
OpenEnergySim: A 3D Internet Based Experimental
Framework for Integrating Traffic Simulation and

MultiUser Immersive Driving

Arturo Nakasone
National Institute of

Informatics
212 Hitotsubashi,Chiyodaku

Tokyo 1018430, Japan

arturonakasone@nii.ac.jp

Helmut Prendinger
National Institute of

Informatics
212 Hitotsubashi,Chiyodaku

Tokyo 1018430, Japan

helmut@nii.ac.jp

Marc Miska
Smart Transport Center

Queensland University of
Technology

GPO Box 2434
Brisbane, QLD 4001, Australia
marc.miska@qut.edu.au

Martin Lindner
National Institute of

Informatics
212 Hitotsubashi,Chiyodaku

Tokyo 1018430, Japan

martinl@nii.ac.jp

Ryota Horiguchi
iTransport Lab., Co., Ltd.
Jinbocho 14, Chiyodaku

Tokyo 1010051, Japan

rhoriguchi@i
transportlab.jp

Masao Kuwahara∗

Tohoku University
Aoba, Aobaku, Sendai
Miyagi 9808579, Japan

kuwahara@plan.civil.
tohoku.ac.jp

ABSTRACT
In recent years, the use of computer-based simulations in
the transportation domain has become increasingly impor-
tant to analyze and test measures for Intelligent Transport
System (ITS) policies. Simulators were built to address sev-
eral aspects of transport, including traffic, driving experi-
ence, and pedestrian behavior. However, as the majority
of available simulators are single-user stand-alone systems,
traffic engineers cannot easily analyze more complex phe-
nomena, such as the interaction between multiple human
drivers or pedestrians. Furthermore, this limitation makes
it difficult to collect large-scale behavioral data, which is
necessary to draw valid conclusions on driving behavior.
Emerging virtual world technology offers a convenient al-
ternative. As a networked multi-user framework that allows
users to immerse in the virtual world via a graphical self-
representation (an ‘avatar’), it allows to develop integrated
simulation applications that are conveniently accessible by
Internet. In this paper, we present OpenEnergySim, a vir-
tual world based visualization application that integrates
traffic simulation and immersive multi-user driving.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support

∗This author is also affiliated to the ITS Center, Institute
of Industrial Science, The University of Tokyo.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SimulationWorks ’11 Barcelona, Spain
Copyright 200X ACM XXXXXXXXX/XX/XX ...$5.00.

Systems; I.6.7 [Simulation and Modeling]: Types of Sim-
ulation—Animation, Combined, Visual

General Terms
Design, Human Factors

Keywords
Traffic Simulation, Driving Simulation, Virtual Worlds, Open-
Simulator

1. INTRODUCTION
Simulation of transportation systems has been one of the

important application areas of computer simulation for more
than 20 years [3, 8]. Recently, the demand for evaluating and
testing Intelligent Transport System (ITS) applications has
raised even more interest in simulation-based approaches.
By using simulators, it is possible to estimate the effects
of ITS measures without interfering traffic of the real-world
transport network. Microscopic traffic simulation tools are
being increasingly applied by traffic engineers and trans-
port professionals to address dynamic and operational traffic
problems and to evaluate such systems [21]. Many models
for microscopic traffic simulation are now available (see [4]
for an extensive list).

However, most available systems operate on rather artifi-
cial conditions. For instance, micro-simulation applications,
i.e. traffic simulations that represent the trajectories of in-
dividual cars, do not consider the driving behaviors of real
users as variables for their models. There are two main
reasons. First, traffic engineers often follow mainly analyti-
cal objectives, and second, the technical implementation of
complex traffic scenarios is cost-intensive. Currently, there
is no integrated visualization platform capable of handling
such dissimilar features as (1) smooth visualization of large-
scale data for traffic simulation and (2) realistic physics em-
ulation for users’ driving experience.

Virtual world technology is considered as a convenient,
cost-effective visualization platform for scientific research [2,
22], and [14] already proposed a virtual world based so-
lution for visualizing the simulation of a Personal Rapid
Transit System. However, the implementation of a sys-
tematic integrative solution using virtual worlds has not
been explored yet. Therefore, in this paper, we present
OpenEnergySim, an integrative virtual world based plat-
form that combines traffic simulation and realistic user driv-
ing experience with the goal of providing traffic engineers
a simulation tool for exploring and testing advanced ITS
strategies. OpenEnergySim opens new and exciting ways
to explore realistic transport scenarios, in which users can
participate as drivers, pedestrians, or traffic engineers. Our
solution is created in collaboration with research institutes
and industry.
This paper is organized as follows. Section 2 presents an

overview of research work on driving and traffic simulators
and transportation visualization. Section 3 describes the
OpenScience framework, our in-house implemented technol-
ogy to facilitate application development for virtual worlds.
Section 4 provides a detailed description of OpenEnergySim,
by explaining its different components (server and client
modules, game wheel interface) and their integration. Fi-
nally, Section 5 discusses and concludes the paper.

