?

Let us consider a situation that is caused by multiple reasons. For simplicity, δ
is the consequence from the three precedents α, β, and γ.

α ∧ β ∧ γ → δ.

Suppose that there is no other implication rule which produces δ. Then, if we
can deny one of the three reasons, we can expect that δ is not deduced.

¬α negates α ∧ β ∧ γ.

However, in the similar way, we can deny multiple reasons.

¬α ∧ ¬β negates α ∧ β ∧ γ
¬α ∧ ¬β ∧ ¬γ negates α ∧ β ∧ γ



However, among ¬α, ¬α ∧ ¬β, and ¬α ∧ ¬β ∧ ¬γ, the latter one more strongly
negates α∧β∧γ. This comparison can be applied to identify the minimal reason.
In this discussion, either ¬α, ¬β, or ¬γ is the minimal reason to negate α∧β∧γ.

Now, we briefly summarize Graded negation [2].

Definition 1 Graded negation

∆ ` ¬αβ iff ∆ ` α and α ∧ β ` ⊥.

In this definition, α negates β in ∆; that is a weak negation, compared with the
conventional negation. If ∆ = {¬β, γ} then ∆ ` ¬β but ∆ 6` ¬αβ.

Features of graded negation are summarized as follows.

– ∆ ` ¬αβ implies ∆ ` α ∧ ¬β because α does not appear from ∆.
– Because α ∧ ¬α ` ⊥, ¬α¬α ↔ α.
– Putting ¬α in the reverse way, we get ¬¬αα ↔ ¬α.
– Given ∆, we cannot say ∆ ` ¬αβ ∨ ¬¬αβ because neither α nor ¬α might

appear from ∆.
– However, because β is compatible either with α or with ¬α, ` ¬αβ ∨¬¬αβ.
– Also, ∆ ` ¬¬αβ iff ∆ ` ¬α or {α ∧ β} 6` ⊥.

Definition 2 Minimal negation

α minimally negates δ ∆ ` ªαδ,

iff
{

∆ ` ¬αδ, and
for any β such that ∆ ` ¬βδ, if ` α → β, then ` β → α.

For example, given ∆ = {α, β, γ}, δ = ¬(α ∨ β),




∆ ` ¬αδ,
∆ ` ¬(α∧β)δ,
∆ ` ¬(α∧β∧γ)δ.

Namely, each of α, α ∧ β, and α ∧ β ∧ γ negates δ. However, the negation is
tolerated as follows.

¬(α∧β)¬(α ∨ β) : (α ∧ β) strongly negates ¬(α ∨ β)
⇓

¬α¬(α ∨ β) : α rather strongly negates ¬(α ∨ β)
⇓

¬(α∨β)¬(α ∨ β) : (α ∨ β) weakly negates ¬(α ∨ β)

and α ∨ β seems to negate δ most weakly. Now, we can assign truth values to
the formulae with ‘ª’ in accordance with Definition 2 in the following way.

ª(α∧β)δ ¬(α∧β)δ (α∧β)→α ¬αδ
F T 6← T
ªαδ ¬αδ α→(α∨β) ¬(α∨β)δ
F T 6← T

ª(α∨β)δ ¬(α∨β)δ (α∨β)→(α∨β∨γ) ¬(α∨β∨γ)δ
T T 6← F



Thus, we can conclude that

¬(α∨β)¬(α ∨ β) ⇐⇒ ª(α∨β) ¬(α ∨ β),

that is, α ∨ β minimally negates ¬(α ∨ β).
In the following section, we develop this idea; we will contend that the min-

imal reason to negate some statement appears at the suffix of ‘ª’.

4 Causality, Minimality, and Culpability

4.1 Causality and Implication

In legal reasoning, there often happens a notational confusion originated from the
mixture of causality and logical implication. For example, the rule of weakening

A ` C

A ∨B ` C

is generally admitted. But, the following inference

A120
caused−−−−−→ Cdiedyimplies

A120 ∨B120 −−−−−→
caused?

Cdied

is obviously inadequate. In any occasion, there is no reason that we weaken the
cause of Cdied from A120 to A120 ∨B120. The transitivity between the causation
and the logical implication, as well as the deduction theorem,

Γ,A ` B

Γ ` (A → B)

is meaningless if we stick to read ‘`’ as causality.
From here, we syntactically distinguish the logical implication ‘→’ from the

causality. According to Lewis [6],

‘α causes δ means that when α occurs δ is more likely than ¬δ.’

