
www.elsevier.com/locate/jvlc

 Journal of
Visual Languages
 & ComputingJournal of Visual Languages and Computing

15 (2004) 183–203

MPML: a markup language for controlling the
behavior of life-like characters

Helmut Prendinger*, Sylvain Descamps, Mitsuru Ishizuka

Department of Information and Communication Engineering, Graduate School of Information Science

and Technology, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received 20 January 2003; received in revised form 24 December 2003; accepted 28 January 2004

Abstract

Animated agents have the potential to convey information in a more natural way than other

media traditionally used on the world-wide web, such as text, audio, or video clips. They also

allow for more natural styles of human–computer interaction than navigation through

hypertext documents. In this paper, we will introduce the multi-modal presentation markup

language (MPML), which is a powerful and easy-to-use XML-style language enabling content

authors to script rich web-based interaction scenarios featuring life-like characters. MPML is

a powerful language as it provides controls for the verbal and non-verbal behavior of affective

2D cartoon-style characters, presentation flow, and the integration of external objects, like

Java applets. MPML is easy-to-use since we also offer a graphical scripting environment (a

visual editor) that facilitates the creation of complex presentation scripts. We will describe the

tagging structures of MPML, the MPML3.0 Visual Editor, and illustrate the usefulness of the

tagging structures of the language by the actual implementation of a web-based casino where

the user may interact with life-like characters.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Embodied agents; Markup languages; Affective communication; Web-based presentation;

Visual editor

1. Introduction

Life-like characters, or animated agents, constitute a promising technology for
human–computer interaction. The embodiment of agents provides effective means of

ARTICLE IN PRESS

*Corresponding author.

E-mail address: prendinger@acm.org (H. Prendinger).

1045-926X/$ - see front matter r 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2004.01.001

imitating human skills such as presenting information or engaging in a conversation
[1]. Humans communicate using not only language, but also body gestures and facial
expression. The fundamental hypothesis of this research program is that by
endowing animated agents with synthetic counterparts of the interaction modalities
used by humans, character-based interfaces can be effective tools for enhancing the
interaction between humans and computers.

The wide dissemination of animated agents, however, will greatly depend on the
availability of appropriate tools that facilitate the scripting (or authoring) of agents
with life-like behavior. The tasks for putting animated agents to work are manifold,
including the control and synchronization of a character’s verbal and non-verbal
(embodied) behavior and the coordination of the behavior of multiple characters.
Scripting languages are often designed for the representation of one or more levels of
character description. Whereas scripting at a ‘low level’ involves manipulating a
character’s facial and body motion models, ‘high level’ scripting is concerned with
the synchronization of a character’s synthetic speech with appropriate gestures, the
expression of emotions, or the synchronization of body motion sequences of a group
of characters. Description levels can also be conceived as abstraction levels where
higher levels ‘abstract from’ lower level description concerns. Abstract specifications
are then instantiated to low-level body actions by special purpose interpreters [2,3].

While most markup languages developed for life-like characters demonstrate
sophisticated control mechanisms, they typically address programming-expert
content creators or animators rather than the average user. Here, the ‘average user’
is seen as someone who wants to add animated agents to a (possibly interactive) web
page, without being willing or able to give much thought on the details of character
control. Instead, the content author simply wishes to select some behaviors, mostly
pointing and conversational gestures, in order to support and enhance the
character’s verbal behavior. Non-technically oriented authors include content
creators for web-based commercial or educational information.

In this paper, we will describe the multi-modal presentation markup language, a
language specifically designed for non-expert (average) users allowing them to direct
the behavior of multiple animated characters when creating web-based (interactive)
presentations. Here, we will explain MPML3.0, a particular version of the MPML
language family (other members will be briefly introduced in Section 2).1 First,
MPML is a markup language compliant with standard XML [4] and hence allows
one to script in a style similar to HTML scripting. (XML-style scripting is actually
not even necessary since we also provide a visual editor for MPML.) Second, MPML
is a language tailored to script character-based presentations that can be viewed in a
web browser (Internet Explorer). In order to facilitate the generation of different
kinds of presentations, MPML provides appropriate tagging structures that enable
authors to utilize features that are familiar from presentations given by human
presenters in web-based presentation environments, such as dynamic media objects
or interaction with the audience. Finally, MPML supports the generation of multi-

modal presentations, i.e. presentations that utilize multiple mechanisms to encode

ARTICLE IN PRESS

1 Unless indicated otherwise, ‘‘MPML’’ refers to MPML3.0, the language introduced in this paper.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203184

to-be-conveyed information, including 2D graphics and spoken (synthetic) language,
music, and video [5]. Here, we will focus on modalities specific to animated agents.
Besides synthetic speech, animated characters may communicate information by
using multiple modalities, such as facial displays (in order to express emotions), hand
gestures (including pointing and propositional gestures), head movements (e.g.
nodding), and body posture. Markup languages supporting other types of media on
the web are introduced, e.g. in a recent special issue of this journal [6].

The remaining paper is organized as follows. Section 2 reports on other markup
languages we have developed and work related to our own. Section 3 is dedicated to
motivating requirements for a markup language for web-based presentations.
Section 4 introduces the MPML system. We first give an overview of the architecture
of the MPML system, and then describe the language specification of MPML.
Section 5 describes a visual editor for MPML. In Section 6, the usefulness of the
markup language is demonstrated by discussing an actual implementation of a web-
based presentation, an interactive casino scenario featuring life-like characters.
Sections 7 discusses and 8 concludes the paper.

