A Semantics of Argumentation under Incomplete Information

Ken Satoh1, Kazuko Takahashi2

1 National Institute of Informatics and Sokendai
ksatoh@nii.ac.jp
2 School of Science&Technology, Kwansei Gakuin University
ktaka@cs.kwansei.ac.jp

Abstract. We discuss a semantics of argumentation under incomplete information. In this paper, we mean by “incomplete information” that an agent does not know the other agent’s knowledge and therefore, the agent cannot predict which arguments are attacked and which counter-arguments are used in order to attack the arguments. In this paper, we provide a more general framework for such argumentation system than previous proposed framework and provide a computational method how to decide acceptability of argument by logic programming if both agents are eager to give all the arguments.

1 Introduction

Argumentation system is a hot topic in legal reasoning and in more general setting such as negotiation in multi-agent systems\cite{Rahwan09}. However, most of the work on argumentation is based on the assumption where complete information about argumentation is provided\cite{Dung95}. It would be appropriate for an application domain where we can see all the arguments and counter-arguments so that we can conclude the most appropriate result based on all the arguments. However, in reality, there would be another type of argumentation where relevant agents only have their own belief and they do not know other agents’ belief and so they do not predict how other agents attack their own arguments.

Consider the following slightly modified example taken from\cite{Okuno09}:

\begin{enumerate}
 \item \textit{p0: “You killed the victim.”}
 \item \textit{c1: “I did not commit murder! There is no evidence!”}
 \item \textit{p1: “There is evidence. We found your ID card near the scene.”}
 \item \textit{c2: “It’s not evidence! I had my ID card stolen!”}
 \item \textit{p2: “It is you who killed the victim. Only you were near the scene at the time of the murder.”}
 \item \textit{c3: “I didn’t go there. I was at facility A at that time.”}
 \item \textit{p3: “At facility A? Then, it’s impossible to have had your ID card stolen since facility A does not allow a person to enter without an ID card.”}
\end{enumerate}

3 In the example, \textit{c} and \textit{p} are two parties and numbers attached with \textit{c} and \textit{p} express order of arguments.
This kind of argumentation would occur in examinations of witness in legal courts. In the above example, c_2 is not firstly attacked but after the argument of c_3 is given, c_2 is attacked by p_3. Since agent p does not believe that the suspect was at facility A, p could not use the counter-argument p_3 at first. But after c_3 is provided, p can attack c_2 by pointing out the contradiction with c_3. This phenomenon cannot be formalized in argumentation system based on complete information about arguments and so we need a new framework.

Pioneer work on this direction would be, as far as we know, APKC (Argumentation Procedure with Knowledge Change) [Okuno08, Okuno09, Okuno10, Takahashi11] where counter-arguments, which cannot be used at the starting point of argumentation since these counter-arguments are not convinced by the agent itself, are triggered by other agents’ arguments. In this paper, we extend this direction to provide more general framework than APKC. The difference between their works and this work are as follows:

- We let an agent give as many counter-arguments against other agent’s arguments as they like where as APKC allows only one counter-argument against one argument at one turn.
- We do not employ any specific strategy how to make counter-argument whereas APKC imposes an agent to stick to one line of arguments until no counter-argument is made, then the agent change counter-argument in the other line of arguments.

To formalize the above, we introduce sources of arguments which represent usable arguments. This means that even if there are potential counter-arguments against the other agent’s arguments, the agent cannot use the argument if the argument is not in the source. We also introduce derivation rule of sources which represent dynamic addition of arguments which were not initially able to be used, but later become usable based on the other agent’s new arguments and its own belief. By these mechanisms, we let agents not know whether potential arguments would be usable in the future since there are incomplete information about the other agents’ behavior.

Then, we show a computational method to decide which arguments are accepted by translating argumentation framework into logic programming from the God’s viewpoint under the assumption that all possible arguments will always be presented by both parties sooner or later.

2 Framework for Argumentation under Incomplete Information

Definition 1. Let $\text{Arg}_P(\text{Arg}_C, \text{respectively})$ be a set called an argument set for $P(C, \text{respectively})$. We write $\langle \text{Arg}_P, \text{Arg}_C \rangle$ as Arg. An attack relation for $P(C, \text{respectively})$, $\text{Attack}_P(\text{Attack}_C)$ is a subset of

\[^4\] P denotes “Pros” and “C” denotes “Cons”.\[^\]
We write \(\langle \text{Attack}_P, \text{Attack}_C \rangle \) as \(\text{Attack} \).