2. RELATED WORK
The visual representation of traffic flow in most currently

available traffic simulation tools is two-dimensional (2D) [15,
7, 6] or three-dimensional (3D) [3, 27, 5, 26, 16]. The sim-
ulation component and the viewer (viewing program) are
either located in the same machine (e.g. [3]), or organized
in a client-server architecture (e.g. [27]).
3D visualization becomes an essential feature when there

will be human-driven cars interfering with the simulation.
Driving simulators are efficient tools to evaluate drivers’ be-
havior. They use virtual reality tools to generate the user’s
sensations similar to those of driving a real car [28]. There
are two kinds of driving simulators: (1) a moving-base sim-
ulators [12, 1, 10, 13, 11, 17] and (2) fixed-base simulators
[25]. For instance, moving-base simulators are capable of
giving motion feedback about how the car is moving in the
simulated world.
However, often less advanced simulators are sufficient to

obtain realistic data of users’ driving behavior. For instance,
[29] have implemented an environment for testing the influ-
ence of a voice-based command system on the user’s driving.
User-controlled cars and computer-controlled cars share a
virtual space for experimentation. The STSoftware1 used
supports multiple users and easy scenario configuration. In
contrast to our method, this approach is based on licensed
software and does not provide on a persistent virtual world.
For evaluating an ITS application known as Intellidrive2,

the U.S. Department of Transportation used a driving sim-
ulator based in the Unreal game engine3. They claim that
within a development period of four months, a demo with
very high quality graphics could be developed. However, the
simulator can only handle a single user at a time and not
available to the general public.

1http://www.stsoftware.nl/
2http://www.intellidriveusa.org/
3http://www.udk.com/

Unlike the available methods, our approach is based on the
networked OpenSim world simulator, which just requires a
computer, Internet connection, and optionally, a game wheel
for realistic driving. The OpenSim viewer is free for down-
load. OpenSim supports persistent virtual worlds, where
researchers may alter the test scenario collaboratively and
in real-time, and the changes will be reflected in a central
database for future use.

3. THE OPENSCIENCE FRAMEWORK
Our OpenScience virtual world framework API (Applica-

tion Programming Interface) is based on OpenSim, an open
source virtual world server. It was conceived to help de-
velopers implement OpenSim-based applications in a quick
and easy way. The framework extends the functionality of
libraries such as EML3D [20], MPML3D [24] and LibOpen-
Metaverse4 by providing new features or more efficient ver-
sions of current existing ones, while maintaining platform
independency for application development.

The OpenScience framework consists of two main compo-
nents (see Fig. 1):

• OpenLibrary plugs directly into the OpenSim server
and provides low level access to simple functions such
as the creation and deletion of prims (primitive graph-
ical elements in the simulator) or the subscription to
specific virtual world events through a TCP/IP-based
interface.

• OpenAppCore provides an abstraction layer on top of
OpenLibrary, which enables developers to encapsulate
complex virtual world objects to simplify their use in
subsequent application developments. This layer also
implements an access wrapper for OpenLibrary called
OLWrapper to facilitate function calls to the library.

Figure 1: Functional diagram of the OpenScience
framework.

3.1 OpenSim
OpenSim is a virtual world server technology that was in-

troduced as an open source alternative to Linden Labs’ pop-
ular “Second Life” service5. OpenSim allows users to build
4http://lib.openmetaverse.org/
5http://secondlife.com/

content and interact with each other inside a virtual world
using a Second Life compatible client application. OpenSim
maintains a large community of users and developers are ac-
tively working on it. At the time of writing of this paper,
most of the functionality provided by Second Life has been
implemented or even extended in OpenSim. OpenSim has
several advantages over Second Life:

• Extensibility. OpenSim server functionality can be ex-
tended through the use of plug-ins (application mod-
ules that are automatically recognized and loaded by
OpenSim). These plug-ins have complete access to
OpenSim’s internal structures, allowing developers to
create highly customized solutions.

• Server Control. Using OpenSim allows developers to
have full control of the whole application implementa-
tion process. In other virtual worlds such as Second
Life, developers are constrained by the limitations im-
posed by the owners of the servers in which the virtual
worlds run. With OpenSim, developers can overcome
those limitations and find out the real limits for their
implementations based on their own infrastructure.

