
A Semantics of Argumentation
under Incomplete Information

Ken Satoh1, Kazuko Takahashi2

1 National Institute of Informatics and Sokendai
ksatoh@nii.ac.jp

2 School of Science&Technology, Kwansei Gakuin University
ktaka@cs.kwansei.ac.jp

Abstract. We discuss a semantics of argumentation under incomplete
information. In this paper, we mean by “incomplete information” that
an agent does not know the other agent’s knowledge and therefore, the
agent cannot predict which arguments are attacked and which counter-
arguments are used in order to attack the arguments. In this paper, we
provide a more general framework for such argumentation system than
previous proposed framework and provide a computational method how
to decide acceptability of argument by logic programming if both agents
are eager to give all the arguments.

1 Introduction

Argumentation system is a hot topic in legal reasoning and in more general set-
ting such as negotiation in multi-agent systems[Rahwan09]. However, most of
the work on argumentation is based on the assumption where complete informa-
tion about argumentation is provided[Dung95]. It would be appropriate for an
application domain where we can see all the arguments and counter-arguments
so that we can conclude the most appropriate result based on all the arguments.
However, in reality, there would be another type of argumentation where rele-
vant agents only have their own belief and they do not know other agents’ belief
and so they do not predict how other agents attack their own arguments.

Consider the following slightly modified example taken from[Okuno09]3.

p0: “You killed the victim.”
c1: “I did not commit murder! There is no evidence!”
p1: “There is evidence. We found your ID card near the scene.”
c2: “It’s not evidence! I had my ID card stolen!”
p2: “It is you who killed the victim. Only you were near the scene at the time

of the murder.”
c3: “I didn’t go there. I was at facility A at that time.”
p3: “At facility A? Then, it’s impossible to have had your ID card stolen since

facility A does not allow a person to enter without an ID card.”
3 In the example, c and p are two parties and numbers attached with c and p express
order of arguments.



This kind of argumentation would occur in examinations of witness in legal
courts. In the above example, c2 is not firstly attacked but after the argument of
c3 is given, c2 is attacked by p3. Since agent p does not believe that the suspect
was at facility A, p could not use the counter-argument p3 at first. But after
c3 is provided, p can attack c2 by pointing out the contradiction with c3. This
phenomenon cannot be formalized in argumentation system based on complete
information about arguments and so we need a new framework.

Pioneer work on this direction would be, as far as
we know, APKC(Argumentation Procedure with Knowledge
Change)[Okuno08,Okuno09,Okuno10,Takahashi11] where counter-arguments,
which cannot be used at the starting point of argumentation since these
counter-arguments are not convinced by the agent itself, are triggered by other
agents’ arguments. In this paper, we extend this direction to provide more
general framework than APKC. The difference between their works and this
work are as follows:

– We let an agent give as many counter-arguments against other agent’s argu-
ments as they like where as APKC allows only one counter-argument against
one argument at one turn.

– We do not employ any specific strategy how to make counter-argument
whereas APKC imposes an agent to stick to one line of arguments until
no counter-argument is made, then the agent change counter-argument in
the other line of arguments.

To formalize the above, we introduce sources of arguments which represent us-
able arguments. This means that even if there are potential counter-arguments
against the other agent’s arguments, the agent cannot use the argument if the ar-
gument is not in the source. We also introduce derivation rule of sources which
represent dynamic addition of arguments which were not initially able to be
used, but later become usable based on the other agent’s new arguments and
its own belief. By these mechanisms, we let agents not know whether potential
arguments would be usable in the future since there are incomplete information
about the other agents’ behavior.

Then, we show a computational method to decide which arguments are ac-
cepted by translating argumentation framework into logic programming from the
God’s viewpoint under the assumption that all possible arguments will always
be presented by both parties sooner or later.

2 Framework for Argumentation under Incomplete
Information

Definition 1. Let ArgP (ArgC , respectively) be a set called an argument set for
P (C, respectively)4. We write ⟨ArgP , ArgC⟩ as Arg.
An attack relation for P (C, respectively), AttackP (AttackC) is a subset of

4 P denotes “Pros” and “C” denotes “Cons”.



ArgP × ArgC(ArgC × ArgP , respectively). We write ⟨AttackP , AttackC⟩ as
Attack.
We say P (C, respectively) attacks n′ by n if ⟨n, n′⟩ ∈ AttackP (AttackC , respec-
tively).
SourceP (SourceC , respectively) is a subset of ArgP (ArgC , respectively). We
write ⟨SourceP , SourceC⟩ as Source.
A set of derivation rules for P (C, respectively) DeriveP (DeriveC , respectively)
is a set of the following rules of the form:

n⇐ n1, ...nm

where n ∈ ArgP (ArgC , respectively) and ni ∈ (ArgP ∪ ArgC)(1 ≤ i ≤ m).
We call n the conclusion of the rule and ni’s conditions of the rule. We write
⟨DerivP , DeriveC⟩ as Derive

We call ⟨Arg,Attack, Source,Derive⟩ an argumentation framework.