2. Related work

In recent years, various scripting languages and technologies have been developed
to direct the behavior of life-like characters. The virtual human markup language
(VHML) provides tagging structures for facial and bodily animation, gesture,
speech, emotion, as well as dialogue management [3]. The language is XML-based
(i.e. it employs the extensible stylesheet language (XSL) [7]) and covers different
abstraction levels. Despite its expressive power, current applications of the language
mainly focus on ‘Talking Heads’ rather than full-body characters. The character
markup language (CML) and avatar markup language (AML) focus on
sophisticated synchronization of a character’s bodily behavior and synthetic speech
[2]. Both languages are XML-based and allow to specify character behavior at
different levels. Unlike MPML, CML and AML are machine-generated and hence
not easy to read or create by non-experts.

The affective presentation markup language (APML) is an XML-based language
that allows to represent communicative functions and thus facilitates the scripting of
dialogues with embodied characters [8]. By contrast to MPML, the APML language
allows to specify the meaning of a communicative act which is then instantiated to a
specific communicative signal, depending on the character’s personality or culture.
The work of Cassell et al. [9] and Kranstedt et al. [10] supports the precise
synchronization of synthetic speech and non-verbal behavior.

Character representation languages that do not use an XML-based approach
include STEP [11] and PAR [12]. The scripting technology for embodied personal
language (STEP) uses distributed logic programming and action composition
operators to specify motions of VRML-based characters. The parameterized action
representation system (PAR) allows for a fine-grained specification of parameters to
modify the execution of character actions, such as duration, purpose, emotion and

ARTICLE IN PRESS
H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 185

personality. While those approaches permit more sophisticated control of animated
characters, they might counteract our purpose of creating a character markup
language that can be used by average users rather than animation experts.

Besides the version of MPML described in this paper (MPML3.0), our efforts in
designing markup languages for web-based presentations also lead to the
construction of languages that employ XSL to define the form of the MPML
content script, rather than a converter. However, none of those languages provides a
graphical editor to support the user’s scripting effort (although in principle, such an
editor could be written).

The following three members of the MPML language family adhere to the
technique of using an XSL stylesheet to convert the MPML script to JavaScript.
Like MPML3.0, the first two languages use the Microsoft Agent package [13] as an
animation engine, whereas the third one uses VRML2.0.

* MPML2.2a: This version of MPML supports sequential and parallel behavior
(synthetic speech and actions) of multiple characters. It also provides an interface
to Macromedia Flash, so that a character can control a Flash movie and a Flash
movie may contain triggers for character behavior [14].

* DWML: This member of the MPML family is concerned with scripting time-
dependent relations between web-based media objects in addition to the 2D
animations displaying a synthetic character. The media objects supported by the
dynamic web markup language (DWML) include text, graphics, audio, and video
[15]. A time control function allows to define the temporal occurrence of media
objects during presentation, which are otherwise (in HTML programming)
immediately shown when a web page is loaded.

* MPML-VR: Here, a variant of the MPML2.2a language is employed and
enriched to control a 3D virtual space and a 3D character. The resulting markup
language—MPML for Virtual Reality—allows for presentations in three-
dimensional space [16].

While the above-mentioned languages primarily focus on alternative ways to
integrate life-like characters to web pages, another strand of our research deals with
enhancing the flexibility of human–character interaction. The MPML version
described in this paper supports two types of user–character dialogue. First, the
character may simply respond with a pre-defined utterance dependent on the user’s
speech input. Second, if MPML is interfaced with the SCREAM system [17], the
character’s response is decided by its mental makeup (in addition to the user’s speech
input), but still the responses have to be prepared by hand for each interaction
scenario. In order to alleviate the author from the effort to prepare character
responses for user input, we recently implemented an interface between MPML3.0
and a popular chatbot, the Alicebot [18,19]. The Alicebot provides a large set of
responses for a broad variety of topics which are accessible from the web. By using a
special type of pattern matching, this chatbot shows response robustness for (almost)
any imaginable user input. Moreover, by using artificial intelligence markup
language (AIML), authors of interactive presentations may easily define their own
response patterns for the character.

ARTICLE IN PRESS
H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203186

3. Requirements for a presentation markup language

The design of a markup language is driven by the requirements of its intended use.
From an author perspective, a presentation markup language should provide an
easy-to-use and powerful tool for scripting different types of presentations. Authors
are typically content experts that seek to distribute information about a certain
product which can be a particular creation of a company or a research program
pursued by a scientific group. From a user (viewer of presentation) point of view, the
scripted content should be easily accessible, and allow for interactivity with the
presenter.

In the following, we will propose some requirements for a presentation markup
language, and then discuss some features of MPML in the light of those
requirements. We start with requirements that are important for presentation
authors.

* Ease of use: Presentations featuring animated characters should be easy to write
and not assume programming skills. Authors should have the option to either
directly manipulate the script or use a visual editor with a conventional interface.

* Intelligibility: The tags of the markup language should provide names and
abbreviations that clearly indicate their meaning (semantics).

* Extensibility: The markup language should support authors in specifying new
functionality, in order to allow easy adaption to special requirements of content
providers.

* Easy distribution: The presentation should be easy to install on the user’s
platform.

Since MPML is an XML-style markup language, scripting is intuitive and accessible
even to non-programmers. We do not imply that scripting in XML is a
straightforward task—it can become quite involved when the length of the content
grows, resulting in long chains of deeply nested tagging structures. However,
although scripting in XML requires a certain amount of concentration, it does not
require knowledge in JavaScript or VBScript. Following up to the current trend in
web content authoring tools for HTML, we have also developed an editor for
MPML that depicts the flow of the presentation graphically and hence supports the
content author in generating complex presentations.

Tags in MPML are easy to learn and remember, as they follow conventions well
known from scripting web pages with HTML, such as the head and body elements,
or from human performances (e.g. the scene element). MPML is extensible as it
provides tagging structures that interface MPML with the target control language of
characters and web pages (JavaScript). Thus, features not supported by MPML can
be added at the cost of scripting in the JavaScript programming language. We
certainly tried to avoid this situation for character behavior scripting, but we cannot
foresee the numerous features which content users would need for web page
scripting. Consequently, extensibility of MPML is important in order to guarantee
flexibility.