• Content Ownership. The use of OpenSim also guaran-
tees the complete control of the content deployed and
generated in the virtual world, easing the fears of users
regarding the ownership of their creations.

3.2 OpenLibrary
OpenLibrary6 was implemented as a plug-in based on

OpenSim’s extensible architecture. It is loaded and instanti-
ated by OpenSim during startup through .NET’s reflection
mechanism. The library features a similarly modular design
approach and, therefore, allows the automatic discovery,
loading and activation of functional units called managers
during the server’s startup. The current version is composed
of a central Interface Manager and a set of core managers,
which implement the functionality of OpenLibrary itself.

3.2.1 The Interface Manager
The Interface Manager acts as the central administration

component in OpenLibrary and is responsible for loading
the core managers and delegating commands to them (see
Fig. 1). In order to provide access to the virtual world func-
tionality to the core managers, the Interface Manager re-
ceives as initialization parameters references to virtual world
regions (called Scenes in OpenSim) and to OpenSim configu-
ration values. When the Interface Manager locates and loads
the core managers, a reference of itself is passed to these
managers, allowing not only manager development indepen-
dency, but also a unified way to access OpenSim’s shared
resources.

3.2.2 The Core Managers
In addition to the Interface Manager, OpenLibrary in-

cludes a set of core managers that encapsulate the actual
functionality of the library. Currently, seven core managers
have been implemented: Communication, Avatar, Event,
Data, Land, Physics and Object. Each manager is responsi-
ble for one specific set of tasks as described below:

6http://www.prendingerlab.net/globallab/technology/

• The Communication Manager is used for communica-
tion between OpenLibrary and external applications.
It provides the ability to handle socket communication.

• The Avatar Manager implements functions related to
the creation and manipulation of avatars, including
functions to log avatars in and out, move avatars, and
send chat messages.

• The Object Manager implements functions to create
and manipulate objects in the virtual world, except
objects considered part of nature such as trees or grass.
Various types of primitive objects such as boxes, spheres
or cylinders can be built and connected. Objects’
color, texture and other physical properties can be
modified as well.

• The Land Manager implements functions to create ob-
jects related to nature (e.g. trees, clouds, smoke) and
to modify terrains.

• The Data Manager implements functions to connect
external data sources to objects in OpenSim and vice
versa. For instance, an external temperature data
stream can be mapped to the height of an object in the
virtual world or moving an object located inside the
virtual world could trigger actions in the real world.

• The Event Manager implements event handling in Open-
Library. For instance, an external application can
subscribe for chat messages or object updates (e.g.
changes in position, deletion, and so on).

• The Physics Manager implements functions to manip-
ulate the physical properties of virtual world objects
(e.g. apply forces to objects).

3.3 OpenAppCore
OpenAppCore is a software layer implemented over Open-

Library. Its main objective is to provide virtual world based
application programmers with a simple, flexible, and fully
functional framework to interconnect and reuse runtime com-
ponents that operate with entities in the virtual world. In
OpenAppCore, programmers can develop customized, vir-
tual world based components by using OpenAppCore’s ac-
cess point to OpenLibrary (the OLWrapper component) to
facilitate function callings and event subscriptions. Once
the components are implemented, other developers can use
those components by instantiating them using OpenApp-
Core’s component management processes. In this way, we
are able to ensure that programmers can modularize their
work and increase their development performance through
software reusability. For instance, a user driven car compo-
nent involves the implementation of several complex func-
tions such as “accelerate”, “turn lights on”, and so on, and
each of these functions involves, in turn, the implementa-
tion of several complex OpenLibrary function calls. With-
out OpenAppCore, each developer that desires to implement
a user driven car would have to adapt or reimplement the
same code for his/her own solution, creating problems for
software maintenance and versioning. On the other hand,
by using OpenAppCore, developers that merely want to use
a user driven car would just need to copy the component to
their own solution and instantiate it, saving precious devel-
opment time.

Most of the objects managed by OpenEnergySim were
implemented as OpenAppCore components, giving us the
possibility to modularize our work and considerably reduce
the application’s overall implementation time.

4. INTEGRATING TRAFFIC SIMULATION
AND MULTIUSER DRIVING

In this section, we will describe OpenEnergySim, a plat-
form for behavioral driver studies in virtual worlds based on
the OpenScience framework. OpenEnergySim allows us to
integrate and synchronize simulation of microscopic traffic
with the driving simulation of multiple drivers. The two
main modules of OpenEnergySim are:

• Server Module. This module is responsible for (1) con-
trolling the visualization of the traffic simulation, (2)
managing the interactive virtual world based interface,
(3) synchronizing the traffic simulation with the online
driving behavior from users.