We say \(P(C, \text{respectively}) \) attacks \(n' \) by \(n \) if \(\langle n, n' \rangle \in \text{Attack}_P(\text{Attack}_C, \text{respectively}) \).

Source\(_P\) (Source\(_C\), respectively) is a subset of Arg\(_P\) (Arg\(_C\), respectively). We write \(\langle \text{Source}_P, \text{Source}_C \rangle \) as \(\text{Source} \).

A set of derivation rules for \(P(C, \text{respectively}) \) Derive\(_P\) (Derive\(_C\), respectively) is a set of the following rules of the form:

\[
\begin{array}{c}
n \leftarrow n_1, \ldots, n_m \\
\end{array}
\]

where \(n \in \text{Arg}_P \) (Arg\(_C\), respectively) and \(n_i \in (\text{Arg}_P \cup \text{Arg}_C)(1 \leq i \leq m) \).

We call \(\langle \text{Derive}_P, \text{Derive}_C \rangle \) an argumentation framework.

We assume that there is no loop in \(\text{Attack}_P \cup \text{Attack}_C \) to avoid infinite loop of arguments.

In the above definition, a derivation rule enables an agent to augment its own source of arguments by adding the conclusion of the derivation rule if condition part is satisfied.

We define an argumentation tree which gives a semantics of acceptance of arguments as follows.

Definition 2. An argumentation tree \(Tr = \langle N, E \rangle \) w.r.t. an argumentation framework \(\langle \text{Arg}, \text{Attack}, \text{Source}, \text{Derive} \rangle \) is an in-tree\(^6\) such that \(N \subset \text{Arg}_P \cup \text{Arg}_C \) and \(E \subset \text{Attack}_P \cup \text{Attack}_C \) and satisfies the following conditions:

- The root of \(Tr \) is \(p \in \text{Source}_P \) called “conclusion”.
- If \(\langle n, n' \rangle \in E \) then either of the following holds.
 - \(n \in \text{Source}_P \) and \(n' \in \text{Source}_C \) and \(\langle n, n' \rangle \in \text{Attack}_P \).
 - \(n \in \text{Source}_C \) and \(n' \in \text{Source}_P \) and \(\langle n, n' \rangle \in \text{Attack}_C \).

Let \(Tr = \langle N, E \rangle \) be an argumentation tree. \(n \in N \) is accepted w.r.t. \(Tr \) if

- there is no edge to \(n \), or
- there is no \(n' \) s.t. \(\langle n', n \rangle \in E \) and \(n' \) is accepted w.r.t. \(Tr \).

Now, we can define a game called an argumentation game which gives a dialog between two parties. In argumentation game, agents can refer to source of arguments to produce counter-arguments.

Definition 3. A move of an argumentation game w.r.t. argumentation tree \(Tr = \langle N, E \rangle \) and a pair of source sets \(\langle S_P, S_C \rangle \) is an expansion of \(Tr \), \(S_P \) and \(S_C \) defined as follows.

\(^5\) We may formalize an argumentation with loop if we follow Dung’s stable extension or preferred extension. It is a future research topic.
\(^6\) An in-tree is an directed tree in which a single node is reachable from every other one (See Fig.\(1\)).
- P’s move is a set $\text{Move}_P \subseteq \text{Attack}_P$ such that for every n such that $(n, n') \in \text{Move}_P$, $n \notin N$, $n \in \text{Source}_P$ and $n' \in N$. Then, a new set of nodes in a new argumentation tree N', a new set of edges in a new argumentation tree E' and a new pair of source sets (S'_P, S'_C) becomes the following.

 1. $N' = N \cup \{n \mid (n, n') \in \text{Move}_P\}$
 2. $E' = E \cup \text{Move}_P$
 3. $S'_P = S_P$
 4. $S'_C = S_C \cup \{n \mid (n \Leftarrow n_1, ..., n_m) \in \text{Derive}_C \text{ and } n_i \in N'(1 \leq i \leq m)\}$

- C’s move is a set $\text{Move}_C \subseteq \text{Attack}_C$ such that for every n such that $(n, n') \in \text{Move}_C$, $n \notin N$, $n \in \text{Source}_C$ and $n' \in N$. Then, a new set of nodes in a new argumentation tree N', a new set of edges in a new argumentation tree E' and a new pair of source sets (S'_P, S'_C) becomes the following.

