
On Generality of
PROLEG Knowledge Representation

Ken Satoh, Takamune Kogawa, Nao Okada, Kentaro Omori, Shunsuke Omura,
and Kazuki Tsuchiya

National Institute of Informatics and Sokendai
ksatoh@nii.ac.jp

Abstract. In this paper, we show a generality of PROLEG knowledge
representation in two-fold. One direction is from a view of logic program-
ming that we give a semantics of PROLEG representation and we show
that the expressive power of PROLEG is same as a general logic program
with answer set semantics. Another direction is that we can use PRO-
LEG not only for the Japanese “theory of presupposed ultimate facts”
in Japanese civil law but also for argumentation system and any legal
reasoning system where general principles and exceptions are separated.

1 Introduction

The Japanese Presupposed Ultimate Fact Theory[Ito08](called “Yoken-jijitsu-
ron” in Japanese, “JUF theory” we call in this paper) is used to handle the
uncertainty that sometimes occurs in the court because of a lack of enough
evidence.

Kitamura [Kitamura93] concisely explained the JUF theory, so we refer to the
article here (in the subsection of “Precision Justice in Civil Cases” in [Kitamura93]).

Referred to as the “theory of presupposed ultimate facts” (Yoken-jijitsu-
ron), it is based essentially on a procedural approach to the burden of per-
suasion. Civil judges should know which facts must be proved, by which
party and what to do in case of failure to prove. Accordingly, advocates
of this method propose to distinguish, from among the legal events pre-
scribed as being the cause of a given effect, those facts that the plaintiff
or defendant must rely on and establish. They call these facts Yoken ji-
jitsu (presupposed ultimate facts). ... in each text stipulated in the Civil
Code, facts of positive presupposition relied on by the plaintiff and facts
of negative presupposition raised in the defendant’s rebuttal must be dis-
tinguished precisely. .. Judges are unhappy with scholarly treaties on civil
law which neglect to draw this strict distinction. As a result, the judges
give a systematic character to their analysis by adding this new element
of interpretation to the traditional method in order to extract a code of
“judicial norms” from the Civil Code.



As this explanation shows, the JUF theory is originated from “burden of persua-
sion”. Independently, we pointed out that “negation as failure” in logic program-
ming is actually related with “burden of persuasion”[Satoh07] and therefore, it
is natural that we use logic programming to represent the JUF theory and we
showed out how to implement the JUF theory in logic programming[Satoh09].
However, since possible users of computational JUF theory are law school stu-
dents and lawyers, and they are not familiar with semantics of logic program-
ming, we need more user-oriented knowledge representation for the JUF theory.
So, we introduced a new system to reason about the JUF theory by a PROLOG-
based meta-interpreter called the PROLEG system (PROlog based LEGal rea-
soning support system)[Satoh12] which has been paid attention by some lawyers
[Kawamura12, page 11].

The main investigator of JUF theory, Ito explains JUF theory using open-
ness of the conditions[Ito08]. He divides ultimate facts in a condition of a rule
into two categories; one category corresponds with facts which normally lead to
the conclusion of a rule and the other category corresponds with facts which
represent exceptional situation. Ito argues that a fact in the latter category is
regarded as “open” so that the truth value is not decided until the counterpart
explicitly prove the fact. Therefore, A judge only considers facts in the former
category in order to draw a conclusion. Based on this idea, we developed the
PROLEG system where we define the JUF theory by a set of general rules and
exceptions.

In this paper, we investigate a generality of PROLEG representation of legal
knowledge consisting of general rules and exceptions. Since it seems that general
rules and exceptions is a kind of principle of normal legal systems and therefore,
in this paper, we would like to evaluate how general our representation is.

We abstract the original definition of PROLEG in order to compare its rep-
resentation power with PROLOG as follows.

– In the original definition, we do not implicitly consider a loop of exceptions
since if it were introduced, non existence of conclusion or multiple existence
of different conclusions would have occurred whereas we allow a loop in this
paper.

– In the original definition, we distinguish from facts and rules where facts
are actions performed in the court activity like allegements whereas, in this
paper, we just consider usual logical atoms in stead of these court actions.

Then, abstracting the PROLEG representation, we can show that the represen-
tation power is theoretical equivalent to PROLOG representation.

We also consider the generality from the practical side by showing that ex-
amples from argumentation theory and other legal domains besides civil code
can be expressed in the PROLEG language. As a side effect we also give a unified
view of Pollock’s two kinds of counter-arguments[Pollock95].