We assume that there is no loop in AttackP ∪ AttackC to avoid infinite loop of
arguments5.

In the above definition, a derivation rule enables an agent to augment its own
source of arguments by adding the conclusion of the derivation rule if condition
part is satisfied.

We define an argumentation tree which gives a semantics of acceptance of
arguments as follows.

Definition 2. An argumentation tree Tr = ⟨N,E⟩ w.r.t. an argumentation
framework ⟨Arg,Attack, Source,Derive⟩ is an in-tree6 such that N ⊂ ArgP ∪
ArgC and E ⊂ AttackP ∪AttackC and satisfies the following conditions:

– The root of Tr is p ∈ SourceP called “conclusion”.
– If ⟨n, n′⟩ ∈ E then either of the following holds.

• n ∈ SourceP and n′ ∈ SourceC and ⟨n, n′⟩ ∈ AttackP .
• n ∈ SourceC and n′ ∈ SourceP and ⟨n, n′⟩ ∈ AttackC .

Let Tr = ⟨N,E⟩ be an argumentation tree. n ∈ N is accepted w.r.t. Tr if

– there is no edge to n, or
– there is no n′ s.t. ⟨n′, n⟩ ∈ E and n′ is accepted w.r.t. Tr.

Now, we can define a game called an argumentation game which gives a
dialog between two parties. In argumentation game, agents can refer to source
of arguments to produce counter-arguments.

Definition 3. A move of an argumentation game w.r.t. argumentation tree
Tr = ⟨N,E⟩ and a pair of source sets ⟨SP , SC⟩ is an expansion of Tr, SP

and SC defined as follows.

5 We may formalize an argumentation with loop if we follow Dung’s stable extension
or preferred extension. It is a future research topic.

6 An in-tree is an directed tree in which a single node is reachable from every other
one (See Fig.1).



– P ’s move is a set MoveP ⊆ AttackP such that for every n such that ⟨n, n′⟩ ∈
MoveP , n ̸∈ N , n ∈ SourceP and n′ ∈ N . Then, a new set of nodes in a
new argumentation tree N ′, a new set of edges in a new argumentation tree
E′ and a new pair of source sets ⟨S′

P , S
′
C⟩ becomes the following.

• N ′ = N ∪ {n|⟨n, n′⟩ ∈MoveP }
• E′ = E ∪MoveP
• S′

P = SP

• S′
C = SC ∪ {n|(n⇐ n1, ..., nm) ∈ DeriveC and ni ∈ N ′(1 ≤ i ≤ m)}

– C’s move is a set MoveC ⊆ AttackC such that for every n such that ⟨n, n′⟩ ∈
MoveC , n ̸∈ N , n ∈ SourceC and n′ ∈ N . Then, a new set of nodes in a
new argumentation tree N ′, a new set of edges in a new argumentation tree
E′ and a new pair of source sets ⟨S′

P , S
′
C⟩ becomes the following.

• N ′ = N ∪ {n|⟨n, n′⟩ ∈MoveC}
• E′ = E ∪MoveC
• S′

P = SP ∪ {n|(n⇐ n1, ..., nm) ∈ DeriveP and ni ∈ N ′(1 ≤ i ≤ m)}
• S′

C = SC

If both agents give ∅ in consecutive two moves, then we say that the game is
finished and we call a final tree after a game is finished argumentation game
tree. Let Tr be an argumentation game tree ⟨N,E⟩. We say that a node n ∈ N
is accepted w.r.t. the argumentation game tree Tr if n is accepted w.r.t. argu-
mentation tree Tr.

Note that a move can be ∅7, and a conclusion is decided to be accepted or not
using the argumentation game tree.