• Client Module. This module provides users the means
to drive virtual cars using either a keyboard interface
or a gaming wheel device.

The main components of both Server and Client modules
will be explained in the following sections.

4.1 Server Module
The main purpose of the Server Module is to connect and

synchronize the traffic simulator and the OpenSim virtual
world, by performing the following tasks: (1) Receive infor-
mation about virtual objects and/or vehicles controlled by
the traffic simulator and create or update their correspond-
ing graphical representations in OpenSim, and (2) receive
information about user interaction with objects (such as ve-
hicles) in OpenSim and forward it to the traffic simulator.
The Server Module is composed of five main components

(see Fig. 2):

• Core component, whose main function is to instantiate
the other components when the application starts.

• User Interface component, which is in charge of man-
aging the virtual objects created by OpenEnergySim.

• Traffic Simulator component, which generates micro-
scopic traffic, i.e. trajectories of individual cars. Cur-
rently, we use the X-Roads traffic simulator [18, 9].

• Data Rate Converter component, which handles the
data synchronization between the traffic simulator and
the user driven vehicles in the virtual world.

• Event Logging component, which stores attributes of
user-controlled and computer-controlled cars (position,
velocity) in a central database on a per frame basis.

OpenEnergySim uses the OpenLibrary and OpenAppCore
components of our OpenScience framework (Sect. 3) that
helps programmers to implement virtual world based ap-
plications easily. While OpenLibrary provides low level ac-
cess to simple functions such as ‘create’ and ‘delete’ prims
(primitive graphical elements) and listen to specific in-world
events, OpenAppCore allows programmers to create and dis-
tribute complex objects based on OpenLibrary’s functional-
ity.

When the application is executed, the Server Module cre-
ates an instance of the OpenEnergySim Core component,
which in turn instantiates the X-Roads Traffic Simulator
component, the Data Rate Converter component, the User
Interface component, and the Event Logging Module com-
ponent.

In the next two subsections, we are just going to describe
in greater detail the two most important components that
implement the core functionality of the Server Module: the
Data Rate Converter and the User Interface.

4.1.1 Data Rate Converter
Since the majority of traffic simulators such as X-Roads

was primarily designed to run on stand-alone platforms, the
traffic processing data rate is approximately 100 frames/sec.
A frame is defined as the attribute information (position,
velocity) of all the vehicles at a specific moment during the
simulation. This update rate is extremely difficult to main-
tain in networked environments such as client/server based
virtual worlds, because of the lag imposed by the network
infrastructure.

To accommodate for the specific requirements of virtual
world technology, we developed the Data Rate Converter
component, which is responsible for maintaining coherent
synchronization between the information generated by the
traffic simulator and the information generated in OpenSim.
The main purpose of the component is to collect all the asyn-
chronous update events from X-Roads and the User Inter-
face component, and synchronously forward them to their
respective recipient in fixed-time intervals. Since both X-
Roads and OpenSim have very different update rates, the
Data Rate Converter automatically performs two procedures
to ensure data interchange consistency:

• Prioritization of Updates. Prioritization means that
updates that are more critical to the execution of the
visualization are passed first. For instance, a VEHI-
CLE DELETE command has a higher priority than a
VEHICLE UPDATE POSITION command since the
traffic simulator may try to update attributes of an
object that does not exist in the virtual world any-
more. Note that most traffic simulators follow an O–
D (Origin–Destination) scheme, where cars are created
at some initial location, and removed if outside of the
area determined by the traffic simulator.

• Merging of Updates. Merging means that updates that
are irrelevant because they were superseded by other
updates are eliminated. For instance, a VEHICLE UP-
DATE POSITION command can be deleted if another
VEHICLE UPDATE POSITION for the same vehicle
arrived.

The functionality of the Data Rate Converter provided a
smoother visualization of the car trajectories generated by
the traffic simulator.

4.1.2 User Interface – Connecting to OpenSim
The User Interface component is in charge of (1) the cre-

ation, deletion and manipulation of any user interface object
defined inside the virtual world, and (2) the handling the
events generated by user interaction. The component inter-
acts with OpenSim through the use of our OpenAppCore
framework component solution. There are two types of user
interface objects:

Figure 2: Functional diagram of server Module of OpenEnergySim.

• Objects that are dynamically manipulated by the traf-
fic simulator, including vehicles, traffic lights, sensors,
and Variable Message Signs (VMS).

• Objects that are used by users to manipulate the first
type of objects, specifically button array objects for
sensor manipulation.