 1. $N' = N \cup \{n \mid (n, n') \in \text{Move}_C\}$
 2. $E' = E \cup \text{Move}_C$
 3. $S'_P = S_P \cup \{n \mid (n \Leftarrow n_1, ..., n_m) \in \text{Derive}_P \text{ and } n_i \in N'(1 \leq i \leq m)\}$
 4. $S'_C = S_C$

If both agents give \emptyset in consecutive two moves, then we say that the game is finished and we call a final tree after a game is finished argumentation game tree. Let Tr be an argumentation game tree (N, E). We say that a node $n \in N$ is accepted w.r.t. the argumentation game tree Tr if n is accepted w.r.t. argumentation tree Tr.

Note that a move can be \emptyset and a conclusion is decided to be accepted or not using the argumentation game tree.

Example 1. Consider the example discussed at Introduction. Then,$$
\begin{align*}
\text{Arg}_P &= \{p0, p1, p2, p3\} \\
\text{Arg}_C &= \{c1, c2, c3\} \\
\text{Attack}_P &= \{(p1, c1), (p2, c1), (p3, c2)\}, \\
\text{Source}_P &= \{p0, p1, p2\}, \\
\text{Derive}_P &= \emptyset \\
\text{Attack}_C &= \{(c1, p0), (c2, p1), (c3, p2)\}, \\
\text{Source}_C &= \{c1, c2, c3\}, \\
\text{Derive}_C &= \{c3 \Leftarrow p3\}
\end{align*}
$$

Note that since initial Source_P does not include $p3$ so we cannot use an attack to $c2$ by $p3$.

1. Let $p0$ be a conclusion. Then

 $Tr = \{(p0), \emptyset\}.$

2. C’s next move has two possibilities, that is, to give either \emptyset or $\{(c1, p0)\}$.

3. Suppose that C gives $\{(c1, p0)\}$

 Then, $Tr = \{(p0, c1), (c1, p0)\}$.

4. P’s next move has four possibilities, that is, to give either \emptyset or $\{(p1, c1)\}$ or $\{(p2, c1)\}$ or $\{(p1, c1), (p2, c1)\}$.

7 This means that even if there are possible counter-arguments, an agent can be silent.
5. Suppose that \(P \) gives \(\{(p_1, c_1), (p_2, c_1)\} \).
 Then,
 \[
 Tr = \langle \{p_0, c_1, p_1, p_2\}, \{c_1, p_0\}, \langle p_1, c_1\rangle, \langle p_2, c_1\rangle \rangle.
 \]

6. \(C \)'s next move has four possibilities, that is, to give either \(\emptyset \) or \(\{\langle c_2, p_1\rangle, \langle c_3, p_2\rangle\} \) or \(\{\langle c_2, p_1\rangle, \langle c_3, p_2\rangle\} \).

7. Suppose that \(C \) gives \(\{(c_2, p_1), (c_3, p_2)\} \).
 Then,
 \[
 Tr = \langle \{p_0, c_1, p_1, p_2, c_2, c_3\}, \{(c_1, p_0), (p_1, c_1), (p_2, c_1), (c_2, p_1), (c_3, p_2)\} \rangle.
 \]

8. \(P \)'s next move has only two possibilities, that is, to give \(\{(p_3, c_2)\} \) or \(\emptyset \) since \(p_3 \) is now in \(Source_P = \{p_0, p_1, p_2, p_3\} \) and \((p_3, c_2) \) becomes usable.

9. Suppose that \(P \) gives \(\{(p_3, c_2)\} \).
 Then,
 \[
 Tr = \langle \{p_0, c_1, p_1, p_2, c_2, c_3\}, \{c_1, p_0, (p_1, c_1), (p_2, c_1), (c_2, p_1), (c_3, p_2), (p_3, c_2)\} \rangle.
 \]

10. There is no move from both sides so the game is finished.

11. Then, \(p_3 \) is accepted and so \(c_2 \) is not accepted. Then \(p_1 \) is accepted and \(c_1 \) is not accepted. Finally \(p_0 \) is accepted.

In this example, \(p_3 \) is a key to rebut \(c_2 \) and \(p_3 \) was not in initial source but is invoked after \(c_3 \) is made. This invocation is made by a derivation rule \(p_3 \leftarrow c_3 \) (See Fig. 1).