Example 1. Consider the example discussed at Introduction. Then,
ArgP = {p0, p1, p2, p3}
ArgC = {c1, c2, c3}
AttackP = {⟨p1, c1⟩, ⟨p2, c1⟩, ⟨p3, c2⟩},
SourceP = {p0, p1, p2},
DeriveP = ∅
AttackC = {⟨c1, p0⟩, ⟨c2, p1⟩, ⟨c3, p2⟩},
SourceC = {c1, c2, c3},
DeriveC = {c3⇐ p3}

Note that since initial SourceP does not include p3 so we cannot use an attack
to c2 by p3.

1. Let p0 be a conclusion. Then
Tr = ⟨{p0}, ∅⟩.

2. C’s next move has two possibilities, that is, to give either ∅ or {⟨c1, p0⟩}.
3. Suppose that C gives {⟨c1, p0⟩}

Then, Tr = ⟨{p0, c1}, {⟨c1, p0⟩}⟩.
4. P ’s next move has four possibilities, that is, to give either ∅ or {⟨p1, c1⟩} or
{⟨p2, c1⟩} or {⟨p1, c1⟩, ⟨p2, c1⟩}.

7 This means that even if there are possible counter-arguments, an agent can be silent.



5. Suppose that P gives {⟨p1, c1⟩, ⟨p2, c1⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2}, {⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩}⟩.

6. C’s next move has four possibilities, that is, to give either ∅ or {⟨c2, p1⟩} or
{⟨c3, p2⟩} or {⟨c2, p1⟩, ⟨c3, p2⟩}.

7. Suppose that C gives {⟨c2, p1⟩, ⟨c3, p2⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2, c2, c3}, {⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩, ⟨c2, p1⟩, ⟨c3, p2⟩}⟩.
Then, since (c3⇐ p3) ∈ DeriveC , SourceP becomes {p0, p1, p2, p3}.

8. P ’s next move has only two possibilities, that is, to give {⟨p3, c2⟩} or ∅ since
p3 is now in SourceP = {p0, p1, p2, p3} and ⟨p3, c2⟩ becomes usable.

9. Suppose that P gives {⟨p3, c2⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2, c2, c3, p3},

{⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩, ⟨c2, p1⟩, ⟨c3, p2⟩, ⟨p3, c2⟩}⟩.
10. There is no move from both sides so the game is finished.
11. Then, p3 is accepted and so c2 is not accepted. Then p1 is accepted and c1

is not accepted. Finally p0 is accepted.

In this example, p3 is a key to rebut c2 and p3 was not in initial source but is
invoked after c3 is made. This invocation is made by a derivation rule p3 ⇐ c3
(See Fig.1).

p3

6
c2

6
p1

���*

c3

6

�������
�������

p2
HHHY

c1

6
p0

Fig. 1. Representation of Arguments and Derive Relation for Example 1

There are many ways to develop an argumentation game tree, but we can
show that a final argumentation tree will be unique in any way of developing a
tree if both parties eventually give all possible arguments. We call this strategy
eager, so we can say that an argumentation game tree will converge into one if
both agents are eager. On the other hand, we can define a lazy agent which gives
only necessary counter-arguments. In other words, a lazy agent will choose one
counter-argument among possible counter-argument against the other agent’s



argument and it will choose another counter-argument only if the chosen counter-
argument is rebutted by the other agent’s counter-counter-argument. Then, in
this lazy agent’s case some of derivation rules might not be invoked so that an
effective counter-argument might not be produced. We show such an example as
follows.

Example 2. Consider the following case where we add ⟨c4, p2⟩ to AttackC of the
previous example. Then,

AttackP = {⟨p1, c1⟩, ⟨p2, c1⟩, ⟨p3, c2⟩},
SourceP = {p0, p1, p2},
DeriveP = ∅
AttackC = {⟨c1, p0⟩, ⟨c2, p1⟩, ⟨c3, p2⟩, ⟨c4, p2⟩},
SourceC = {c1, c2, c3, c4},
DeriveC = {c3⇐ p3}

We show an example when an agent does not give full arguments but hides an
argument.

1. Let p0 be a conclusion. Then
Tr = ⟨{p0}, ∅⟩.

2. C’s next move has two possibilities, that is, to give either ∅ or {⟨c1, p0⟩}.
3. Suppose that C gives {⟨c1, p0⟩}

Then, Tr = ⟨{p0, c1}, {⟨c1, p0⟩}⟩.
4. P ’s next move has four possibilities, that is, to give either ∅ or {⟨p1, c1⟩} or
{⟨p2, c1⟩} or {⟨p1, c1⟩, ⟨p2, c1⟩}.

5. Suppose that P gives {⟨p1, c1⟩, ⟨p2, c1⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2}, {⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩}⟩.