ARTICLE IN PRESS
H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 187

Since a converter transforms MPML to JavaScript, every browser that has
JavaScript enabled can run a presentation written in MPML. However, there
are restrictions deriving from the agent system used to control the behavior of
animated characters, namely the microsoft agent package [13]. Currently, MPML
assumes Microsoft Internet Explorer 5.5 (or higher) to run a character-based
presentation.

Although MPML is primarily an authoring language, the audience perspective has
to be taken into consideration. Besides easy installation (see the ‘easy distribution’
requirement above), the audience should be able to interact with the animated
characters that give the presentation. MPML is designed to allow for interactive

presentations where the presentation flow halts and waits for the user’s speech input
to direct the future development of the presentation.

4. The MPML system

In this section, the MPML system will be explained. We will first describe the
system architecture, and then introduce the tagging structures that MPML provides
to create web-based presentations.

4.1. System architecture

An overview of the MPML system architecture is shown in Fig. 1. There are two
main components: The MPML Script text file and the MPML3.0 Visual Editor
application program. The MPML Script file contains the tagging structures
specifying character and environment control. The MPML3.0 Visual Editor consists
of four modules.

* The Script Loader module loads the text file containing MPML script and checks
the script for syntactical errors.

* The Graph module visualizes the script by generating a graphical representation.
* The Script Saver module converts the graph to a textual MPML script.

ARTICLE IN PRESS

Fig. 1. MPML3.0 system architecture.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203188

* The Converter module transforms the MPML script to a language that is
executable in a web browser. We use JavaScript in Internet Explorer 5.5 (or
higher).

The resulting Control web page is responsible for instructing the characters’
behavior and background web pages, i.e. pages depicting the environment that the
characters inhabit. The user may also define character specific settings, which are
stored in the Character Settings file and processed by the converter. Typically, this
file contains speech related parameters for emotion expression.

4.2. MPML specification

A compact way to describe a markup language (a set of tagging structures) is to
give its document-type definition (DTD), a set of rules that defines the grammar of
an XML document. We acknowledge that DTD technology has been superseded by
XML Schemas [20]. Although MPML could be specified by XML Schemas, we
opted to present the markup language in a DTD for readability. Alternatively, the
tagging structures of the markup language could be written down. However, for
space reasons, tagging structures will only be used when showing example scripts.

4.2.1. Introductory tagging structures

Here we will briefly discuss introductory tagging structures. The root element of
an MPML script is mpml (see Fig. 2). The root element’s tagging structure
ompml>...o/mpml> contains all other tagging structures of the script. The head

element specifies general information, the title, and the agent(s) that will perform as
presenters. Currently, the Microsoft Agent package is used as the default agent
system, which includes controls for character animation, a text-to-speech (TTS)

ARTICLE IN PRESS

<!ELEMENT mpml(head,body)>
<!ELEMENT head(meta*| title?| agent+)>
<!ELEMENT metaEMPTY>
<!ATTLIST metaid CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT agent EMPTY>
<!-- Currently, only Microsoft Agent characters are used -->
<!-- TTS Engines other than Lernout & Hauspie TruVoice can be used -->
<!NOTATION lh SYSTEM"B8F2846E-CE36-11D0-AC83-00C04FD97575">
<!ATTLIST agentid CDATA #REQUIRED

system CDATA"MSAgent" #FIXED
x CDATA #REQUIRED
y CDATA #REQUIRED
voice NOTATIONlh #REQUIRED>

<!ELEMENTbody (seq+)>

Fig. 2. DTD for introductory elements.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 189

engine, and a voice recognizer [13]. The seq element which may occur one or more
times within the obody>...o/body> tagging structure refers to the sequence of
events comprising the presentation.

4.2.2. Tagging structures for character control

Tagging structures controlling character behavior are summarized in Fig. 3. They
allow the script author to make the character speak, think, perform an action, move
to a certain location on the screen, and listen to the user’s speech command. The
speak element may contain a (unordered) sequence of three child elements, emotion,
nb, and txt, which provide the means to let the character speak one or more
sentences with an affective voice, possibly separated by opening a new balloon after
a certain part of the text has been spoken. The character may also speak some text
which results from user interaction with the background web page. For instance, if
the user previously input his or her name to a form, the character can retrieve the

ARTICLE IN PRESS

<!ELEMENT speak((emotion| nb | txt)*)>
<!-- The id of the agent-->
<!ATTLIST speakagent CDATA#REQUIRED>
<!ELEMENT emotion EMPTY>
<!ENTITY % BASIC-EMOTIONS

"(fear| anger| sadness| happiness| disgust)">
<!ATTLIST emotion assign %BASIC-EMOTIONS #REQUIRED>
<!ELEMENT think((nb | txt)*)>
<!-- The id of the agent-->
<!ATTLIST think agent CDATA #REQUIRED>
<!ELEMENT act EMPTY>
<!-- The id of the agent-->
<!-- An action specified for the agentlike Greet,Explain,or Surprised -->
<!ATTLISTact agent CDATA #REQUIRED

act CDATA #REQUIRED>
<!ELEMENT move EMPTY>
<!-- The id of the agent>
<!ATTLIST move agent CDATA #REQUIRED

x CDATA #REQUIRED
y CDATA #REQUIRED>

<!ELEMENTlisten(heard+)>
<!-- The id of the agent-->
<!ATTLIST listen agent CDATA #REQUIRED>
<!ELEMENT heard EMPTY>
<!-- A sentence that should be recognized-->
<!ATTLIST heard sentence CDATA #REQUIRED>
<!ELEMENT nb EMPTY>
<!-- A duration in milliseconds-->
<!ATTLIST nb pause CDATA>
<!ELEMENT txt EMPTY>
<!-- The address of a variable defined in the backgroundweb page -->
<!ATTLIST txt target CDATA #REQUIRED>

Fig. 3. DTD for character-related elements.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203190

name, and address the user in a personal way. A balloon serves as a visual support
for synthetic speech. By using the listen element, the speech recognizer is activated
and recognizes sentences which are defined as attribute values of the heard element
(a child of the listen element).