![Fig. 1. Representation of Arguments and Derive Relation for Example](image)

There are many ways to develop an argumentation game tree, but we can show that a final argumentation tree will be unique in any way of developing a tree if both parties eventually give all possible arguments. We call this strategy \textit{eager}, so we can say that an argumentation game tree will converge into one if both agents are eager. On the other hand, we can define a \textit{lazy} agent which gives only necessary counter-arguments. In other words, a lazy agent will choose one counter-argument among possible counter-argument against the other agent’s
argument and it will choose another counter-argument only if the chosen counter-
argument is rebutted by the other agent’s counter-counter-argument. Then, in
this lazy agent’s case some of derivation rules might not be invoked so that an
effective counter-argument might not be produced. We show such an example as
follows.

Example 2. Consider the following case where we add \(\langle c4, p2 \rangle \) to Attack\(_C\) of the
previous example. Then,

\[
\begin{align*}
\text{Attack}_P &= \{ \langle p1, c1 \rangle, \langle p2, c1 \rangle, \langle p3, c2 \rangle \}, \\
\text{Source}_P &= \{ p0, p1, p2 \}, \\
\text{Derive}_P &= \emptyset \\
\text{Attack}_C &= \{ \langle c1, p0 \rangle, \langle c2, p1 \rangle, \langle c3, p2 \rangle, \langle c4, p2 \rangle \}, \\
\text{Source}_C &= \{ c1, c2, c3, c4 \}, \\
\text{Derive}_C &= \{ c3 \leftarrow p3 \}
\end{align*}
\]

We show an example when an agent does not give full arguments but hides an
argument.

1. Let \(p0 \) be a conclusion. Then
 \(\text{Tr} = \{ \langle p0 \rangle, \emptyset \}. \)
2. \(C \)'s next move has two possibilities, that is, to give either \(\emptyset \) or \(\{ \langle c1, p0 \rangle \} \).
3. Suppose that \(C \) gives \(\{ \langle c1, p0 \rangle \} \)
 Then, \(\text{Tr} = \{ \langle p0, c1 \rangle, \{ \langle c1, p0 \rangle \} \} \).
4. \(P \)'s next move has four possibilities, that is, to give either \(\emptyset \) or \(\{ \langle p1, c1 \rangle \} \)
 or \(\{ \langle p2, c1 \rangle \} \) or \(\{ \langle p1, c1 \rangle, \langle p2, c1 \rangle \} \).
5. Suppose that \(P \) gives \(\{ \langle p1, c1 \rangle, \langle p2, c1 \rangle \} \).
 Then,
 \(\text{Tr} = \{ \langle p0, c1, p1, p2 \rangle, \langle c1, p0 \rangle, \langle p1, c1 \rangle, \langle p2, c1 \rangle \} \).
6. \(C \)'s next move has eight possibilities, that is, to give a subset of
 \(\{ \langle c2, p1 \rangle, \langle c3, p2 \rangle, \langle c4, p2 \rangle \} \).
7. Suppose that \(C \) gives \(\{ \langle c2, p1 \rangle, \langle c4, p2 \rangle \} \).
 Then,
 \(\text{Tr} = \{ \langle p0, c1, p1, p2, c2, c4 \}, \langle c1, p0 \rangle, \langle p1, c1 \rangle, \langle p2, c1 \rangle, \langle c2, p1 \rangle, \langle c4, p2 \rangle \} \).
 Note that since \(C \) did not choose \(\langle c3, p2 \rangle \), we cannot make \(p3 \) usable.
8. Only \(P \)'s next move is to give \(\emptyset \).
9. \(C \) hides the another counter-argument \(\{ c3, p2 \} \) and gives \(\emptyset \). Then, there is
 no move from both sides so we are done.
10. Then, \(c2 \) and \(c4 \) are accepted. Then either \(p1 \) nor \(p2 \) is accepted and \(c1 \) is
 accepted. Finally \(p0 \) is not accepted.

