Japanese word segmentation
using similarity measure for IR

Tomohiro Ozawa’™ Mikio Yamamoto'

Kyoji Umemura’

Kenneth W. Church™

T University of Tsukuba, {ozawa@milab., myama@ }is.tsukuba.ac.jp

11 Toyohashi University of Technology, umemura@ tutics.tut.ac.jp
711 AT&T Labs - Research, kwc@research.att.com

Abstract

It remains an open question what are the best units for
IR, in particular for Asian languages; words, phrases,
bigrams or ngrams. Our proposal is that the best units
are what maximize a similarity measure between a query
and a document. That is, in this framework, the IR
system should have different representations of a query
for each document. We develop the method which
segments a query into unigrams, bigrams and arbitrary
length ngrams using a similarity measure such as tf*idf
as the criteria for the segmentation. Experimental results
show that the method takes advantage of technical terms
which tend to be longer than bigrams, and integrates the
advantages of the word-based method and the ngram-
based method without drawbacks of both.

Keywords: character-based IR method, ngram, word
segmentation, suffix array

1. Introduction

There is an analogy between Information retrieval (IR)
and the pattern recognition such as speech recognition.
The task of acoustical model of the speech recognition
system is to output a ranked list of phonemes based on
an acoustic similarity between input speech and stored
phoneme models[1]. An IR system outputs a ranked list
of documents based on a similarity measure between an
input query and stored documents such as the vector
space model. Since speech has many variations of the
pattern in its time structure, Hidden Markov Model
(HMM) or Dynamic Time Warp (DTW) methods are
used in order for the speech comparison to be
meaningful. In the methods, the similarity score is
defined as the best score in possibilities of alignment
between the input and the stored patterns. We think that
text has the same difficulty of matching; queries and
documents have many variations like speech.

In this paper, we apply the idea of the best matching for
each query and document to the transformation process
of IR from a query to a representation. In IR for Asian
languages, it remains an open question what are the best
units; words, phrases, bigrams, ngrams or their
combinations[2,3,4,5]. Our proposal is that the best units
are different for each query and document. Like speech

recognition, the similarity is defined as the best score in
all possible representations of an input query. We will
develop the method which segments an input query into
arbitrary length ngrams as a representation of the query.
The segmentation results maximize the similarity score
for each document.

In the next section, the bigram-based method is
compared to the word-based method. We will show that
for a type of queries the bigram-based method is better,
but for the other type of queries the word-based method
is better. We intend to develop the method integrating
the advantages of both methods without the drawbacks.
Firstly, we will introduce the 'bigram segmentation'
method which segments an input query to the one best
sequence of unigrams and bigrams using the tf*idf
measure as a segmentation criteria. Secondary, we apply
the idea of the best and different segmentation for each
document to the method; we will call this the 'adaptive
bigram segmentation' method. Lastly, the bigram will be
extended to arbitrary length ngrams. The last method
takes advantage of technical terms which tend to be
longer than bigrams, without missing documents which
include the variations of the term.

2. Word and bigram methods

Recent studies have shown that the bigram-based
method is comparable to or better than the word-based
method for IR in Chinese and Korean[2,3,4]. We
compared both methods using a normal tf*idf measure
(see Table 1 in Section 4 in detail) and the test collection
NTCIR-1 (preliminary version)[6] to be sure if the
observation is also true for Japanese and this collection.
We focused on the performance for each query. Figure 1
shows the 11pt. average precision of two methods for
each query. Query ID's are sorted in order of precision of
the word-based method. We can conclude that the
advantage of each method is case by case. For some
queries the bigram method is better than the word
method, but vice versa for some other queries.

The bigram-based method is clearly worse in queries 25,
14, 23 and so on, which include longer technical terms
than bigram. For example, query 25 includes a technical
term 'LFG' which is an abbreviation of "Lexical

1.0~

- Word-based
0.8,
= Bigram-based
o o
Rz
3 0.6 Bigram is better
= than Word
S 04
o |.Ad----X
> ,
< Y
a s
— 0.2 . .
- Bigram is worse
than Word
R R A e 2" N A
202516191410 8 2723 1 2261711 6 24152921 4 121822 9 3013 3 528 7

Query

Figure 1: Word is better than bigram for some queries, but

bigram is better than word for some other queries.