By way of example, assume the script author wants the character to say
‘‘Do you want to go out, or do you want to stay at home?’’, whereby the first
part of the sentence should be spoken in a happy voice and the latter part in a
sad voice. In MPML script, the following code is used (the character’s name is
‘‘Shima’’).

oact agent=‘‘Shima’’act=‘‘Thisthatfirst’’/>
ospeak agent=‘‘Shima’’>
oemotion assign=‘‘happiness’’/>
Do you want to go out,o/speak>

oact agent=‘‘Shima’’ act=‘‘Thisthatsecond’’/>
ospeak agent=‘‘Shima’’>
oemotion assign=‘‘sadness’’/>onb pause=‘‘200’’/>
or do you want to stay at home?o/speak>

The character starts with performing the gesture denoted by ‘‘Thisthatfirst’’ and
then says the first part of the sentence according to the speech parameters for
‘‘happiness’’ (explanations will be given momentarily). Then, the character performs
the gesture denoted by ‘‘Thisthatsecond’’, and says the second part of the sentence
according to the speech parameters for ‘‘sadness’’ after 200 milliseconds: The second
sentence is displayed in a new balloon.

Due to the limitations of the TTS engine, only speech rate and pitch average are
currently used to express the vocal effects of five emotions (fear, anger, sadness,
happiness and disgust). Following Murray and Arnott [21] we assume that, e.g. if a
speaker expresses happiness, then his or her speech is typically faster (or slower) and
higher-pitched, whereas a sad speaker’s speech is usually slightly slower and lower-
pitched.

All gestures are pre-defined 2D animation sequences controlled by the Microsoft
Agent package. Depending on the character used, the type and number of available
gestures may differ, as well as the names given to animation sequences. Most
available characters have about 50 animations at their disposal, including the
following:

* Locomotion: ‘‘Moveup’’ (character performs a step), ‘‘Moveleft’’, ‘‘Show’’
(character appears), ‘‘Hide’’ (character disappears).

* Deictic gestures: ‘‘Gestureright’’ (character points to the right by hand gesture),
‘‘Gestureup’’, etc.

* Gestures realizing communicative functions [22] can be implemented as follows:
* Reacting to new conversation partner. ‘‘Alert’’ (character looks at partner).
* Take turn. ‘‘Lookleft’’ or ‘‘Lookright’’, then character starts speaking.
* Give feedback. ‘‘Acknowledge’’ (character nods).

ARTICLE IN PRESS
H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 191

* Gestures expressing emotions: ‘‘Sad’’ (character displays sad face and ‘hanging’
shoulders), ‘‘Pleased’’ (character displays ‘big smile’), ‘‘Anger’’ (character displays
angry face and stems hands on hips), ‘‘Fear’’ (character lifts arms), etc.

Character animations also contain gestures supporting speech, such as the
contrastive gesture or propositional gestures [22]. The contrastive gesture depicts a ‘on
the one hand y on the other hand’ relationship if two items are contrasted. This is
realized by the sequence of ‘‘Thisthatfirst’’ (left-hand stroke) and ‘‘Thisthatsecond’’
(right-hand stroke). The final view of this animation sequence is shown in Fig. 4. An
example of a propositional gesture is the use of both hands to measure the size of an
object in symbolic space while saying ‘‘there is a big difference’’. These and many
more animations are triggered by using the act tagging structure.

However, for periods of non-activity (i.e. no particular action is to be performed),
the character will randomly perform an action from the set of ‘idle’ behaviors, such
as looking left or right, folding arms, etc. Idle behaviors are intended to support the
illusion of a character’s life-likeness.

4.2.3. Tagging structures for presentation control

The flow of a presentation written in MPML is specified by the tagging structures
shown in Fig. 5. The scene element determines which characters are visible in the
browser window. The seq and par elements are responsible for events that should be
executed sequentially or in parallel, respectively, and inspired by the corresponding
tags in SMIL [23]. Most importantly, the par element implements a (simple) form
of conversational behavior between characters, where a character’s speech can be
synchronized with another character’s behavior, e.g. back channel feedback
(‘‘nodding’’), as in the following segment.

opar>

oseq>oact agent=‘‘Shima’’ act=‘‘Congratulate’’/>
ospeak agent=‘‘Shima’’>Let us go now!o/speak>o/seq>

oseq>oact agent=‘‘Genie’’ act=‘‘Acknowledge’’>o/seq>

o/par>

ARTICLE IN PRESS

Fig. 4. Contrastive gesture.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203192

The realization of characters’ conversational behavior is restricted by fixed
animation sequences (of the Microsoft Agent package) that do no allow for precise
timing in synchronization. Another limitation of this package is that multiple
characters cannot speak in parallel. However, it is possible to have one character
speak while other characters’ thoughts are displayed in balloons containing text.

The execute element enables the script author to execute a function or method in
the background web page, such as a JavaScript function (or Java method, see
below). It is typically used to change background web pages. The rationale for the
wait element is to halt the presentation until the user enters certain information or a
media object such as a movie clip stops execution. The pause element enables to
interrupt script execution for a specified amount of time.