The structure of this paper is as follows. In Section 2 and Section 3, we give
a theoretical generality of PROLEG. In Section 2, we give a formal semantics of
PROLEG and in Section 3, we show equivalence of PROLEG and PROLOG rep-
resentation. In Section 4, we give a practical generality of PROLEG by showing



that PROLEG representation can be applied to other domains such as argumen-
tation theory and other legal system besides civil code. In Section 5 we discuss
related work and we summarize our contribution in Section 6.

2 Formalization

We define a PROLEG program as follows. A rule is a horn clause of the form
H ⇐ B1, ..., Bn

1 where H,B1, ..., Bn are atoms. We denote the dead of the rule
R as head(R). An exception is an expression of the form exception(H,E) where
H,E are atoms. A program P is a pair ⟨H, E⟩ where H is a set of rules and E is
a set of exceptions.

Let M be a set of atoms. We define a set of applicable rules w.r.t. M , HM ,
as follows:

{R ∈ H|¬∃E ∈ E s.t. exception(head(R), E) and E ∈ M}.

This means that if some exception is found for a conclusion H of rule R, we do
not consider such rule R for derivation.

Then, the semantics of P (called an extension of P ) is given as a set of atoms
M s.t. M = min(HM ) where min(T ) is the minimum model of a set of Horn
clauses T .

The intuitive explanation of an extension is that we firstly guess a possible
candidate of extension and if it is self consistent, that is everything we can derive
from the candidate and program whose rules are excluded if the exception is
included in the candidate and nothing extra is in the candidate.

Example 1.

– Suppose that plaintiff claims that a contract between him and defendant
exists because plaintiff offered defendant to sell his car, and defendant ac-
cepted.

– Then, suppose that defendant concedes plaintiff’s claims concerning offer
and acceptance, but claims an exception, viz. that she was insane when she
accepted plaintiff’s offer.

– To prove defendant’s insanity, the defendant must prove that there is an
official-looking document containing a judicial decision declaring her insane.

– In order to claim that this document is not authentic by proving that the
correct stamp is not put on the document, the burden of its proof is on the
one who claims this, so a switch of burden of proof occurs again.

We introduce propositions to discuss the above problem. “valid contract ”
means that there is a valid contract, “offer” expresses that there is an offer
of the contract, “acceptance” means that there is an acceptance for the offer,
“insane” means that she is insane when the contract is made, “document insane”

1 Bi part can be empty. In this case, we write it as H ⇐ .



means that the court issues a document which declares that defendant was in-
sane at the time of contract, “false document” means that the document is not
authentic, and “correct stamp” that the document has a correct stamp.

Let P1 = {H1, E1} and H1 be the following set of rules2:

valid_contract <= offer,acceptance.

offer <=.

acceptance <=.

insane <= document_insane.

document_insane <=.

false_document <= incorrect_stamp.

incorrect_stamp <=.

and E1 be the following set of exceptions:

exception(valid_contract,insane).

exception(insane,false_document).

LetM1 be {valid_contract, false_document, offer, acceptance, document_insane,
incorrect_stamp}.
Then, since false_document ∈ M1 and "exception(insane,false_document)."
exists we cannot include "insane <= document_insane." in HM1 . Therefore,
HM1 becomes the following rules

valid_contract <= offer,acceptance.

offer <=.

acceptance <=.

document_insane <=.

false_document <= incorrect_stamp.

incorrect_stamp <=.

Then, since M1 = min(HM1), M1 is an extension.

Example 2. Let P2 = {H2, E2} and H2 be the following set of rules:

P <=.

Q <=.

and E2 be the following set of exceptions:

exception(P,Q).

exception(Q,P).

Let M2 = {P}. Then, since HM2 = {P <=.} and M2 = min(HM2), M2 is an
extension. Let M3 = {Q}. Then, since HM3 = {Q <=.} and M3 = min(HM3),
M3 is also an extension.

Example 3. Let P3 = {H3, E3} and H3 be the following set of rules:

P <=.

2 This example is used in [Prakken01].



and E3 be the following set of exceptions:

exception(P,P).

Let M4 = {P}. Then, since HM4 = {} and M4 ̸= min(HM
4 ), M4 is not an

extension. Let M5 = {}. Then, since HM5 = {P <=.} and M5 ̸= min(HM
5 ), M5

is neither an extension. Since there is no other possibility of extension of P2,
there is no extension for P2.