Query4: Bigram method is better than word method.
Keyword: 3CE B4 PRfi#' (text image understanding)

terms total term freq. doc. freq.
LFG 88 27
| nz | a
FG | 1 [s
SCEHIR 549 270
. mm | 518 | 287 |
[Efe St 2217 147
e | 240 | 18|
AR AE SCIE 25 17
s | N T
FEE 873 486
R | 50676 | ¢ 29569 |
e | 2510 | 1091

Query 25: Word method is better than bigram method.

Keyword: 'LFG'
terms comment
Word-based LFG Good keyword
Bigram-based | LF, FG Bad keyword
¥
if(LFG) _ 88 \ if(LFG) _ 88
tf(LF) 1127 ff(FG) 1231

terms comment
Word CE Wi BRfiE Not good keywords
SO i PR Not good keywords
Bigram No sense, but good
EH, G keywords which represent
¢ \ technical terms
fCE) 549 AR BRfR) 227
f(FEm) T 578 t(153E) 240

Query 26: Both methods are comparable.

Keyword: FEFMEEE ST (Lexical Functional Grammar)

terms comment
Word | 28 Kehe Scis Bad keywords for the tech.
term
RS BRE ik, | Bad keywords
Bigram No sense, but good
S, RESC keywords which represent
technical terms

ﬁtéﬁﬁﬁiﬁawﬁ 25
(AFH) 25

Figure 2: Short words and bigrams are too short to represent technical terms.
A Bigram on word boundary is a good representation of a technical term.

Functional Grammar" in linguistics. The technical term
'LFG' is a good keyword, but the bigram method uses
only parts of it; 'LF' and 'FG'. In NTCIR-1 collection,
'LFG' occurs 88 times, but a frequency of LF' is 1127
times and a frequency of 'FG' is 1231 times (Figure 2).
The term 'LFG' is related to only ten percent of
occurrences of 'LF' and 'FG'. The word-based method
successes to extract the full term 'LFG' and takes
advantage of a full power of this term.

In contrast, the word-based method is clearly worse in
queries 4 and 9. Query 4 includes a key-phrase; '3(FE
[PR which means "text image understanding" in
English. The morphological analysis system used in the
word-based method segments the term to three words;
'SCHE (text), 'H {2 (image) and 'BEfi#' (understanding).
These three words are not good keywords, because
really large documents include these terms. However,
why is the bigram better than three words? In addition
to above three words, the bigram-based method uses
bigrams on word boundaries; the bigram ' extends
over '3LE" (text) and "Hif%' (image) and the bigram "%
B extends over 'Hif%' (image) and ' HEfF
(understanding). We found that these meaningless
bigrams are very good keywords. The bigram 'Z[H]'
occurs 573 times and the term 'SCEE[{E' (text image)
occurs 549 times in the collection. Thus, 90%
occurrences of the bigram 'FEH]" is related to 'SCE {4
The bigram 'ZEH|' is regarded as a good keyword which

represents 'SCE .

The same case is observed in query 26 which includes a
technical term 'FEEEFEHE SCI% ' ("Lexical Functional
Grammar" in English). However, both methods are
comparable in the query. The word-based method
segmented the term to three words such as 'FEHZ'
(Lexical), 'B¥BE' (Functional) and '3C#' (Grammar) and
the bigram uses a very good bigram on word boundaries
such as "#H%' which extends over 'FE%E and 'FEHE." All
occurrences of "#ZH¥' is a part of the technical term 'FE%5Z
FEBESCIL in the collection. The performance suffers
from the terms 'FE#E' and ' 3C{E." Although they are
normal good keywords related to the area of natural
language processing, they are too general to specify

documents related to 'FEEAERE VL)

Based on the observation of queries 4 and 26, we will
improve the bigram-based method in Section 3.1 and
3.2. Then we will extend bigrams to arbitrary length
ngrams to cope with query 25 including a longer
technical term than bigrams in Section 3.3.

3. Proposed methods

3.1 Bigram segmentation

There are many selection methods for effective bigrams
from a query. In this paper, we focus on the bigram
segmentation method which selects non-overlapping

bigrams with high tf*idf [7,8]. We think that overlapping
bigrams are not only redundant, but also troublesome in
some cases. The example in Section 2 showed that
bigrams on the word boundaries were good keywords,
but words themselves became bad keywords time to
time. We'd like to take advantage of only effective
bigrams.

The query segmentation method segments a query into a
sequence of bigrams and unigrams. Like word
segmentation using a dictionary, bigrams and unigrams
within a segmentation result do not overlap. Tf*idf
measure is used as a criteria for the segmentation.
Bigrams or unigrams which have high tf*idf value may
be good keywords (key-bigram).