4.2.4. Tagging structures for interfacing MPML with external objects

It is sometimes convenient to embed programs written in a different language into
a JavaScript based web page, such as a Java applet. The applet becomes an object
when loaded into the browser and can hence interact with JavaScript. For instance,
Andr!e et al. [24] distinguish between scripted and autonomous character behavior.
Whereas a scripted character follows a pre-defined presentation script, an
autonomous character decides its behavior depending on its internal mental state.
The interface elements in MPML allow for autonomous character control. An
extended example of a script that combines scripted and autonomous character
behavior will be discussed in Section 6.

ARTICLE IN PRESS

<!ENTITY % COMMON-CHILDREN
"(seq| par | page | emotion| execute| wait |
consult| pause| move | act | speak| think)*">

<!ELEMENT scene%COMMON-CHILDREN;>
<!ATTLIST sceneagents CDATA #REQUIRED>
<!ELEMENT seq %COMMON-CHILDREN;>
<!ENTITY % PAR-CHILDREN

"((scene| seq | par | emotion| execute| wait | consult|
pause| move | act | speak| think)*)">

<!ELEMENT par %PAR-CHILDREN>
<!ELEMENT page %COMMON-CHILDREN;>
<!-- The URL of the background page -->
<!ATTLIST page ref CDATA #REQUIRED>
<!ELEMENT execute EMPTY>
<!-- The address of the functionto be executed -->
<!ATTLIST execute target CDATA #REQUIRED>
<!ELEMENT wait EMPTY>
<!-- The address of the variable used for synchronization -->
<!ATTLIST wait target CDATA #REQUIRED>
<!-- Halting execution for a duration given in milliseconds -->
<!ELEMENT pause EMPTY>
<!ATTLIST pausepause CDATA #REQUIRED>

Fig. 5. DTD for presentation related elements.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 193

Elements that enable to interface MPML with external objects are summarized in
Fig. 6. The consult element introduces branching into the otherwise linear
presentation script. The value of the target attribute is a function of an external
object, such as a Java method. Here, the result returned by executing the Java
method is tested for string identity with the value of the value attribute of the test

element. When identical, a sequence of events is triggered which corresponds to the
chosen branch of the presentation. In Section 6, the operation of those tags will be
illustrated by a running example.

5. Working with MPML — the MPML3.0 Visual Editor

Script authors working with MPML may either edit the file containing the MPML
tagging structures or manipulate the graphical representation corresponding to
the script. Considering the complexity of a script with nested tag structures and the
popularity of visual interfaces, working on the graph representation is an attractive
alternative to writing tags. However, for convenience, our system supports both
types of creating a presentation script that is executable in a web browser. Since
scripting complex presentations is an error-prone process, an error handler has been
implemented to direct the user to the erroneous parts of the MPML script (see [25]).

We will now introduce a visual editor for presentations marked up with MPML.
The MPML3.0 Visual Editor consists of two main windows (see Fig. 7). The window
to the left—the (presentation) Graph window—shows the graphical presentation of
the MPML script, and the window to the right—the Current Mode window—
displays the current location of user interaction with the graph.

The top field of the Current Mode window provides buttons to insert agent actions
to the graph or declare new agents as part of the presentation. The part below of
those buttons enables the script author to choose a tag (e.g. speak), a character (e.g.
‘‘Marge’’), and the web page that serves as a background for the characters’
performance (e.g. Casino-entrance.html). The Prev and Next buttons allow the
user to select the previous or next-listed tagging structure, character, or background
pages, while the list buttons show a list of available items. The List buttons may also
be used to edit the setting of characters, such as their initial position on the screen, or
add another background page. The lower part of the Current Mode window depicts
the current attribute–value pair of the element whose associated box (configuration)

ARTICLE IN PRESS

<!ELEMEMT consult(test+)>
<!-- The address of the variable subject to the test -->
<!ATTLIST consult target CDATA #REQUIRED>
<!ELEMENT test (seq)>
<!-- The valueof the variable -->
<!ATTLIST test value CDATA #REQUIRED>

Fig. 6. DTD for interface elements.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203194

in the Graph window shares the physical location with the current mouse position
(i.e. the mouse is ‘over’ the box). Authors may edit tag elements in the Current Mode
window and then drag-and-drop the box associated with the tag at the appropriate
position in the graph.

A presentation graph is build up from the following entities. A node is displayed as
a box configuration with three parts. The rectangle located in the middle refers to a
tag element, e.g. execute or speak. The circle(s) to its right refer to the characters
that are visible in the current scene. A circle showing a colored (‘Smiley’) face denotes
the performing character of an action.2 For convenience of the author, a square box
to the left of the rectangle will have the same color (cf. previous footnote) and hence
facilitates tracking which character is performing at a node in the graph. The edges in
the graph can be divided into ‘sequential’, ‘parallel’ and ‘branching’ edges.

* A sequential edge is a (down-side) directed arc between two nodes and denotes the
next action in the presentation flow.

* A parallel edge is a directed arc between a node and a set of nodes each of which
initializes a sequence of events, such as actions carried out by multiple agents in
parallel (see Fig. 8(a)).

* A branching edge is a directed arc between a node and a set of nodes such that
the node that satisfies a certain condition initializes a sequence of events. The
condition may depend on user interaction or, if autonomous agents are used,
the behavior suggested by the reasoning of the character (see Fig. 8(b)).

ARTICLE IN PRESS

Fig. 7. The MPML3.0 Visual Editor.

2 The non-color view of the editor window shows only different gray shades.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 195

In order to visualize presentation elements connected by different kinds of edges, the
presentation graph uses colored frames (cf. previous footnote). The pull-down
menus of the MPML3.0 Visual Editor include the standard options of visual
interfaces, such as loading and saving a presentation graph or inserting new
presentation elements. The toolbar provides buttons to switch between operating on
the presentation graph or editing the tagging structures of the corresponding MPML
script file, and to launch the presentation, in addition to common tools. In the next
section, we will present an extended example of an MPML script. For expository
purposes, we will use its tagging structures.