3 Relation between PROLEG program and a general
logic program

3.1 Translation from PROLEG to PROLOG

We firstly review the translation from PROLEG to PROLOG [Satoh09]. Let
P = ⟨H, E⟩ be the following PROLEG program3 where H is as follows:

C ⇐ B11, ..., B1n1 .
C ⇐ B21, ..., B2n2 .

...
C ⇐ Bk1, ..., Bknk

.
and E is as follows:

exception(C,E1).
...

exception(C,Em).
Then, a translation of a PROLEG program P , tre(P ) is defined as the following
PROLOG program:

C : −B11, ..., B1n1 , not E1, ..., not Em.
C: −B21, ..., B2n2 , not E1, ..., not Em.

...
C: −Bk1, ..., Bknk

, not E1, ..., not Em.

Theorem 1. Let P be a PROLEG program and tre(P ) be a PROLOG program
obtained by the above translation. Then, there is an extension of P , M if and
only if there is an answer set M of tre(P ).

Example 4. Consider Example 1. tre(P1) is as follows:
valid_contract: −offer, acceptance, not insane.
offer.
acceptance.
insane: −document_insane, not false_document.
document_insane.

3 We only consider rules and exceptions which are related with the conclusion C for
simplicity. If there are multiple conclusions then we just do the same translation for
each rules and exceptions whose conclusions are the same.



false_document: −incorrect_stamp.
incorrect_stamp.

Then the stable model of this PROLOG program is {valid_contract, false_document,
offer, acceptance, document_insane, incorrect_stamp} which is equivalent
to M1 in Example 1.

3.2 Translation from PROLOG to PROLEG

We now give a translation from a PROLOG program to a PROLEG program.
The difficulty lies in that the above translation from PROLEG to PROLOG,
rules with the same head in PROLOG will have the same negative literals in
the body, whereas a usual PROLOG program does not have such property. We
solve this difficulty by introducing a new predicate for each rule.

Let P be the following PROLOG program:
C: −B11, ..., B1n1 , not E11, ..., not E1m1 .
C: −B21, ..., B2n2 , not E21, ..., not E2m1 .

...
C: −Bk1, ..., Bknk

, not Ek1, ..., not Ekmk
.

Then, a translation of a PROLOG program P , tro(P ) is defined as the following
PROLEG program ⟨Ho, Eo⟩ where Ho is as follows:

C ⇐ C1.
C1 ⇐ B11, ..., B1n1 .
C ⇐ C2.
C2 ⇐ B21, ..., B2n2 .

...
C ⇐ Ck.
Ck ⇐ Bk1, ..., Bknk

.
and Ee is as follows:
exception(C1, E11).

...
exception(C1, E1m1).
exception(C2, E21).

...
exception(C2, E2m2).

...
exception(Ck, Ek1).

...
exception(Ck, Ekmk

).

Theorem 2. Let P be a PROLOG program and tro(P ) be a PROLEG program
obtained by the above translation. Then, there is an answer set M of P if and



only if there is an extension of tro(P ) such that a set deleting newly introduced
predicates from the extension equals to M .

Example 5. Consider the PROLOG program tre(P1) in Example 4. Then, tro(tre(P1)) =
⟨Hoe, Eoe⟩ becomes (by introducing some new predicates) whereHoe is as follows:

valid_contract <= c1.

c1 <= offer,acceptance.

offer <=.

acceptance <=.

insane <= c2.

c2 <= document_insane.

document_insane <=.

false_document <= incorrect_stamp.

incorrect_stamp <=.

and Eoe be the following set of exceptions:

exception(c1,insane).

exception(c2,false_document).

Then, an extension of tro(tre(P1)) becomes {valid_contract, false_document,
offer, acceptance, document_insane, incorrect_stamp, c1}. By removing c1
from the extension we have the stable model of tre(P1). Note that we do not
infer insane by the rule "insane <= c2." since false_document is derived and
"exception(c2,false_document)." exists.

4 Practical Generality of PROLEG Representation to
Other Domains

In the previous sections, we talk about theoretical generality of PROLEG whereas
in this section, we give a practical generality of PROLEG by showing that PRO-
LEG representation can be applied to other domains such as argumentation
theory and other legal domains.

4.1 Application to Pollock’s Argumentation Theory

Walton neatly explains Pollock’s distinction of counter-arguments as follows [Walton09]:

Pollock’s distinction between two kinds of counter-arguments called re-
butting defeaters and undercutting defeaters (often referred to as rebut-
ters versus undercutters) is drawn as follows. A rebutting defeater gives
a reason for denying a claim by arguing that the claim is a false previ-
ously held belief[Pollock95, page 40]. An undercutting defeater attacks
the inferential link between the claim and the reason supporting it by
weakening or removing the reason that supported the claim. The way
Pollock uses these terms, a rebutter gives a reason to show the conclu-
sion is false, whereas an undercutter merely raises doubt whether the
inference supporting the conclusion holds. It does not show that the
conclusion is false.