The bigram segmentation method computes just one
representation of a query before comparing the query
with all documents. Only bigrams in the representation
are used to compute the similarity. But, to allow skipped
bigrams in the representation, unigrams are used as glue.
For example, a phrase 'SCE D E[{4' (an image of text)
includes a functional word '?®' which means 'of' in
English. The best segmentation of this term might be a
sequence made up with bigrams and a unigram; '3
(text) + '@ (of) + 'H[f%' (image).

Formal definition is the following. The best bigram
segmentation, S, maximizes the sum of tf*idf 's of
bigrams and unigrams in the segmentation.

S = argmsalerq,t TW,

r,, =if(t.q)
r, =1+logtf (1)
w, = L(t)-log(1+ D / df (1))

Where #f{t,q) is a term frequency of the term ¢ within the
query, q, tf{(t) is a total term frequency in the collection
and df{t) is a document frequency, D is the number of
documents, and L(?) is the length of 7. If we don't use the
length factor, most units in the segmentation result will
be unigrams, because term frequency of unigrams tends
to be so larger than those of bigrams. Investigation of
the best factor related to length is a future work. In this
developing, we used just a length of a term as the factor.

The bigram segmentation is like a stochastic or cost-
based morphological analysis for Japanese. The
differences are two points; the bigram segmentation uses
the text collection itself instead of a dictionary made by
hand, and tf*idf instead of probabilities or costs of
words.

To compute the best segmentation, the system uses the
Viterbi algorithm. All possible segmentation candidates
of a query are represented in a lattice made up with
unigrams and bigrams at all positions in the query.
Figure 3 shows an example of the lattice of the phrase '

Query : TEEBEEBHORY)

Figure 3: Unigrams and Bigrams Lattice

HEBEi oA >~ b (autonomous mobile robot). The
lattice is made up with 8 unigrams, 7 bigrams and
possible connections between them. A path from the left
edge to the right edge is corresponding to one
segmentation candidate. The tf*idf values for each node
are easily computed before the search. Using the Viterbi
search technique, the best path which maximizes the
sum of tf*idf on the path is computed effectively.

3.2 Adaptive Bigram Segmentation

The bigram segmentation method is intended to extract
good bigrams without noisy bigrams. However, this
strategy has a risk to miss documents which match only
bigrams excluded by the method. If a bigram on a
boundary between words is preferred for the method and
the words are made up with two characters, bigrams
within the words are excluded from the representation of
the query. We believe that the bigrams selected by the
method is good at high ranks, but some of excluded
bigrams may be good at medium ranks. If a query term '
SCEMZ (a text image), for example, is segmented to '
I+ W + '8, the bigram 'EH]' is a good keyword
for the collection, we believe. However, this
segmentation might miss documents including a phrase '
SCEDOME' (an image of text), because this phrase dose
not include the bigram 'E[H[', though both have the same
meaning.

To avoid this missing, we define the 'adaptive bigram
segmentation' method which computes the best
segmentation for each document. For some documents
including the term '3CE {4, the adaptive segmentation
method must segment the key-phrase 'SCEE[{£' to '3’
+ "EHE' + '1%'. However, for some other documents
including the phrase 'SCE D HE[{4' (an image of text), the
method is expected to segment the query to '3 (text)
+ "Ef%' (image), because the bigram on word boundary '
- H]' is not appear in the documents.

Since the adaptive method computes the best
segmentation for each document, it can adopt a real
similarity measure between queries and documents as
the segmentation criteria. Instead of a total term
frequency in the formula for the bigram segmentation
method, the adaptive one uses a term frequency within
the document.

The similarity measure between a query, g, and a
document, d, is defined as the maximum similarity in

Query : TE##BBHAKRY k)

Bl

Figure 4 : Ngrams lattice

computed by the possible query segmentations. We
referred to Zobel and Moffat paper [9] to determine
parameters of the similarity measure.

. 1
Sim(q.d) = max—=s 3 1, Ty W,

teS

The similarity is computed by the Viterbi search on the
same lattice used for the bigram segmentation method.
The IR system repeats the search on the lattice for each
document related to a query.

3.3 Adaptive ngram segmentation

Recall the analysis of query 25 which used the technical
term 'LFG." In this case, both of 'LF' and 'FG' are bad
keywords and the bigram framework cannot take
advantage of the full technical term. To improve this
problem, bigrams are naturally extended to longer
ngrams or combination of arbitrary length ngrams such
as unigram, bigram, trigram, and so on. The
segmentation framework can effectively and
automatically select a few good ngrams from many
overlapping ngrams.