We will restate this definition in Section 5 in terms of possible world semantics.
As the first approximation, we state the definition in such a way that ¬δ deduces
the inconsistency, as follows.

∆ ` α and α ∧ ¬δ ` ⊥.

According to Definition 1, the above condition is exactly identical with ∆ `
¬α¬δ.

Definition 3 Causation by graded negation
In a situation ∆, α causes δ iff ∆ ` ¬α¬δ.



Although α ` δ implies α ∧ ¬δ ` ⊥ and partially satisfies Definition 3, ‘`’ itself
is no causal relation. We will discuss the adequacy of this definition precisely,
later in Section 5.

Let us consider the example of overdosing, with the following set of general
rules.

Γ1 = {A60 ∧B60 ` Cdied, A120 ` Cdied, B120 ` Cdied}
As a preliminary step, we circumscribe3 Cdied from Γ1.

Cdied ↔ A120 ∨B120 ∨ (A60 ∧B60).

In the above situation, when the amount of dose goes beyond 100mg, the tragedy
would occur.

{A60} 6` Cdied,
{A60, B60} ` Cdied,
{A120} ` Cdied,
{A120, B120} ` Cdied.

Now, in the situation that both of A and B put 120mg of dose respectively, which
is the minimal reason of the death of C? First, because {A120, B120} ` A120∧B120

and A120 ∧B120 ∧ Cdied ` ⊥,

{A120, B120} ` ¬(A120∧B120)¬Cdied.

However, how can we tolerate the condition of C’s death? Because in the similar
reasoning process under {A120, B120}

` ¬A120¬Cdied, ` ¬B120¬Cdied, and ` ¬(A120∨B120)¬Cdied,

we can conclude that

6` ª(A120∧B120)¬Cdied, 6` ªA120¬Cdied, and ` ª(A120∨B120)¬Cdied.

That is, A120 ∨B120 is the minimal reason for Cdied.
Thus, when we negate α ∧ β ∧ γ, given a certain set of propositions ∆,





∆ ` ¬¬α(α ∧ β ∧ γ),
∆ ` ¬(¬α∨¬β)(α ∧ β ∧ γ),
∆ ` ª(¬α∨¬β∨¬γ)(α ∧ β ∧ γ).

However, we cannot tolerate the negation by arbitrary formula δ, as
{

∆ ` ¬¬α(α ∧ β ∧ γ),
∆ 6` ¬(¬α∨δ)(α ∧ β ∧ γ),

because ¬(α ∧ δ) ∧ (α ∧ β ∧ γ) 6` ⊥.
3 Given multiple clauses that defines ϕ, circumscription add such a new statement

that ‘ϕ → · · ·’ [3]. This circumscription is not obligatory and is just for clarification.
In this paper, we would like to explicitly show the disjunctive causes of Cdied to be
compared with the suffix of ‘¬’, to present how graded negation works.



4.2 Minimality and Culpability

The minimal reason is a logical consequence and can be the result of Occam’s
razor with which we could excise redundant reasons. However, this result does
not always reflect if a person is culpable or not. For example, although

{A120, B120} ` ª(A120∨B120)¬Cdied,

this does not explain that the individual A is still accusable, regardless of B’s
deed of B120. In order to judge if A (or B) is accusable or not, we need to provide
the second step of judgement. For this purpose, we put an arbitrary proposition
Q in a given situation ∆ in the following place.

∆ ` Q ∧ ¬Cdied?

that is, ‘are Q and ¬Cdied compatible in situation ∆?’ This procedure is to put
Q in the place of cause in Definition 3.

Now, we will revisit the examples of Section 2 and analyse them in the way
of minimal negation.

Example 1 In this case, only when A60 ∧B60, C would be dead. Thus,

{A60, B60} ` ª(A60∧B60)¬Cdied.

How should the query ` A60 ∧ ¬Cdied be answered? Although {A60, B60} `
A60, {A60, B60} ` ¬A60¬Cdied, i.e., as A60∧B60 is the minimal reason which
cannot be tolerated to A60. Thus, the answer to the query becomes no.
Namely, the deed of A60 is a partial cause of Cdied. However, A cannot be
blamed unless (s)he knows B would put another 60mg. That is, we need to
know the epistemic states of A and B, to judge if A is accusable or not.