6. C’s next move has eight possibilities, that is, to give a subset of
{⟨c2, p1⟩, ⟨c3, p2⟩, ⟨c4, p2⟩}.

7. Suppose that C gives {⟨c2, p1⟩, ⟨c4, p2⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2, c2, c4},

{⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩, ⟨c2, p1⟩, ⟨c4, p2⟩}⟩.
Note that since C did not choose ⟨c3, p2⟩, we cannot make p3 usable.

8. Only P ’s next move is to give ∅.
9. C hides the another counter-argument {c3, p2} and gives ∅. Then, there is

no move from both sides so we are done.
10. Then, c2 and c4 are accepted. Then either p1 nor p2 is accepted and c1 is

accepted. Finally p0 is not accepted.

In this example, an agent c does not use c3 to rebut p2 but use c4 therefore, p3
is not invoked and p0 is not accepted. An agent c does not need to make more
argument using c3 since the current counter-arguments are enough to win the
example (See Fig. 2).



p3

c2

6
p1

���*

c3 c4
@@I

p2
HHHY

c1

6
p0

Fig. 2. Representation of Arguments for Example 2

3 Computing Acceptance in Argumentation Framework

In this section, we assume that agents are both eager. Then we can translate
an argumentation framework into a logic program in order to compute accept-
ability of a given argument from the bird’s eye view. There is a proposal of
computing Dung’s argumentation semantics by translating the Dung’s frame-
work into a logic program and corresponding answer set of the program with
acceptability[Osorio05]. We extend their work by adding an extra condition rea-
soning about “sources”. In order to do so, we introduce new predicate “an-
nounced(A)” meaning that an argument A is actually used for building an argu-
mentation game tree. If an argument can be attacked by satisfying the condition
that there is an attack relation for the argument and counter-argument is in the
source, then counter-argument becomes announced to the other agent so that
the agent can use other sources of arguments.

Definition 4. Let ⟨Arg,Attack, Source,Derive⟩ be an argumentation frame-
work. For A ∈ ArgP ∪ ArgC , we define CounterA = {B|⟨B,A⟩ ∈ AttackP ∪
AttackC}. For each argument A, we define the translation of argument A to
rules of logic programming as follows:

accepted(A)←
∧

B∈CounterA

not (source(B) ∧ accepted(B)).

Note that if CounterA is empty then the above rule becomes accepted(A).
For every B ∈ CounterA

8,

announced(B)← announced(A) ∧ source(B).

8 If the parent node is announced and the current node is in the source, then the
current node will be announced. This rule expresses the eager strategy of argumen-
tation.



We also add the following rules for (A⇐ A1, ..., Am) ∈ DeriveC :

source(A)←
m∧
i=1

bodyC(Ai).

where bodyC(Ai) is defined as follows:

bodyC(Ai) =

{
source(Ai) if Ai ∈ ArgC
announced(Ai) if Ai ∈ ArgP

Similarly, we add the following rules for (A⇐ A1, ..., Am) ∈ DeriveP :

source(A)←
m∧
i=1

bodyP (Ai).

where bodyP (Ai) is defined as follows:

bodyP (Ai) =

{
source(Ai) if Ai ∈ ArgP
announced(Ai) if Ai ∈ ArgC

We also add the following for an argument A in the initials source sets:

source(A).

We also add the following for the conclusion A0 which is the root of the argu-
mentation game tree:

announced(A0).

Note that since there is no loop in the attack set, the above program becomes
a stratified program so there is a unique minimum model for the translated
program.

Example 3. Consider the setting of Example 1. The translated logic program
becomes as follows:

accepted(c1)← not (source(p1) ∧ accepted(p1))∧
not (source(p2) ∧ accepted(p2)).

accepted(c2)← not (source(p3) ∧ accepted(p3)).
accepted(p0)← not (source(c1) ∧ accepted(c1)).
accepted(p1)← not (source(c2) ∧ accepted(c2)).
accepted(p2)← not (source(c3) ∧ accepted(c3)).
accepted(c3).
accepted(p3).
announced(p1)← announced(c1) ∧ source(p1).
announced(p2)← announced(c1) ∧ source(p2).
announced(p3)← announced(c2) ∧ source(p3).
announced(c1)← announced(p0) ∧ source(c1).
announced(c2)← announced(p1) ∧ source(c2).



announced(c3)← announced(p2) ∧ source(c3).
source(p3)← announced(c3).
source(p0). source(p1). source(p2).
source(c1). source(c2). source(c3).
announced(p0).