6. Illustration

We will now show how an author may use MPML to script an interactive
presentation. As an interaction setting, we will implement a casino scenario where
the user and other characters can play the ‘‘Black Jack’’ game. In our game scenario,
the table (metaphorically) seats a dealer and two players (see Fig. 9). In the right half
of the (Internet Explorer) window, the character ‘‘James’’ is in the role of the dealer.
The first seat on the dealer’s left (called the ‘First Base’) is occupied by the user who
may interact with the game by uttering one of the sentences displayed in the lower
frame window of the (Explorer) window that depicts the current state of the game.
To the dealer’s right (the ‘Third Base’), the character ‘‘Al’’ is in the role of another
player. At the bottom-left of the window, the character ‘‘Genie’’ acts as the user’s
advisor to play the game, and is introduced as ‘‘Djinn’’. In our example, we will
focus on scripting a scene where only the dealer and the advisor are present.

The behavior of the dealer and the other player are entirely pre-defined whereas
the advisor’s behavior is controlled by his mental state. In order to ‘script’ characters
capable of autonomous affective behavior, we have developed the scripting emotion-
based agent minds (SCREAM) system, which is extensively discussed in a
complementary paper [17]. In short, the SCREAM system is a Java applet that
outputs the advisor’s answer to the user by accessing a rule-based knowledge base.
Most importantly, the SCREAM system decides the emotion of the advisor’s

ARTICLE IN PRESS

Fig. 8. Examples of a graph with a parallel edge (a) and a branching edge (b). Events can be substituted by

characters’ actions, speech, loading a web page, etc.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203196

response depending on his mental makeup, the user’s choice (‘‘Hit’’ or ‘‘Stand’’), and
the current game situation. The advisor’s mind contains a multitude of parameters,
including his beliefs, goals, standards, attitude, personality and peculiarities of the
social interaction context. It is important to note that MPML and SCREAM are
independent systems. MPML can generate interactive presentations without
accessing SCREAM, and the SCREAM system can be integrated to web-based
interaction scenarios without using MPML as a character behavior markup
language. However, the integration of both systems provides a powerful framework
to facilitate both character scripting and context-sensitive affect generation for
characters.

Fig. 10 shows a script fragment of the casino scenario that describes the
interaction of the user with the advisor and its consequences for the game progress.
Emotional markup is omitted for simplicity. In line 1, the character ‘‘Genie’’ is
enabled to accept the speech command from the user, followed by a branching edge
of multiple alternatives, where part of the first branch is shown (lines 2–35). This
branch is chosen when the user utters ‘‘Djinn I hit’’. The user’s command has the
following consequences. First, in line 5, the bottom frame is ‘cleared’ by replacing it
with a frame window that disables user interaction, denoted by answer.html. Next,
in line 6, an (embedded) sub-frame window of the main window, casino-

main.html, is replaced by the new sub-frame window game3-2.html that depicts
the updated game board state. After Djinn displays the ‘‘Uncertain’’ animation
sequence (line 7), he verbally suggests to stand (lines 8–10), and then the bottom
frame is being replaced by a sub-frame window (answer-5.html) showing a new pair
of user choices (line 11). Again, we describe the expansion of only one branch, where

ARTICLE IN PRESS

Fig. 9. Casino scenario.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 197

the user decides to follow Djinn’s suggestion. This branch is shown in Fig. 7 after the
occurrence of the listen tag (lines 13–30). Lines 16–21 code the parallel execution of
two actions. The dealer performs the ‘‘GestureRight’’ animation sequence (line 17),
thereby demonstrating the new game situation which is simultaneously loaded (line
18–20). Then the dealer verbally and non-verbally expresses his sadness that he lost
this round in the game. In lines 26 and 27, the execute tag is used to update the
advisor’s knowledge base telling that the user won the current round, which is
internally represented by (round) 4, (choice) 1. Notice that here, MPML interacts
with the SCREAM system that will be used to derive Djinn’s reaction. The
remaining lines 28–37 show some of the required closing tags.

A situation where Djinn receives an instruction on how to respond to the user’s
choice is depicted in Fig. 11. In line 1, the consult tag is used to access the

ARTICLE IN PRESS

1 <listen agent="Genie">
2 <heard value="Djinn I hit">
3 <scene agents="Genie,James">
4 <page ref="casino-main.html">
5 <execute target="control.changebottom('answer.html')"/>
6 <execute target="scene.board.location.href='game3-2.html'"/>
7 <act agent="Genie" act="Uncertain"/>
8 <speak agent="Genie">
9 We have 17 now...That'snot an easy decision,but I wouldstand.
10 </speak>
11 <execute target="control.changebottom('answer-5.html')"/>
12 <listen agent="Genie">
13 <heard value="Stand">
14 <scene agents="James,Genie">
15 <page ref="Casino-main.html">
16 <par>
17 <seq><act agent="James" act="GestureRight"/></seq>
18 <seq>
19 <execute target="scene.board.location.href='game3-3-win.html'"/>
20 </seq>
21 </par>
22 <act agent="James" act="Sad"/>
23 <speak agent="James">
24 The bank gets 24 and looses. Player wins,you're lucky guys.
25 </speak>
26 <execute target="control.characterApplet.tellJinniDB(
27 'comact(user,advisor,wongame,4,1)')"/>
28 </page>
29 </scene>
30 </heard>
31 <heard value="Hit">
32 ...
33 </heard>
34 ...
35 </heard>
36 ...
37 </listen>

Fig. 10. Example of MPML script.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203198

SCREAM system that processes the user’s communicative act and outputs Djinn’s
current emotional state together with its intensity. For example, the output
rescomact(sorryfor,3,advisor,user,5) says that the advisor’s (i.e., Djinn’s)
communicative act to the user in situation 5 is ‘sorry for’ with intensity 3 (see [17] for
details). The actual verbal and non-verbal reaction of Djinn is then instantiated
within the otest>...o/test> tagging structures. Two of Djinn’s responses are
given in lines 2–12 and 13–24, respectively. The cardinality of text tagging structures
following the consult tag depends on the granularity of the emotion system
underlying the advisor. The graphical representation of the branching edge rooted in
the consult element can be seen in Fig. 7, where it is located immediately below the
occurrence of the consult tag approximately in the middle of the Graph window.