Pollock uses the following example[Pollock95, page 41] to explain undercutting
defeater.

For instance, suppose x looks red to me, but I know that x is illuminated
by red lights and red lights can make objects look red when they are not.
Knowing this defeats the prima facie reason, but it is not a reason for
thinking that x is not red. After all, red objects look red in red light too.
This is an undercutting defeater.

At a glance, it seems that the denial of the conclusion and the denial of
applicability of the rule are different since the denial of applicability does not
directly mean the denial of the conclusion. However, if we consider the closed
world assumption or 2-valued semantics, the denial of the conclusion and the
denial of applicability of the rule can be converted each other as the following
discussion shows.

My understanding of rebutting is that no matter how many rules are appli-
cable for a given conclusion, the rebutting just ignores these applicable rules and
makes the conclusion false. This is very similar to PROLEG system; that is, if
exception(H,E) is in a PROLEG program and no matter how many rules can
be used to derive this conclusion H, H will not be derived if E is true and by
the closed world assumption H becomes false.

On the other hand, we could represent an undercutting defeater in PROLOG
by H: −B1, ...Bn, not E meaning that a rule H: −B1, ...Bn is not applied if E
happens. It does not interfere applicability of another rule forH,H: −B′

1, ...B
′
m

4.
Then, the according to the equivalent translation between PROLOG and

PROLEG programs in Section 3, rebutting and undercutting could be inter-
changeable as follows:

From rebutting to undercutting:
H ⇐ B11, ...B1n1

...
H ⇐ Bm1, ...Bmnm

exception(H,E)
can be translated into the following rule sets:
H: −B11, ...B1n1

, not E
...
H: −Bm1, ...Bmnm , not E

From undercutting to rebutting:
H: −B1, ...Bn, not E

can be translated into the following rule sets:
H ⇐ C1.

4 Consider that we add a following rule to Pollock example: “x is found to be a mature
apple by chemical experiment, x is red”. If the condition of this rule is true, we could
conclude that x is red even if the Pollock’s original rule is not applicable.



C1 ⇐ B1, ...Bn.
exception(C1, E).

This interchangeability is coming from two-valued semantics of PROLEG and
PROLOG. So, at least in two-valued semantics of logic programming, distinction
of rebutting and undercutting can be converted each other.

4.2 Application to Penal Code

A general rule of criminal law is that if the prosecutor proves that the external
elements (actus reus) and the internal elements (mens rea) of the crime then
the actor of the crime is prosecuted. However, there are some exceptions such as
insanity, self-defense. However, for self-defense, imminent and unlawful infringe-
ment must exist but for a situation such that the defender have an intention of
attack using this chance, then imminent condition will be denied5.

So, we could represent these general rules and exceptions in PROLEG. For
example, for the murder we could formalize a general rule as:

guilty(X,Y,murder) <=

intention_of_killing(X,Y), killing_act(X,Y),died(Y).

insane(X) <= psychiatric_test_insanity(X).

self_defense(X,Y) <=

imminent_infringement(Y,X), unlawful_infringement(Y,X),

defense_action_appropriate(X,Y).

and exceptions as:

exception(guilty(X,Y,murder),insane(X)).

exception(guilty(X,Y,murder),self_defense(X,Y)).

exception(imminent_infringement(Y,X),intention_of_attack(X,Y)).

4.3 Application to Code of Criminal Procedure

In Japanese Code of Criminal Procedure, Phrase 1 of Article 197 states that
“with regard to investigation, such examination as is necessary to achieve its ob-
jective may be conducted; provided, however, that compulsory dispositions shall
not be applied unless special provisions have been established in this Code”. So,
a general rule is that compulsory dispositions are prohibited, but in the excep-
tional situation where special provisions are made, the compulsory dispositions
are allowed. Another general rule says that if dispositions are not compulsory
(or in other words depositions are with consent), they are allowed, but in the
exceptional situation where the dispositions are the above necessary level, they
are prohibited.