The Viterbi algorithm is used again on the lattice which
includes arbitrary length ngrams in a query as nodes
(Figure 4). The best path for a document maximizes the
same similarity measure of the adaptive bigram
segmenation method, Sim(gq,d). The most expensive
piece of the computation is the calculation of document
frequencies for all ngrams. However, using Suffix
Arrays and preprocessing, it is not so hard to compute all
df's and total tf's of all substrings in the collection
[10,11].

4. Experiments

4.1 Systems and test collection

Specifications and nicknames of the systems used in this
section are in Table 1. The test collection NTCIR-1
(preliminary version)[6] is used for evaluation.

Table 1: Summary of the methods described in this paper.

Word-based method:
Word-segmentor: ChaSen[12]
Keywords: noun, verb and unknown words
Similarity measure: sim,(q,d) (better than sim,(q,d))
Nickname: "Word'

Bigram-based method:
Keywords: all bigrams in a query.
Similarity measure: sim,(q,d) (better than sim,(q,d))
Nickname: 'Bigram'’

Bigram segmentation method:
Keywords: bigram segmentation of a query
Segmentation criteria: seg(q) (limited to bigram segmentation)
Similarity measure: sim,(q,d)
Nickname: 'Bi-Seg.'
Ngram segmentation method:
Keywords: ngram segmentation of a query
Segmentation criteria: seg(q)
Similarity measure: sim,.(q,d)
Nickname: Ngram-Seg.

Adaptive bigram segmentation method:
Keywords: best bigram segmentation for each document.
Segmentation criteria: sim,(q,d) (limited to bigram segmentation)
Similarity measure: sim,(q,d)
Nickname: Adaptive-Bi-Seg.

Adaptive ngram segmentation method: (used for NTCIR workshop)
Keywords: best ngram segmentation for each document
Segmentation criteria: sim,(q,d)
Similarity measure: sim,(q,d)
Nickname: Adaptive-Ngram-Seg.

: _ b . . D
sim,(q,d) = Idlt:%ﬂtf(t,q) (1+log#f (t,d)) log(1+df(t))

simL(q,d):ﬁ D rf(r,q)-(1+1oggf(r,d))-1og(1+%)-L(r)
t:L(t)#1

seg(q) = Z/(l +logtf (1)) log(l + %) - L(1)

where ¢ is a query, d is a document, |dl is the length of the document d, tf(t,q)
and #f(t,d) are term frequency of the term 7 within the query ¢ and the
document d, D is the number of documents in the collection, df{t) is document
frequency of the term ¢, t#f{t) is total term frequency of the term ¢ in the
collection, L(t) is the length of the term .

0.8
Bi-Seg-based g et
0.7 & v AR
g 0.6 F (Lexical Functional Grammar)
kz 05HA = SCE G R
g H - (Text Image Understanding)
S 04f-= z e
BE :
= o
5 03F-%
: TYLFG
202 "(LFG)
~ 0.1 Bigram-based
|||||||||||||||||DIIIIIIIIDI
202516191410 8 2723 1 2261711 6 24152921 4 121822 93013 3 528 7

Query

Figure S: Bi-Seg improves the performance of hard
queries for the bigram-based method.

101
Adaptive-Bi-Se:
Adap g
0.8
o
S
306
a
)
s 04
]
z
é“ 02
“‘D :” v /
IIIIIIIIIIII“I'IIIIIIII‘D!_IA'II

202516191410 8 2723 1 2 261711 6 24152921 4 121822_9 30133 5287
Query
Figure 7: Adapvie-Bi-Seg improves the
performance of hard queries for Bi-Seg.

1.0

o o Adaptive-Bi-Seg
T e =—a Adaptive-Ngram-seg.
(LFG)

0.8
0.6 -
04+
LFG
021

11pt average precision

T~ =T
(data mining)
T T A A A A A Y B B B

202516191410 8 2723 1 2261711 6 24152921 4 1218229 30133 528 7
Query
Figure 8: Adaptive-Ngram-Seg improves the
performance of hard queries for Adaptive-Bi-Seg.

Word-based: «> > «—>

Query 4..> 3CFE Hfg BE ([ZoWT.
..of text image understanding about...
Bi-Seg-based: «——><«——><«——> <«
— Bigrams on word boundaries -

[Word-based: «—> «—> <> "
Query26 Ef: e it Zobo.l.