Figure 3 shows the virtual world representation of the ob-
jects currently manipulated by X-Roads. Figure 4 shows
the button array interface for instantiation of user driven
vehicles and sensor creation. Users can create a car that
is controllable by a wheel (bottom button), or controllable
by a keyboard if a wheel is not present (above-bottom but-
ton). Sensor creation and deletion functions use the current
position of the avatar that clicked the button to determine
where the sensor is to be created or which sensor to remove.
Some User Interface objects are considered static and al-

ways present in the virtual world (e.g. traffic lights), wheras
others have to be created at runtime, such as vehicles or
sensors controlled by OpenEnergySim. The creation of an
object in OpenSim is achieved in one of two ways:

• The object is loaded into the virtual world using an
XML description file.

• The object is instantiated based on an inventory as-
set that is already stored in the virtual world asset
manager.

In case of the first method, users do not need to know about
the virtual world asset manager and can instantiate the same
object independent of the virtual world environment. How-
ever, streaming XML description files into OpenSim could
affect the server’s performance if overused. Therefore, we
use the first method for operations that are not so frequent,
such as sensor creation or user driven vehicle instantiation.
The second option is much faster and currently used to cre-
ate computer-controlled vehicles.
For static objects, which are typically created before the

execution of the application, a list containing the identifiers

Figure 3: Virtual representations of objects manipu-
lated by X-Roads: a gantry for customized message
display (top), a traffic light (bottom-left), and a sen-
sor (bottom-right).

of those objects in the virtual world is passed to the User
Interface component, so that their non-visual counterparts
can be instantiated and recognized by OpenEnergySim. Al-
though some objects can be retrieved by providing their
name, others have to be retrieved by providing the actual
identification number known as UUID (Universal Unique
Identifier). This information has to be part of the XML-
based configuration file before the Server Module starts its
execution. An example configuration file is shown in Fig. 5.

4.2 Client Module
The virtual driving experience in most car related games

is based on the implementation of two major components:

Figure 5: Sample configuration file for static objects. The UUIDS of traffic lights and VMS can be retrieved
by their names, while vehicle templates for traffic simulation have to be specified directly with their UUIDs.

Figure 4: A button array interface displays the menu
of options for sensor manipulation (top three but-
tons) and user driven vehicle instantiation (two but-
tons at bottom).

• The vehicle physics engine which governs the vehicle’s
motion dynamics, and

• the driving user interface which handles the hardware
drivers use to interact with the vehicle.

Users’ satisfaction of their driving experience is mainly de-
termined by the stability and accuracy of the interaction
between these two components. Games and other stand-
alone applications enjoy the benefit of having both compo-
nents in the same machine. In the networked environment
like OpenSim, on the other hand, a generic physics called
Open Dynamics Engine (ODE)7 is located on the server and
controls the physical processes of the entire environment.

7http://www.ode.org/

Therefore, a virtual world based solution has to support
a two-stage physics interaction, in which the dynamic force
values calculated by the vehicle’s physics engine (client side)
are passed to the generic physics engine (server side). The
vehicle physics engine calculates the longitudinal force to be
applied to the vehicle based on the user interface input and
a vehicle profile. It then passes this value to the OpenSim
physics engine which will move the vehicle inside the vir-
tual world. Figure 6 shows the main components of vehicle
motion in OpenSim.

Hardware

Device

Vehicle Physics

Engine

OpenSim

Vehicle

profile

ODE

Input Force to Apply

Figure 6: Client vehicle motion in OpenSim.

4.2.1 User Vehicle
A car in OpenSim is implemented as a frictionless ob-

ject, composed of prims. The car is manipulated through
direct intervention of the physics engine or through com-
mands specified by programming scripts inside the prims
that can change its overall status.

In OpenEnergySim, a car is defined by a main prim and a
set of functional prims. The main prim is used to manipulate
the entire motion of the car, whereas the functional prims
are used to specify the individual elements of the car. The
status of functional prims can change over time and affect
their visualization in the virtual worlds, such as break lights

or CO2 indicator.
The car management is divided into two main compo-

nents. The LandTransportBasic component runs on the
server as part of OpenEnergySim, and the LandTransport-
Cont component that runs on the client. Both components
make use of our OpenLibrary and OpenAppCore libraries
(see Sect. 3). Figure 7 shows the component architecture di-
agram and the interaction of server and client components.
The LandTransportCont component utilizes the WheelIn-
terface to connect to the Logitech G27 Wheel8 and uses the
SpeedOMeterApp component to display a car’s speed. On
the other hand, the LandTransportBasic component is used
to connect the car to OpenEnergySim.

OpenSim

ODE

SpeedOMeterApp

LandTransportBasic

OpenAppCore

LandTransportCont

OpenAppCore
OpenLibrary

WheelInterface

Client Server

TCP

Vehicle

profile

Figure 7: Component architecture for client vehicle
motion in OpenEnergySim.