In this example, an agent \(c \) does not use \(c3 \) to rebut \(p2 \) but use \(c4 \) therefore, \(p3 \)
is not invoked and \(p0 \) is not accepted. An agent \(c \) does not need to make more
argument using \(c3 \) since the current counter-arguments are enough to win the
example (See Fig. 2).
3 Computing Acceptance in Argumentation Framework

In this section, we assume that agents are both eager. Then we can translate an argumentation framework into a logic program in order to compute acceptability of a given argument from the bird’s eye view. There is a proposal of computing Dung’s argumentation semantics by translating the Dung’s framework into a logic program and corresponding answer set of the program with acceptability Osorio05. We extend their work by adding an extra condition reasoning about “sources”. In order to do so, we introduce new predicate “announced(A)” meaning that an argument A is actually used for building an argumentation game tree. If an argument can be attacked by satisfying the condition that there is an attack relation for the argument and counter-argument is in the source, then counter-argument becomes announced to the other agent so that the agent can use other sources of arguments.

Definition 4. Let \(\langle \text{Arg, Attack, Source, Derive} \rangle \) be an argumentation framework. For \(A \in \text{Arg}_P \cup \text{Arg}_C \), we define \(\text{Counter}_A = \{ B | \langle B, A \rangle \in \text{Attack}_P \cup \text{Attack}_C \} \). For each argument \(A \), we define the translation of argument \(A \) to rules of logic programming as follows:

\[
\text{accepted}(A) \leftarrow \bigwedge_{B \in \text{Counter}_A} \neg (\text{source}(B) \land \text{accepted}(B)).
\]

Note that if \(\text{Counter}_A \) is empty then the above rule becomes \(\text{accepted}(A) \).

For every \(B \in \text{Counter}_A \),

\[
\text{announced}(B) \leftarrow \text{announced}(A) \land \text{source}(B).
\]

*If the parent node is announced and the current node is in the source, then the current node will be announced. This rule expresses the eager strategy of argumentation.
We also add the following rules for \((A \leftarrow A_1, \ldots, A_m) \in \text{Derive}_C:\)

\[
\text{source}(A) \leftarrow \bigwedge_{i=1}^{m} \text{body}_C(A_i).
\]

where \(\text{body}_C(A_i)\) is defined as follows:

\[
\text{body}_C(A_i) = \begin{cases}
\text{source}(A_i) & \text{if } A_i \in \text{Arg}_C \\
\text{announced}(A_i) & \text{if } A_i \in \text{Arg}_P
\end{cases}
\]

Similarly, we add the following rules for \((A \leftarrow A_1, \ldots, A_m) \in \text{Derive}_P:\)

\[
\text{source}(A) \leftarrow \bigwedge_{i=1}^{m} \text{body}_P(A_i).
\]

where \(\text{body}_P(A_i)\) is defined as follows:

\[
\text{body}_P(A_i) = \begin{cases}
\text{source}(A_i) & \text{if } A_i \in \text{Arg}_P \\
\text{announced}(A_i) & \text{if } A_i \in \text{Arg}_C
\end{cases}
\]

We also add the following for an argument \(A\) in the initials source sets:

\[
\text{source}(A).
\]

We also add the following for the conclusion \(A_0\) which is the root of the argumentation game tree:

\[
\text{announced}(A_0).
\]

Note that since there is no loop in the attack set, the above program becomes a stratified program so there is a unique minimum model for the translated program.

Example 3. Consider the setting of Example 1. The translated logic program becomes as follows:

\[
\begin{align*}
\text{accepted}(c1) & \leftarrow \neg (\text{source}(p1) \land \text{accepted}(p1)) \land \\
& \quad \neg (\text{source}(p2) \land \text{accepted}(p2)). \\
\text{accepted}(c2) & \leftarrow \neg (\text{source}(p3) \land \text{accepted}(p3)). \\
\text{accepted}(p0) & \leftarrow \neg (\text{source}(c1) \land \text{accepted}(c1)). \\
\text{accepted}(p1) & \leftarrow \neg (\text{source}(c2) \land \text{accepted}(c2)). \\
\text{accepted}(p2) & \leftarrow \neg (\text{source}(c3) \land \text{accepted}(c3)). \\
\text{accepted}(c3), \\
\text{accepted}(p3), \\
\text{announced}(p1) & \leftarrow \text{announced}(c1) \land \text{source}(p1), \\
\text{announced}(p2) & \leftarrow \text{announced}(c1) \land \text{source}(p2), \\
\text{announced}(p3) & \leftarrow \text{announced}(c2) \land \text{source}(p3), \\
\text{announced}(c1) & \leftarrow \text{announced}(p0) \land \text{source}(c1), \\
\text{announced}(c2) & \leftarrow \text{announced}(p1) \land \text{source}(c2).
\end{align*}
\]
Then, we can show that accepted(p0) is derived from the above program.