Then, we can show that accepted(p0) is derived from the above program.

Theorem 1. Let ⟨Arg,Attack, Source,Derive⟩ be an argumentation frame-
work and A0 be a conclusion and Tr be a final argumentation game tree w.r.t.
the framework for the eager strategy and Pr be a translated logic program from
the framework. Then, A0 is accepted if and only if Pr |= accepted(A0)

4 Related Works

Several studies have been conducted on argumentation semantics. Dung pro-
vided a semantics for a given abstract argumentation framework based on ac-
ceptability [Dung95]. He defined several acceptable sets, depending on the range
of strength against an attack. Coste-Morquis et al. argued that it is contro-
versial to include both agents’ arguments in an extension because this would
indicate an indirect attack [Coste-Marquis05]. They defined a new semantics,
called “prudent semantics,” which does not allow such controversial cases, and
compared this with Dung’s semantics. Other semantics have also been proposed,
such as ideal semantics [Dung06], semi-stable semantics [Caminada06], and oth-
ers. Baroni et al. compared these types of semantics from the viewpoint of skep-
ticism [Baroni07]. All these semantics involved argumentation systems from a
static viewpoint, whereas our proposed semantics is suitable for a dynamic ar-
gumentation system.

Cayrol et al. studied how acceptable arguments are changed when a new
argument is added to Dung’s argumentation system before an argumentation
is executed [Cayrol08,Cayrol10]. Therefore, it is along the line of usual belief
revision approach where revision is made before reasoning and revision never
occurs during reasoning. In contrast, we focus on addition or arguments during
argumentation. So, we believe our approach has more dynamic nature.

Garćıa et al. formalized argumentation based on Defeasible Logic Program-
ming (DeLP) [Garcia07]. In DeLP, agent’s knowledge base consists of two kinds
of rules: strict rules and defeasible rules. The result of argumentation is dif-
ferent depending on which defeasible rules are used. Afterwards, Moguillansky
discussed revision of the knowledge base [Moguillansky08]. In his method, after
constructing the initial argumentation tree called dialectical tree, knowledge base
is changed by extracting defeasible rules and the tree is altered. The goal is to
construct undefeated argumentation by selecting suitable defeasible rules. They
presented an algorithm for this alteration of the tree and considered a strat-
egy to get the undefeated argumentation. In a series of studies, they formalized
several properties in argumentation based on this approach [Lucero09]. Again
the revision of knowledge base in their work is made before an argumentation is
executed.



Cobo et al. proposed an argumentation framework in which available argu-
ments change depending on time intervals [Cobo10]. In their work, these intervals
are given in advance, they did not consider the mechanism by which an argu-
ment causes to generate a new argument. In contrast, we focus specifically on
the effect of knowledge gained from presented arguments, which is essential in
actual argumentation.

Prakken formalized an argument game and showed that counter-argument
might not be effective in a game if it is added dynamically and proposed a
notion of relevance to make counter-argument effective[Prakken01]. However, in
this work, possible arguments are already defined before the game and are never
added whereas in our work possible arguments are added according to other
party’s argument.

Argumentation-based approach is applied to formalize processes appeared in
agents communication such as negotiation[Amgoud00]. Considering the effect of
the execution of arguments, agents communication are rather related issue, since
belief of each agent is updated on receiving information from the other agent.
Amgoud proposed the protocol that handles arguments and formalized the case
in accepting/rejecting new information [Amgoud00]. She also presented a general
framework for argumentation-based negotiation in which agent has a theory and
it evolves during a dialogue [Amgoud08]. She considered the knowledge base
for each agent separately, as well as its revision by exchanging arguments. The
significant difference between her work and ours is that in her approach, an
attack relation is increased only between a previous argument and the currently
proposed argument whereas in our approach, a dynamic addition of an attack
relation does not have such restriction so that we can add any attack relation
using Derive and Source.

5 Conclusion

The contributions of the paper are as follows.

– We give more general framework of argumentation under incomplete infor-
mation.

– We give a computational method of how to decide the acceptability of the
arguments using a translation from an argumentation framework to a logic
program under the assumption that every possible arguments are made.

As a future research, we would like to pursue the following.

– We should give a computational method of acceptability for a lazy agent. The
method must reflect multiple extensions of arguments related with choices
of arguments.

– We would like to introduce the strength of arguments which is related with
legal significance.

– We would like to consider how we could apply this framework to reason about
a response which could make “a trap” against the opponent where some of
opponent responses could cause contradiction in another line of arguments.