Example 2 Because

{A120, B120} ` A120, ` ª(A120∨B120)¬Cdied, and A120 → A120 ∨B120,

we can conclude {A120, B120} ` ¬A120¬Cdied, that is, {A120, B120} 6` A120 ∧
¬Cdied. A is accusable.

Example 3 In this case, the minimal reason becomes A120 ∨B120 too, that is,

{A120 ∨B120} ` ª(A120∨B120)¬Cdied.

However, {A120 ∨ B120} 6` A120. That is, {A120 ∨ B120} 6` ¬A120¬Cdied, i.e.,
A is not accusable yet.

5 Lewis’ Causation and the Analysis of ‘or’

When we cannot know either A or B put 120mg of medicine into the cup, we
should write as



(A or B) put 120mg.

On the contrary, when we can obtain two possible solutions,

(A put 120mg) or (B put 120mg).

This opposition can be restated by the issue of scope of predicates. However, in
the former case, we cannot provide ‘or’ inside a predicate as put120(A or B).

One idea for us to represent such ‘or’ is to employ modal operators. The ‘or’
in knowledge, belief, and perception contexts is known to be decomposable [4];
e.g., “Ann knows that Betty or Chris won the race” does not imply “Ann knows
that Betty won the race”, nor “that Chris won the race.” Employing a modal
operator KA meaning ‘agent A knows that,’ we can represent the distinction. In
our case,

KA(A120 ∨B120) 6⇒ KAA120 ∨KAB120.

While the former claims that the cause is A120 or B120, the latter says that
either the cause is A120, or the cause is B120. With Kripke semantics (possible
world semantics), KAϕ holds in a certain world w if and only if ϕ holds in all
the possible worlds accessible from w [5], given an accessibility relation R. Thus,
the decomposability is explained as follows.

w |= KA(ϕ ∨ ψ) ⇐⇒ ∀w′ (wRw′), w′ |= ϕ or w′ |= ψ
6m

w |= KAϕ ∨KAψ ⇐⇒ ∀w′ (wRw′), w′ |= ϕ or ∀w′′ (wRw′′), w′′ |= ψ

The formalization by KA may resolve the problem of epistemic state in Exam-
ple 1 as well as the decomposability of logical disjunction. However, to present
a modal logic with full axiomatization and/or with full sequent system is far
beyond the current scope. In this paper, we only utilize a part of possible world
semantics concerning Lewis’ causality, and discuss the future possibility later.

From a practical point of view, we introduce the either-or as follows. In a
certain knowledge state w,

w |= (ϕ • ψ ` χ) ⇐⇒ either w |= (ϕ ` χ) or w |= (ψ ` χ). (1)

Hereafter, we employ the possible world semantics of the above equation, to give
the definition of causation [7, 8], that is,

“A ` B if and only if the world(s) in which A ∧ B holds is closer to
the real world than the world(s) in which A ∧ ¬B holds, when possible
worlds are partitioned by the plausibility.”

Considering the conventional definition of logical disjunction (∨)

w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ,

we develop the semantics of ‘•’ as follows.

w |= ϕ • ψ ⇐⇒ w |= ϕ ∧ ¬ψ or w |= ¬ϕ ∧ ψ. (2)



Now, given a usual triplet of Kripke frame 〈W,R, |=〉 where W is a set of possible
worlds, R is the accessibility relation between worlds, and |= is the valuation, we
augment it to the quadruple 〈W,R, |=,≤〉 where ≤ is the partition of possible
worlds; i.e. w1 ≤ w2 implies that w1 is more plausible than w2. Then, we give
the semantics of ‘`’ according to Lewis’ definition.

Definition 4 Causation by plausibility w |= (α ` β) if and only if

∀w′ (wRw′) w′ |= α ∧ β and ∀w′′ (wRw′′) w′′ |= α ∧ ¬β, w′ ≤ w′′.

Combining (2) and Definition 4, we obtain the semantics of

w |= (ϕ • ψ ` χ)

as follows.

∀w′ (wRw′) w′ |= ϕ ∧ ¬ψ and w′ |= χ or w′ |= ¬ϕ ∧ ψ and w′ |= χ, and
∀w′′ (wRw′′) w′′ |= ϕ ∧ ¬ψ and w′′ |= ¬χ or w′′ |= ¬ϕ ∧ ψ and w′′ |= ¬χ,
w′ ≤ w′′.