Theorem 1. Let \(\langle Arg; Attack; Source; Derive \rangle \) be an argumentation framework and \(A_0 \) be a conclusion and \(Tr \) be a final argumentation game tree w.r.t. the framework for the eager strategy and \(Pr \) be a translated logic program from the framework. Then, \(A_0 \) is accepted if and only if \(Pr \models accepted(A_0) \)

4 Related Works

Several studies have been conducted on argumentation semantics. Dung provided a semantics for a given abstract argumentation framework based on acceptability \cite{Dung95}. He defined several acceptable sets, depending on the range of strength against an attack. Coste-Marquis et al. argued that it is controversial to include both agents’ arguments in an extension because this would indicate an indirect attack \cite{Coste-Marquis05}. They defined a new semantics, called “prudent semantics,” which does not allow such controversial cases, and compared this with Dung’s semantics. Other semantics have also been proposed, such as ideal semantics \cite{Dung06}, semi-stable semantics \cite{Caminada06}, and others. Baroni et al. compared these types of semantics from the viewpoint of scepticism \cite{Baroni07}. All these semantics involved argumentation systems from a static viewpoint, whereas our proposed semantics is suitable for a dynamic argumentation system.

Cayrol et al. studied how acceptable arguments are changed when a new argument is added to Dung’s argumentation system before an argumentation is executed \cite{Cayrol08, Cayrol10}. Therefore, it is along the line of usual belief revision approach where revision is made before reasoning and revision never occurs during reasoning. In contrast, we focus on addition or arguments during argumentation. So, we believe our approach has more dynamic nature.

García et al. formalized argumentation based on Defeasible Logic Programming (DeLP) \cite{Garcia07}. In DeLP, agent’s knowledge base consists of two kinds of rules: strict rules and defeasible rules. The result of argumentation is different depending on which defeasible rules are used. Afterwards, Moguillansky discussed revision of the knowledge base \cite{Moguillansky08}. In his method, after constructing the initial argumentation tree called dialectical tree, knowledge base is changed by extracting defeasible rules and the tree is altered. The goal is to construct undefeated argumentation by selecting suitable defeasible rules. They presented an algorithm for this alteration of the tree and considered a strategy to get the undefeated argumentation. In a series of studies, they formalized several properties in argumentation based on this approach \cite{Lucero09}. Again the revision of knowledge base in their work is made before an argumentation is executed.
Cobo et al. proposed an argumentation framework in which available arguments change depending on time intervals [Cobo10]. In their work, these intervals are given in advance, they did not consider the mechanism by which an argument causes to generate a new argument. In contrast, we focus specifically on the effect of knowledge gained from presented arguments, which is essential in actual argumentation.

Prakken formalized an argument game and showed that counter-argument might not be effective in a game if it is added dynamically and proposed a notion of relevance to make counter-argument effective [Prakken01]. However, in this work, possible arguments are already defined before the game and are never added whereas in our work possible arguments are added according to other party’s argument.

Argumentation-based approach is applied to formalize processes appeared in agents communication such as negotiation [Amgoud00]. Considering the effect of the execution of arguments, agents communication are rather related issue, since belief of each agent is updated on receiving information from the other agent. Amgoud proposed the protocol that handles arguments and formalized the case in accepting/rejecting new information [Amgoud00]. She also presented a general framework for argumentation-based negotiation in which agent has a theory and it evolves during a dialogue [Amgoud08]. She considered the knowledge base for each agent separately, as well as its revision by exchanging arguments. The significant difference between her work and ours is that in her approach, an attack relation is increased only between a previous argument and the currently proposed argument whereas in our approach, a dynamic addition of an attack relation does not have such restriction so that we can add any attack relation using Derive and Source.

5 Conclusion

The contributions of the paper are as follows.

- We give more general framework of argumentation under incomplete information.
- We give a computational method of how to decide the acceptability of the arguments using a translation from an argumentation framework to a logic program under the assumption that every possible arguments are made.

As a future research, we would like to pursue the following.

- We should give a computational method of acceptability for a lazy agent. The method must reflect multiple extensions of arguments related with choices of arguments.
- We would like to introduce the strength of arguments which is related with legal significance.
- We would like to consider how we could apply this framework to reason about a response which could make “a trap” against the opponent where some of opponent responses could cause contradiction in another line of arguments.
References