7. Discussion

Recent years have seen a growing number of scripting and representation
languages for controlling the embodied behavior of synthetic characters. Animating

ARTICLE IN PRESS

1 <consult target="control.cApplet.askJResComAct('advisor','user','5')">
2 <test value="'rescomact(sorryfor,3,advisor,user,5)'">
3 <scene agents="Genie,James">
4 <page ref="Casino-main.html">
5 <act agent="Genie" act="Uncertain"/>
6 <speakagent="Genie">
7 Oh, you lost.
8 <nb pause="100">I am sorry,this was unlucky.
9 </speak>
10 </page>
11 </scene>
12 </test>
13 <testvalue="'rescomact(joy,5,advisor,user,5)'">
14 <scene agents="Genie,James">
15 <page ref="Casino-main.html">
16 <act agent="Genie" act="Congratulate_2"/>
17 <speak agent="Genie">
18 And here we are!
19 <nb pause="100"/>We are greattoday!
20 <nb pause="100"/>And luck is on our side.
21 </speak>
22 </page>
23 </scene>
24 </test>
25 <test>
26 ...
27 </test>
28 ...
29 </consult>

Fig. 11. Another example of MPML script.

H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 199

the visual appearance of characters is a difficult task that involves many levels, from
changes to each individual degree of freedom in a character’s motion model to high
level concerns about how to express a character’s personality by means of its
movements. Beard [26] points out that the main design decision in the construction
of a scripting language for synthetic characters is the level of control over
the character. For instance, a scripting language may cover different (abstraction)
levels, such as low-level control over the face, medium-level over the body, and
high-level control over (synthetic) voice. Certainly, the desired level of control
depends on the application the content author has in mind. While high-level facial
control is mostly sufficient for a tutor or presentation character in a technical
domain, more detailed (low-level) control might be required for a joke or story
telling character.

Given our aim to develop an easy-to-use scripting language for web-based
presentations, MPML is not intended as a new character representation language
but a convenient tool to control characters that use the Microsoft Agent package
as an animation engine. As a scripting language, MPML is located at a high
(or abstract) level that allows easy control of pre-defined character motion
sequences and their synchronization with synthetic speech. However, the out-
come of the synchronization between gestures and speech largely depends
on the animation used. Some animations, such as ‘‘Acknowledge’’ (‘‘nod’’) or
‘‘Blink’’ have very short duration, whereas others (‘‘Announce’’, ‘‘Decline’’, or
‘‘Think’’) persist during the entire duration of the character’s utterance. This
simple form of synchronization is sufficient for the application we envision,
namely, web-based presentations that rely to a large amount on deictic ges-
tures. A different approach is taken by behavior expression animation toolkit
(BEAT) that supports a timeline to accurately synchronize synthetic speech
with conversational behavior [9]. More concretely, BEAT uses a pipelined
approach where the TTS engine produces a fixed timeline which constrains the
subsequently added gestures. However, the sophisticated synchronization of
verbal and non-verbal behavior aggravates the real-time rendering of character
animation.

Besides genuine character control, another purpose of MPML is to allow
for easy integration of life-like characters into web-based presentation scenarios
such as interaction with other media objects contained in a web page. This aim
is also shared by the PMScript language, which was designed as a language to
specify personified media (PM), i.e. avatars that act in online communities [27].
However, since MPML is not a full-fledged environment for web content
creation, features not related to character control might be require programming
skills.

Systematic experiments with the markup language and the MPML3.0 Visual
Editor have yet to be conducted. The visual editor is mostly used by new students
whose aim is to work on a topic related to character control. Our (informal)
experiences are that both the language and the visual editor are perceived as intuitive
and can be used with little instruction. This, however, has to be warranted by
principled studies.

ARTICLE IN PRESS
H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203200

8. Conclusion

Life-like characters have recently received a considerable amount of interest as
they can be employed in diverse application fields including tutoring, interactive
stories, sales and presentation. Despite the popularity of animated agents, tools that
would allow content authors to easily integrate this interface technology to web-
based presentations are still rare. The purpose of the MPML3.0 Visual Editor for the
multi-modal presentation markup language described in this paper is to provide a
powerful and easy-to-use character scripting tool for web content experts who are
non-programmers.

We have presented the language specification of MPML that contains tagging
structures for the control of the verbal and non-verbal behavior of multiple 2D
cartoon-style agents, presentation flow control including the possibility of user-agent
interaction, and an interface to external web objects, such as Java applets. In
order to facilitate the scripting of complex presentation scenarios, we have
described the MPML3.0 Visual Editor where content authors can manipulate a
presentation graph rather than edit the involved textual script of the presentation.
The discussion of an actual web-based presentation implemented with MPML—
the interactive casino scenario—was intended to give an idea of how to mark
up a presentation that features characters with pre-scripted as well as autonomous
behavior. MPML has been set in context by reporting on related markup languages
developed in other research institutes and our laboratory. A key advantage of
our system in terms of usability is the graphical interface, but this has yet to be
proved empirically.

Given the challenging task of building life-like characters that can convincingly
assume the role of virtual presenters with interaction capabilities, future avenues for
research are manifold. We aim to improve the expressivity and flexibility of web-
based interactive presentation characters and keep the specification languages that
control them simple enough to be beneficial for the non-technically oriented web
content expert. Eventually, we want to model our own characters and implement
a visual editor that allows authors to control characters at multiple levels of
abstraction.