Lexical Functional Grammar itself ...
Bi-Seg-based: «&»«—>«—>«—> o

_Word-based: «—> «—> <«—>
Query 18 5 Mw'E fRikE

communication quality guarantee . -’
Bi-Seg-based: ©>¢—>e«——o*’

Figure 6: Bi-Seg segments a keyword into bigrams on
word boundaries.

4.2 Bigram vs. Bi-Seg.

Figure 5 shows the 11pt. average precision of Bigram
and Bi-Seg. systems for each queries. In this figure, the
performance for query 26 is greatly improved. Note that
Bi-Seg was intended to improve the performance for
query 26 which includes F&EZEFEHE SCIE' (Lexical

Functional Grammar). The advantage of the bigram-
based method against word-based method in query 4
including 'SCEE{G LR’ (text image understanding) is
preserved. Up to our expectations, Bi-Seg segmented the
phrases in the queries into bigrams on the word
boundaries (Figure 6).

However, the performance for some queries (11, 18 and
9) are disappointment. Query 18 includes a technical
term 15 f'E PRAE' (communication quality guarantee)
which is also segmented into bigrams on the word
boundaries which are good keywords (Figure 6). But this
technical term is not rigid and is allowed to have many
variations in the documents such as J#{5 O /it/B& O FRAE
(a guarantee of quality of communication) or 'i#{5 i
B % {RFET 5 ' (to guarantee the quality of
communication). In this case, bigrams on the word
boundaries miss the documents including the variations
of the technical term. We proposed the adaptive bigram
segmentation method to avoid those risks.

4.3 Adaptive bigram segmentation

Figure 7 shows the precision graph of Bi-Seg. and
Adaptive-Bi-Seg. For queries 11, 18 and 9 in which Bi-
Seg. is worse than Bigram (Figure 5), the performance is
restored by Adaptive-Bi-Seg. For some of the other
queries such as 19 and 2. Adaptive-Bi-Seg. outperforms
Bi-Seg. and Word-based method.

However, query 26 including 'FEEFHERE S (Lexical
Functional Grammar) is hard for Adaptive one. This
drop is caused by over-adaptation to irrelevant
documents. We cannot expect more improving as long

as using bigrams.

4.4 Adaptive ngram segmentation

Using arbitrary length ngrams, the adaptive
segmentation method is also improved for the queries
including long technical terms such as 'LFG', 7 — 4 ~
A = 7" (data-mining) and FEEIERESCIE' (Lexical
Functional Grammar) (Figure 8).

Figure 9 shows the 11pt. average precision for each
query of the word-based and bigram-based methods and
Adaptive-ngram-Seg. This indicates that Adaptive-
ngram-Seg. improves the performance in the hard

1.0
== Word-based
o o Bigram-based
0.8 =a Adaptive-Ngram-seg.
=}
S
2
2
g 0.6 Preserve Bigram
S
& iR e uckl 0 e
S 04 .
g ;
= ‘\
= \O
E02F\
—
IIIII‘I~T-+LII_’I’IIIIIIDIIIIIIIIDI g
202516191410 8 2723 1 2261711 6 24152921 4 12182293013 3 528 7

Query

Figure 9: Adaptive-Ngram-Seg. is better than both of
Word- and Bigram-based methods.

Query 1: HAf BE oXRvb

Ngrams with underline
are matched.

autonomous mobile robot

in Rank 1 Document: HfEREIm7A o]\/
in Rank 7 Document: HftBE i~ 7 a A > b
micro type
in Rank 21Document: HERIEEI 0 AR >~ b
in Rank 35 Document: EHa @ o A » -
wheel type
in Rank 56 Document: B8 \C K 2BILR A Y b
in Rank 59 Document: HA/r#c v R » b
in Rank 127 Document: HfEIT AR »~
moving

Figure 10: Adaptive method changes the segmentation
for each document.

Table 2: Ngram is better than bigram.
Adaptive method is better than just one seg.
Combination works better than either by itself.

Just one Adaptive
all
seg. Seg.
Word 0.294
Bigram 0.256 0.294 0.315
Ngrams 0.305 0.306 0.336

queries for the bigram-based method to the comparable
level of the word-based method, and retains the
advantage of the bigram-based method against the word-
based method, and also improves the comparable queries
for Bigram and Word methods. Table 2 summarizes the
total 11lpt. average precision of all the methods.
Segmentation methods are better than the basic method
for bigrams. Adaptive methods are also better than the
segmentation method.