We can write these general rules as:

5 Supreme Court Case:1977.7.21,31-4 Keisyu. 747.



prohibited(Police,X,Disposition) <=

compulsory(Disposition).

allowed(Police,X,Disposition) <=

with_consent(X,Disposition).

and exceptions as:

exception(prohibited(Police,X,Disposition),

provisions(Disposition)).

exception(allowed(Police,X,Disposition),

unnecessary(Police,X,Disposition)).

4.4 Application to Constitution Law

In the Constitution of Japan, Article 21 says that freedom of assembly and asso-
ciation as well as speech, press and all other forms of expression are guaranteed.
A general rule for constitutionality of constraining expression is that its purpose
must be compelling and its constraining method must be narrowly tailored. How-
ever, if the constraint is content-neutral regulation, then the standard of judicial
review becomes softer as an exception.

So, we can write this general rule as:

prohibitted(X,Y,Constraint) <=

constrain(X,Y,Constraint).

allowed(X,Y,Constraint) <=

purpose_of_constraint_compelling(X,Y,Constraint,Purpose),

method_of_constraint_narrowly_tailored(X,Y,Constraint,Method).

allowed(X,Y,Constraint) <=

content_neutral_constraint(Constraint),

purpose_of_constraint_imporant(X,Y,Constraint,Purpose),

method_of_constraint_least_restrictive(X,Y,Constraint,Method).

and exception can be expressed as follows:

exception(prohibitted(X,Y,ConstrainedExpression),

allowed(X,Y,ConstrainedExpression)).

5 Related Work

The idea of representing legal knowledge representation by general rules with
exceptions is not new. For example, Gordon[Gordon88] explains how general
rules with exceptions is useful for legal knowledge representation and proposes
Ob-log-2 system[Gordon87].

Gordon[Gordon93] proposes another system which uses technique of rule
naming and meta-predicate of applicability of rules. If certain conditions are
fulfilled, then applicability of a rule is prevented.



McCarty and Cohen[McCarty94] represent explicit exceptions using intu-
itionistic logic programming and show that nonmonotonic reasoning examples
can be easily encoded in their framework.

Prakken and Sartor[Prakken97] propose a method of handling exceptions by
using priority representation over rules in an extended logic program.

Verheij[Verheij03] introduces notions of dialectical negation and conditional
justification which can express rebutters and undercutters.

Governatori et al[Governatori04] proposes defeasible logic and show that the
logic can handle exceptions.

Gordon et al[Gordon07] propose a method of handling arguments in a sophis-
ticated manner so that a way of rebutting/undercutting/undermining arguments
can be captured in a unified framework.

Although we need to compare with these works theoretically in the future,
what we can say at the moment is that the main purpose of our research is
quite different from the above works. The direction would be almost opposite.
Most of the works are trying to enhance representation power of the system
to distinguish subtle difference in various legal reasoning schemes, we pursue
minimum sufficient functionality of legal reasoning related with the JUF theory
and show that our simple mechanism is sufficient to handle the JUF theory and
also show that it can be applied to other legal domain.

The most closely related work is by Kowalski and Sadri [Kowalski91]. Kowal-
ski and Sadri propose a language which consists of rules and exceptions. In their
language, rules with explicit negative literals in the head are used to express
exceptions for rules with its positive literal. A conclusion of the positive literal is
prevented if a rule of the conclusion with its counterpart of the negative literal
is applicable. They use a syntax of extended logic program where they can use
not only negation as failure but also explicit negation and define new seman-
tics which can handle exceptions by giving priority of derivation to rules with
explicit negative literals in the head. They show a translation of their formal-
ism into PROLOG, but they do not show a translation of PROLOG into their
formalism so it is not clear that the expressive power is the same as PROLOG.

On the other hand, we do not allow negation as failure in the body of the
rule nor use explicit exception for rules. This simplifies a semantics and it is easy
to show that PROLOG and PROLEG has the same expressive power.

There is another similar work to [Kowalski91] which uses explicit negative
literals in the head in Datalog settings [Halfeld98]. The semantics of [Halfeld98]
and [Kowalski91] are different, At least they only consider Datalog without func-
tion symbols whereas we consider a general logic program. Like [Kowalski91],
whether representation power of their framework is same as or above the power
of PROLOG is not known.

6 Conclusion

In this paper, we discuss a generality of PROLEG representation. Our claims
are as follows:



– We show that the representation power of PROLEG is same as PROLOG.
– The representation of “general rules and exceptions” in PROLEG is very sim-

ple but powerful enough to formalize legal reasoning in not only for Japanese
Civil Code, but also in other legal domain.