Namely,

∀w′ (wRw′) w′ |= ϕ ∧ ¬ψ ∧ χ or w′ |= ¬ϕ ∧ ψ ∧ χ and
∀w′′ (wRw′′) w′′ |= ϕ ∧ ¬ψ ∧ ¬χ or w′′ |= ¬ϕ ∧ ψ ∧ ¬χ,
w′ ≤ w′′.

(3)

At this stage, there have appeared four classes of possible worlds.

w1 |= ϕ ∧ ¬ψ ∧ χ
w2 |= ¬ϕ ∧ ψ ∧ χ
w3 |= ϕ ∧ ¬ψ ∧ ¬χ
w4 |= ¬ϕ ∧ ψ ∧ ¬χ

we can compare w1 and w3, and w2 and w4 in terms of the plausibility partition;
however, we cannot do so between w1 and w4, and w2 and w3, because there are
no common valuation among the three propositions. Therefore, (3) results in

∀w′ (wRw′) w′ |= ϕ ∧ χ and ∀w′′ (wRw′′) w′′ |= ϕ ∧ ¬χ,
w′ ≤ w′′, or

∀w′′ (wRw′′) w′′ |= ψ ∧ χ and ∀w′′ (wRw′′) w′′ |= ψ ∧ ¬χ,
w′ ≤ w′′.

Getting back to Definition 4, we obtain

w |= (ϕ ` χ) or w |= (ψ ` χ),

that is (1).
Below, we first revise the solution of Example 3 using either-or, and then

we introduce a more complicated example.



Example 3 (revised) Either A or B put 120mg of the medicine into the coffee
cup.

The situation is formalized as

{A120 •B120} ` Cdied.

According to (1),

either {A120} ` Cdied or {B120} ` Cdied,

and in each case, in some possible worlds w and w′,

{A120} ` ªA120¬Cdied in w or
{B120} ` ªB120¬Cdied in w′.

Example 4 The inspector found that A put 60mg of the medicine to the C’s
cup, and in addition B put either 60mg or 120mg. C died.

Now, we expand the general rules as follows.

Γ2 = Γ1 ∪ {A60 ∧B120 ` Cdied},
when Cdied is circumscribed as

Cdied ↔ A120 ∨B120 ∨ (A60 ∧B60) ∨ (A60 ∧B120).

Then, the situation becomes

{A60, (B60 •B120)} ` Cdied.

Because possible worlds are classified into the following two classes

w1 |= A60 ∧B60 and w2 |= A60 ∧B120,

Thus,
A60 ∧ (B60 •B120) = (A60 ∧B60) • (A60 ∧B120).

Namely, the either-or is decomposable in knowledge-base. This time, the minimal
negation works as follows. Below, we omit the left-hand side of ‘`’.

` ¬(A60∧(B60∨B120))¬Cdied,
` ¬(A60∧B60)¬Cdied,
` ¬(A60∧B120)¬Cdied,
` ¬B120¬Cdied.

By the chains of logical strength

A60 ∧B120 → B120

↗
A60 ∧ (B60 •B120)

↘
A60 ∧B60



only (A60 ∧B60) and B120 cannot be eased furthermore; thus, we can conclude

` ª(A60∧B60)¬Cdied, and
` ªB120¬Cdied.

As this example, multiple minimal reasons may exist.

6 Conclusion

In this study, we have employed minimal negation and proposed a theory to find
the minimal reason for a causation structure. The superability of this method is
that we can compare two reasons directly and thus can put them in order as to
which is stronger/weaker reasons.

The motivation of this study was how we could tune such logical connectives
as negation, implication, and disjunction, to the meanings of practical reason-
ing. Employing the graded negation, we could relativize the notion of negation.
We have defined the causality first by the minimal negation and have strictly
distinguished the causal relation from the logical implication. We have discussed
the adequacy of the definition in terms of possible world semantics (Kripke se-
mantics), and by this, we have distinguished the semantics of ‘or’ in knowledge
space from that of logical disjunction.

We have distinguished the minimality of reason from the culpability in Sec-
tion 4.2. However, in order to judge if a person is accusable, we need to consider
his/her knowledge state and/or intention. In Example 1, if B had known that
A had put 60mg already B would be accusable; otherwise B would be innocent.
As we have discussed in Section 5, we need to develop our theory to include such
epistemic operators in future.
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