Figure 10 shows examples of adaptive segmentations of '
HEREE oA~ M (autonomous mobile robot) of
query 1 for each document. The figure indicates that for
the higher ranked document the query is segmented into
longer ngrams. Since the document ranked in No.l
includes the whole technical term, the adaptive method
does not segment the technical term into words. As the
ranks are going down, the matched parts in the
documents turn into the variations of the term which
have the similar meaning. For example, the document
ranked in No.56 includes the long term which specifies
the robot in more details.

The adaptive segmenation method can be also extended
to preserve word or character order, exactly like the
speech recognition. The method is more powerful to take
advantage of variations of long technical terms [13].

5. Conclusion

Word segmentation methods such as ChaSen can be
viewed as a search over all possible segmentations
looking for the path that optimizes an objective function
(ex. the minimum connective-cost method with a
dictionary). In this work, we considered some other
objective functions inspired by research in Information
Retrieval. Section 3 described a procedure for
segmenting queries into a sequence of ngrams that
maximize tf*idf scores along the segmentation path.

This procedure will sometimes segment the same string
differently depending on the document. We call this
adaptative segmentation. The experiments reported in
table 2 find that ngrams work better than bigrams, and
more interestingly, that adaptative methods work better
than non-adaptive methods. The combination of both
adaptation and ngrams works better than either by
itself. The combination also works better than words.

References

[1] Lawrence Rabiner and Biing-Hwang Juang:
Fundamentals of Speech Recognition, PTR Prentice-
Hall, 1993.

[2] Joon Ho Lee and Jeong Soo Ahn: "Using n-grams for
Korean text retrieval," In proceeding of SIGIR'96
Zurich, Switzerland, pp.216--224, 1996.

[3] Aitao Chen, Jianzhang He, Liangjie Xu, Fredric C.

Gey, and Jason Meggs: "Chinese text retrieval
without using a dictionary," In proceeding of
SIGIR'97, Philadelphia PA, USA, pp.42-49, 1997.

[4] K. L. Kwok: "Comparing representations in Chinese
information retrieval," In proceedings of SIGIR'97,
pp-34-41, 1997.

[5] Yasushi Ogawa and Toru Matsuda: "Overlapping
statistical word indexing: A new indexing method for
Japanese text," In proceeding of SIGIR'97,
Philadelphia PA, USA, pp.226--234, 1997.

[6] Kageura, K., Teruo Koyama, Masaharu Yoshioka,
Atsuhiro Takasu, Toshihiko Nozue, and Keita Tsuji:
"NACSIS corpus project for IR and terminological
research.”, In Natural Language Processing Pacific
Rim Symposium'97, Phuket, Thailand, pp.493-496,
December 2-5, 1997.

[7] Karen Sparck Jones: "Search term relevance
weighting given little relevance information,"
Journal of Documentation, Vol.35, No.1, pp.30-48,
March 1979.

[8] G. Salton and M.J. McGill: The SMART and SIRE
Experimental Retrieval Systems, pp.118-155,
NewYork: McGraw-Hill, 1983.

[9] Justin Zobel and Alistair Moffat: "Exploring the
similarity space," SIGIR FORUM, Vol.32, No.l,
pp-18-34, 1998.

[10] Udi Manber and Gene Myers: "Suffix arrays: A
new method for on-line string searches," the first
Annual ACM-SIAM Symposium on Discrete
Algorithms, pp-319-327, 1990.
URL=http://glimpse.cs.arizona.edu/udi.html

[11] Mikio Yamamoto and Kenneth W. Church: "Using
suffix arrays to compute term frequency and
document frequency for all substrings in a corpus,"
In proceeding of 6th Workshop on Very Large
Corpora, Ed. Eugene Charniak, Montreal, pp.28-37,
1998.

[12] Yuji Matsumoto, Akira Kitauchi, Tatsuo
Yamashita, Yoshitaka Hirano, Osamu Imaichi, and
Tomoaki Imamura: Japanese Morphological analysis
System ChaSen Manual, NAIST Technical Report,
NAIST-IS-TR97007, February 1997,
http: //cactus.aist-nara.ac.jp/ lab/ nlt/ chasen.html.

[13] E. Yamammoto, K. Umemura, T. Ozawa, M.
Yamamoto and K.W. Church: "Character based
information retrieval using generalized string
similarity," IREX workshop, to apear, 1999.