As a future research, we would like to pursue practical support tools based on
PROLEG representation not only for the JUF theory but also for other legal
domains.
Acknowledgments: I am very grateful to anonymous referees for pointing out
various related works. This work is partially supported by Grant-in-Aid for Sci-
entific Research(B),23300062.

References

[Gordon87] Gordon, T. F., ”Oblog-2: A Hybrid Knowledge Representation System
for Defeasible Reasoning”, Proceedings of the First International Conference on
Artificial Intelligence and Law, pp.231-239 (1987).

[Gordon88] Gordon, T. F., ”The Importance of Nonmonotonicity for Legal Reasoning”,
Expert Systems in Law; Impacts on Legal Theory and Computer Law, (H. Fiedler,
F. Haft and R. Traunmu”ller eds.) pp.111-126 (1988).

[Gordon93] Gordon, T. F., “The Pleadings Game; Formalizing Procedural Justice”,
Proceedings of the Fourth International Conference on Artificial Intelligence and
Law, pp.10–19(1993).

[Governatori04] Governatori, G., Maher, M. J., Antoniou, G., and Billington, D., “Ar-
gumentation Semantics for Defeasible Logic”, Journal of Logic and Computation,
Vol.14, pp.675–702 (2004).

[Gordon07] Gordon, T. F., Prakken, H., and Walton, D., “The Carneades Model of
Argument and Burden of Proof”, Artificial Intelligence, vol.171, No.10-11 pp.875–
896 (2007).

[Halfeld98] Halfeld Ferrari Alves,M., Laurent D., Spyratos N., ”Update Rules in Data-
log Programs”, Journal of Logic and Computation, Vol 8, No 6, pp.745-775 (1998).

[Ito08] Ito, S., “Lecture Series on Ultimate Facts”, Shojihomu (2008) (in Japanese).
[McCarty94] McCarty, L. T., and Cohen, W. V., “The Case for Explicit Exceptions”,

Methods of Logic in Computer Science, Vol.1, pp.19–50 (1994).
[Kawamura12] Kawamura, H.,, “Fundamental Theory of Civil Litigation: Structural

Analysis of Legal Judgment 1 (the second volume), What is The Japanese Pre-
supposed Ultimate Fact Theory?”, Horitsu Jiho, Vol. 2146, pp.9-24 (2012) (in
Japanese).

[Kitamura93] Kitamura, I., “The Judiciary in Contemporary Society: Japan”, Case
Western Reserve Journal of International Law, 00087254, Sprint93, Vol. 25, Issue 2
(1993).

[Kowalski91] Kowalski, R. A., Sadri, F., “Logic Programs with Exceptions”, New Gen-
eration Computing, Vol.9(3/4), pp.387-400 (1991).

[Pollock95] Pollock, J., “Cognitive Carpentry”, Cambridge, Mass: MIT Press (1995).
[Prakken97] Prakken, H., and Sartor, G., “Argument-based Extended Logic Program-

ming with Defeasible Priorities”, Journal of Applied Non-classical Logics, Vol. 7,
pp.25–75 (1997).

[Prakken01] Prakken, H., Modelling Defeasibility in Law: Logic or Procedure?, Fun-
dam. Inform., 48(2-3), pp. 253-271 (2001).



[Satoh07] Satoh, K., Tojo, S., Suzuki, Y., ”Formalizing a Switch of Bur-
den of Proof by Logic Programming”, Proc. of the 1st International
Workshop on Juris-Informatics (JURISIN 2007), pp. 76 – 85 (2007).
(http://research.nii.ac.jp/~ksatoh/papers/jurisin2007.pdf)

[Satoh09] Satoh, K., Kubota, M., Nishigai, Y., Takano, C., “Translating the Japanese
Presupposed Ultimate Fact Theory into Logic Programming”, Proc. of JURIX 2009,
pp.162-171 (2009).

[Satoh12] Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y.,
Shirakawa, K., Takano, C., ”PROLEG: An Implementation of the Presupposed Ulti-
mate Fact Theory of Japanese Civil Code by PROLOG Technology”, New Frontiers
in Artificial Intelligence: JSAI-isAI 2010 Workshops, Revised Selected Papers, LNAI
6797, pp. 153-164 (2012).

[Verheij03] Verheij, B., “DefLog: on the Logical Interpretation of Prima Facie Justified
Assumptions”, Journal of Logic and Computation, Vol. 13, 319–346 (2003).

[Walton09] Walton, D., “Objections, Rebuttals and Refutations”, in: J. Ritola (Ed.),
Argument Cultures: Proceedings of OSSA 09, pp. 1-10 (2009).