The LandTransportBasic component instantiates the car
object in the virtual world and provides a basic interface
to receive the car’s properties, such as current velocity and
position, and to set attributes such as lights (on/off). To
instantiate a car, the component needs a XML file with the
description of the car’s visual elements (prims) or an UUID
of an existing car inside the world. With this information,
OpenEnergySim manages the car’s creation and deletion, as
well as the logging of its properties into the central database.
To drive the car, users must provide values (via driving)

for linear force and moment applied to the car object. The
LandTransportCont component allows users to control three
car parameters:

• Speed : applies a linear force to go forward or backward.

• Steering : applies moment to turn right or left.

• Driver’s seat : sets the position of the avatar inside the
vehicle.

The LandTransportCont component was designed with a
generic interface to support the default interaction paradigm
of virtual world clients, which is the keyboard.

4.2.2 Wheel Interface
Since our goal was to provide a driving interaction de-

vice that mimics real-world driving, we developed a compo-
nent called WheelInterface, which provides the connection
between LandTransportCont and a Logitech’s G27 Wheel 9

(see Fig. 8).

8http://www.logitech.com/
9http://www.logitech.com/en-
us/gaming/wheels/devices/5184. Last Access: 2010/09/08

Figure 8: Driving a virtual car in OpenEnergySim
using the Logitech Gaming Wheel G27.

TheWheelInterface component retrieves the following val-
ues from the device: (1) Gas pedal pressure, (2) brake pedal
pressure, (3) steering angle, and (4) push button events
(e.g. gear change). These values are used by the vehicle
physics engine to calculate the linear force and moment that
will be applied to the car in OpenSim. In the vehicle physics
engine, we use a model that takes two types of force into ac-
count [19]: Traction, i.e. force generated by the engine, and
drag force, i.e. force created by friction and air resistance).
With these values, the vehicle physics engine calculates the
longitudinal force, and then a linear force is sent to Open-
Sim.

To obtain the moment, the physics model in [19] uses the
angle of the front wheels as a parameter. However, in a real
car, the angle of the steering wheel is not the same as the
angle of the front wheels, thus it will thus be calculated. To
obtain angle of the front wheels, there two values were taken
into account: The steering ratio, i.e. the relation between
the angle of the steering wheel and the angle of the front
wheels, and the lock-to-lock (LTL) value, i.e. the number of
turns a steering wheel takes to reach from the maximal right
position starting from the maximal left position.

In a real car, the steering ratio is normally between 12:1
and 20:1. (A n : 1 ratio means that a n degree angle in the
steering wheel will turn the front wheels 1 degree). In ad-
dition, the LTL value is calculated taking into account the
maximal angle of deflection of the wheels δ and the steering
ratio ρ 10. Equation 1 shows the formula for LTL calcula-
tion. For a graphical explanation of the relationship between
angular values and wheel motion, see Fig. 9.

LTL = 2× (δ × ρ) (1)

When driving a virtual car, the LTL value stays constant
but the wheels’ deflection and steering ratio change depend-
ing on the car speed. The basic principle is that with a
constant steering wheel angle, the car turning rate is in-
versely proportional to its speed. For instance, if the car’s
speed is 100 km/h, a driver has to steer the wheel more in
order to have the same turning angle than if the car’s speed

10http://www.carbibles.com/steering bible.html. Last Ac-
cess: 2010/09/08

Figure 9: Graphical representation of the angular
values used for the Wheel Interface component. In
order to turn a car’s wheels δ degrees, the steering
wheel has to be turned θ degrees according to the
formula shown in the diagram. The LTL value is,
then, computed when δ reaches its maximum value,
i.e. the maximum angle that the car’s wheels are
allowed to turn.

is 10 km/h. This is summarized in Table 1.

Table 1: Steering ratio mapping using LTL = 900
degrees. Wheel deflection values are taken from the
actual Logitech G27 documentation.

Speed (km/h) Wheel Deflection δ Steering Ratio ρ
1 60◦ 7.5:1

100 12.5◦ 36:1

By taking into consideration the values in Table 1, we de-
fined a linear interpolation equation to calculate the steering
ratio ρ based on the car’s speed ω. This is shown in Eq. 2.

ρ = 0.2878ω + 7.2122 (2)

Using this steering ratio value, we calculate the car’s wheel
rotation angle α based on the current car speed ω and the
steering wheel rotation angle β (Eq. 3). The vehicle physics
engine uses α to calculate the moment applied to the car.