References

Amgoud00. Amgoud, L., Parsons,, S., and Maudet, N., “Arguments, Dialogue, and
Negotiation”, Proc. of ECAI2000, pp.338 – 342 (2000).

Amgoud08. Amgoud, L., Dimopolos, Y., and Moraitis, P., “A General Framework for
Argumentation-Based Negotiation”, Proc. of ArgMAS2007, LNCS 4946, pp.1 – 17
(2008).

Baroni07. Baroni P., and Giacomin, M., “Comparing Argumentation Semantics with
Respect to Skepticism”, Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, pp. 210 – 221, LNCS 4724 (2007).

Cayrol08. Cayrol, C., D.de St-Cyr, F., and Lagasquie-Shiex, M-C, “Revision of an
argumentation system”. Proc. of KR2008, pp. 124 – 134 (2008).

Cayrol10. Cayrol, C., D.de St-Cyr, F., and Lagasquie-Shiex, M-C, “Change in Ab-
stract Argumentation Frameworks: Adding an Argument”, Journal of Artificial
Intelligence Research, Vol. 38, pp. 49 – 84 (2010).

Caminada06. Caminada, M., “Semi-stable Semantics”, Proc. of COMMA2006, pp. 121
– 130 (2006).

Cobo10. Cobo, M.L., Martinez D.C., and Simari, G.R., “An Approach to Timed Ab-
stract Argumentation”, Proc. of NMR2010, Workshop on Argument, Dialog and
Decision (2010).

Coste-Marquis05. Coste-Marquis, S., Devred C., and Marquis, P., “Prudent Semantics
for Argumentation Frameworks”, Proc. of ICTAI2005, pp.568 – 572 (2005).

Dung95. Dung, P. M., “On the Acceptability of Arguments and its Fundamental Role
in Nonmonotonic Reasoning, Logic Programming and N-Person Games”, Artificial
Intelligence, Vol. 77, pp.321 – 357 (1995).

Dung06. Dung, P.M., Mancarella, P., and Toni, F., “A Dialectic Procedure for Scep-
tical, Assumption-based Argumentation”, Proc. of COMMA2006, pp. 145 – 156
(2006).

Garcia07. Garćıa, A., Chesnevar, C., Rotstein, N., and Simari, G., “An Abstract
Presentation of Dialectical Explanations in Defeasible Argumentation”, Proc. of
ArgNMR07, pp. 17 – 32 (2007).

Lucero09. Lucero, M.J.G., Chesñever C.I., and Simari, G.R., “On the Accrual of Ar-
guments in Defeasible Logic Programming”, Proc. of IJCAI2009, pp. 804 – 809
(2009).

Modgil09. Modgil, S., “Reasoning about Preferences in Argumentation Frameworks”,
Artificial Intelligence, Vol. 173, pp.901-1040 (2009).

Moguillansky08. Moguillansky, M.O., et al., “Argument Theory Change Applied to
Defeasible Logic Programming”, Proc. of AAAI2008, pp. 132 – 137 (2008).

Osorio05. Osorio, M., Zepeda, C, Nieves, J. C., Corte’s, U., “Inferring Acceptable Ar-
guments with Answer Set Programming”, http://www.lsi.upc.edu/~jcnieves/
JCNieves-Publications/Conference/ ENC05.pdf, Proc. of ENC’05, pp.198 – 205
(2005).

Okuno08. Okuno K., and Takahashi, K., “Argumentation with a Revision of Knowl-
edge Base”, Proc. of EUMAS08, CD-ROM, December (2008).

Okuno09. Okuno, K., Takahashi, K., “Argumentation System with Changes of an
Agent’s Knowledge Base”, Proc. of IJCAI 2009, pp.226–232 (2009).

Okuno10. Okuno, K., Takahashi, K., “Argumentation System Allowing Sus-
pend/Resume of an Argumentation Line”, Proc. of ArgMAS2010, pp.145–162
(2010).



Prakken01. Prakken, H., “Relating Protocols for Dynamic Dispute with Logics for
Defeasible Argumentation”, Synthese Vol. 127, pp. 187 – 219 (2001).

Rahwan09. I.Rahwan, and G.Simari (eds.), “Argumentation in Artificial Intelligence”,
Springer (2009).

Takahashi11. Takahashi, K., Nambu, Y., “A Semantics for Dynamic Argumentation
Frameworks”, Proc. of ArgMAS2011 (2011)


	Semantics of Argumentation under Incomplete Information
	 Ken Satoh, Kazuko Takahashi