α =
β

ρ
=

β

0.2878ω + 7.2122
(3)

5. DISCUSSION AND CONCLUSIONS
In this paper, we have presented OpenEnergySim, an in-

tegrative multi-user traffic application solution based on vir-
tual world technology. Our preliminary tests of the system
show very promising results in terms of traffic visualization
and user driving experience. In [23], we describe a car-
following experiment that was conducted in OpenEnergySim.
The results obtained in the virtual world could be shown
were very similar to both real-world data on car-following
and a car-following model.

However, the emergent nature of the virtual world tech-
nology created several challenges during the implementation
of OpenEnergySim. We will briefly discuss two of them.
First, the visualization of traffic simulation suffers from the
overflowing amount of data from the traffic simulator. We
had to manually fine-tune the rate of information transmis-
sion so that the visualization would not lag too much, based
on trial and error. We found that this value depends mostly
on the server’s hardware and network conditions rather than
the visual client. Techniques such as client side prediction
algorithms might reduce the traffic visualization lag, but
current visual client applications are extremely hard to ex-
tend. In the future, we plan to address this problem by
experimenting with other, more flexible, visual clients such
as Naali from RealXtend.11

HUD (Heads-up Display) interfaces would be preferable to
let users manipulate in-world menu objects, but they proved
to be extremely difficult to implement. While the use of 3D
world buttons would allow simultaneous access for all users,
it is impractical in a context in which avatars need to access
the menu no matter where they are. We will be exploring
ways to enhance client side user interfaces by implementing
new functionality in our OpenScience framework.

Despite the technical difficulties faced during the devel-
opment of OpenEnergySim, we are convinced that virtual
worlds will become the most convenient platforms to test
integrative solutions for the transportation domain. The
main reasons are low production cost and high accessibil-
ity. Several complex challenges will arise in this endeavor
since currently there is still a gap between social interac-
tion (which is the initial main objective of the technology)
and simulation of large-scale data. Nevertheless, we believe
that the flexibility and openness of virtual world implemen-
tations such as OpenSim will allow us to close that gap.
OpenEnergySim will allow us to provide engineers the tools
they need to handle complex scenarios that closely resemble
real-world problems.

6. ADDITIONAL AUTHORS
Additional authors: Juan Camilo Ibarra (National Insti-

tute of Informatics, email: juanibarral@gmail.com). Kug-
amoorthy Gajananan (National Institute of Informatics, email:
k-gajananan@nii.ac.jp) Ricardo Mendes (National Insti-
tute of Informatics, email: ricardo.tiago.mendes@gmail.com),
and Marconi Madruga (National Institute of Informatics,
email: marconi@nii.ac.jp).

7. REFERENCES
[1] H. Arioui, S. Hima, and L. Nehaoua. 2 DOF low cost

platform for driving simulator: Modeling and control.
In IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM 2009), pages
1206–1211, 2009.

[2] W. Bainbridge. The scientific research potential of
virtual worlds. Science, 317:472–476, 2007.

[3] J. Barceló, E. Codina, J. Casas, J. L. Ferrer, and
D. Garćıa. Microscopic traffic simulation: A tool for
the design, analysis and evaluation of intelligent
transport systems. Journal of Intelligent & Robotic
Systems, 41(2):173–203, 2005.

11http://www.realxtend.org. Last Access: 2010/12/02

[4] S. A. Boxill and L. Yu. An evaluation of traffic
simulation models for supporting its development.
Technical Report SWUTC/00/167602-1, Center for
Transportation Training and Research, Texas
Southern University, 2000.

[5] B. C. da Silva, A. Bazzan, G. Andriotti, F. Lopes, and
D. de Oliveira. ITSUMO: An intelligent
transportation system for urban mobility. In T. Bhme,
V. L. Rosillo, H. Unger, and H. Unger, editors,
Innovative Internet Community Systems, volume 3473
of Lecture Notes in Computer Science, pages 224–235.
Springer Berlin Heidelberg, 2006.

[6] P. Hidas. Modelling lane changing and merging in
microscopic traffic simulation. Transportation
Research Part C: Emerging Technologies,
10(5–6):351–371, 2002.

[7] R. Horiguchi, M. Kuwahara, M. Katakura,
H. Akahane, and H. Ozaki. A network simulation
model for impact studies of traffic management avenue
ver.2. In Proceedings 3rd Annual World Congress on
ITS, 1996.

[8] R. G. Hughes. Visualization in transportation:
Current practice and future directions. Transportation
Research Record, 1899:167–174, 2004.

[9] T. Jiang, M. Miska, M. Kuwahara, A. Nakasone, and
H. Prendinger. Microscopic simulation for virtual
worlds with self-driving avatars. In Proceedings 13th
International IEEE Conference on Intelligent
Transportation Systems (ITSC’10). IEEE, 2010.

[10] H. S. Kang, M. K. A. Jalil, and M. Mailah. A
pc-based driving simulator using virtual reality
technology. In Proceedings of the 2004 ACM
SIGGRAPH international conference on Virtual
Reality continuum and its applications in industry,
VRCAI ’04, pages 273–277. ACM, 2004.

[11] N. Kuge, T. Yamamura, and O. Shimoyama. A driver
behavior recognition method based on a driver model
framework. Society of Automotive Engineers
Transactions, 109(6):469–476, 2000.

[12] J. Kuhl, D. Evans, Y. Papelis, R. Romano, and
G. Watson. The Iowa driving simulator: An immersive
research environment. Computer, 28(7):35–41, 1995.

[13] W.-S. Lee, J.-H. Kim, and J.-H. Cho. A driving
simulator as a virtual reality tool. In Proceedings
IEEE International Conference on Robotics and
Automation, volume 1, pages 71–76, 1998.

[14] C. Lopes, L. Kan, A. Popov, and R. Morla. Prt
simulation in an immersive virtual world. In 1st
International Conference on Simulation Tools and
Techniques for Communications, Networks and
Systems and Workshops, 2008.

[15] P. Lorenz, T. Schulze, and T. Schriber. The design,
implementation, application and comparison of two
highly automated traffic simulators. In Simulation
Conference Proceedings, 1994. Winter, pages
1084–1092, 1994.

[16] J. Maroto, E. Delso, J. Felez, and J. Cabanellas.
Real-time traffic simulation with a microscopic model.
IEEE Transactions on Intelligent Transportation
Systems, 7(4):513–527, 2006.

[17] M. Maza, S. Val, and S. Baselga. Control architecture
of parallel and spherical driving simulators and related

human factors. In Proceedings 10th IEEE
International Workshop on Robot and Human
Interactive Communication, pages 541–545, 2001.

[18] M. Miska. Real time traffic management by
microscopic online simulation. Technical Report
T2007/1, TRAIL Thesis Series, The Netherlands,
2007.

[19] M. Miska and M. Kuwahara. Nanoscopic traffic
simulation with integrated driving simulator to
investigate the sag curve phenomenon. In Proceedings
9th ITS Symposium, 2010.

[20] A. Nakasone and H. Prendinger. EML3D: An XML
based markup language for 3D object manipulation in
Second Life. In Proceedings 9th International
Symposium on Smart Graphics (SG’09), pages
263–272. Springer LNCS 5531, 2009.

[21] S. Panwai and H. F. Dia. Comparative evaluation of
microscopic car-following behavior. IEEE
Transactions on Intelligent Transportation Systems,
6(3):314–325, 2006.

[22] H. Prendinger. The Global Lab: Towards a virtual
mobility platform for an eco-friendly society.
Transactions of the Virtual Reality Society of Japan,
14(2):163–170, 2009.

[23] H. Prendinger, A. Nakasone, M. Miska, and
M. Kuwahara. OpenEnergySim: Conducting
behavioral studies in virtual worlds for sustainable
transportation. In IEEE Forum on Integrated and
Sustainable Transportation Systems (FISTS’11), 2011.
Submitted.

[24] H. Prendinger, S. Ullrich, A. Nakasone, and
M. Ishizuka. MPML3D: Scripting agents for the 3D
Internet. IEEE Transactions on Visualization and
Computer Graphics, 2010. In press.

[25] M. P. Reed and P. A. Green. Comparison of driving
performance on-road and in a low-cost simulator using
a concurrent telephone. Ergonomics, 42(8):1015–1037,
1999.

[26] D. Rieck, B. Schünemann, I. Radusch, and C. Meinel.
Efficient traffic simulator coupling in a distributed
V2X simulation environment. In Proceedings of the
3rd International ICST Conference on Simulation
Tools and Techniques, number 72 in SIMUTools’10,
pages 1–9. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering), 2010.

[27] T. Wang, S. Tang, and P. Pang. 3D urban traffic
system simulation based on geo-data. In 2nd
International Conference on Information Technology:
Research and Education (ITRE-04), pages 59–63,
2004.

[28] Y. Yang, J. Hu, and D. Chen. Research on driving
knowledge expert system of distributed vehicle driving
simulator. In 11th International Conference on
Computer Supported Cooperative Work in Design
(CSCWD 2007), pages 693–697, 2007.

[29] A.-U.-H. Yasar, Y. Berbers, D. Preuveneers, and
A. Jameel. A computational analysis of driving
variations on distributed multiuser driving simulators.
In Proceedings of the 19th IASTED International
Conference on Modelling and Simulation, MS ’08,
pages 178–186. ACTA Press, 2008.