Acknowledgements

This research was supported by the Research Grant (1999–2003) for the Future
Program (‘‘Mirai Kaitaku’’) from the Japan Society for the Promotion of Science
(JSPS).

References

[1] J. Cassell, J. Sullivan, S. Prevost, E. Churchill (Eds.), Embodied Conversational Agents, The MIT

Press, Cambridge, MA, 2000.

ARTICLE IN PRESS
H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 201

[2] Y. Arafa, K. Kamyab, S. Kshirsagar, N. Magnenat-Thalmann, A. Guye-Vuill"eme, D. Thalmann,

Two approaches to scripting character animation, in: Proceedings AAMAS-02 Workshop on

Embodied Conversational Agents—Let’s Specify and Evaluate Them! 2002.

[3] A. Marriott, J. Stallo, VHML—Uncertainties and problems, A discussion, in: Proceedings

AAMAS-02 Workshop on Embodied Conversational Agents—Let’s Specify and Evaluate Them!

2002.

[4] XML, Extensible markup language, URL: http://www.w3.org/XML.

[5] M. Bordegoni, G. Faconti, S. Feiner, M.T. Maybury, T. Rist, S. Ruggieri, P. Trahanias, M. Wilson,

A standard reference model for intelligent multimedia presentation systems, Computer Standards &

Interfaces 18 (6–7) (1997) 477–496.

[6] A. Guercio, T. Arndt, Multimedia computing on the world wide web, Journal of Visual Languages

and Computing 13 (2002) 1–2.

[7] N. Bradley, The XSL Companion, Addison-Wesley, London, 2000.

[8] B. De Carolis, V. Carofiglio, M. Bilvi, C. Pelachaud, APML, a mark-up language for believable

behavior generation, in: Proceedings AAMAS-02 Workshop on Embodied Conversational Agents—

Let’s Specify and Evaluate Them! 2002.

[9] J. Cassell, H. Vilhj!almsson, T. Bickmore, BEAT: the behavior expression animation Toolkit, in:

Proceedings of SIGGRAPH-01, 2001, pp. 477–486.

[10] A. Kranstedt, S. Kopp, I. Wachsmuth MURML: a multimodal utterance representation markup

language of conversational agents, Technical Report 2002/05, SFB 360 Situated Artificial

Communicators, University of Bielefeld, 2002.

[11] Z. Huang, A. Eli.ens, C. Visser, STEP: a scripting language for embodied agents, in: H. Prendinger

(Ed.), Proceedings PRICAI-02 International Workshop on Lifelike Animated Agents. Tools,

Affective Functions, and Applications, 2002, pp. 46–51.

[12] N.I. Badler, R. Bindiganavale, J. Allbeck, W. Schuler, L. Zhao, M. Palmer, Parameterized action

representation for virtual human agents, in: J. Cassell, J. Sullivan, S. Prevost, E. Churchill (Eds.),

Embodied Conversational Agents, The MIT Press, Cambridge, MA, 2000, pp. 256–284.

[13] Microsoft, Developing for Microsoft Agent, Microsoft Press, Redmond, WA, 1998.

[14] S. Saeyor, Multimodal Presentation Markup Language Ver. 2.2a (MPML2.2a), 2003, URL:http://

www.miv.t.u-tokyo.ac.jp/~santi/research/mpml2a.

[15] P. Du, M. Ishizuka, Dynamic web markup language (DWML) for generating animated web pages

with character agent and time-control function, in: Proceedings (CD-ROM) IEEE International

Conference on Multimedia and Expo (ICME2001), 2001.

[16] N. Okazaki, S. Aya, S. Saeyor, M. Ishizuka, A multimodal presentation markup language

MPML-VR for a 3D virtual space, in: Proceedings (CD-ROM) of Workshop on Virtual

Conversational Characters: Applications, Methods, and Research Challenges (in conj. with

HF2002 and OZCHI2002), 2002.

[17] H. Prendinger, S. Descamps, M. Ishizuka, Scripting affective communication with life-like characters

in web-based interaction systems, Applied Artificial Intelligence 16 (7–8) (2002) 519–553.

[18] T. Ringate, AIML Reference Manual, A.L.I.C.E AI Foundation, 2001, URL: alicebot.org.

[19] K. Mori, A. Jatowt, M. Ishizuka, Enhancing conversational flexibility in multimodal interactions

with embodied lifelike agents, in: Proceedings of Poster Session at International Conference on

Intelligent User Interfaces (IUI-03), 2003, pp. 270–272.

[20] XML schema Part 1: structures, URL: http://www.w3.org/TR/xmlschema-1.

[21] I.R. Murray, J.L. Arnott, Implementation and testing of a system for producing emotion-by-rule in

synthetic speech, Speech Communication 16 (1995) 369–390.

[22] J. Cassell, Nudge nudge wink wink: elements of face-to-face conversation for embodied

conversational agents, in: J. Cassell, J. Sullivan, S. Prevost, E. Churchill (Eds.), Embodied

Conversational Agents, The MIT Press, Cambridge, MA, 2000, pp. 1–27.

[23] SMIL, Synchronized multimedia integration language, URL: http://www.w3.org/AudioVideo.

[24] E. Andr!e, T. Rist, S. van Mulken, M. Klesen, S. Baldes, The automated design of believable dialogue

for animated presentation teams, in: J. Cassell, J. Sullivan, S. Prevost, E. Churchill (Eds.), Embodied

Conversational Agents, The MIT Press, Cambridge, MA, 2000, pp. 220–255.

ARTICLE IN PRESS
H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203202

http://www.w3.org/XML
http://www.miv.t.u-tokyo.ac.jp/~santi/research/mpml2a
http://www.miv.t.u-tokyo.ac.jp/~santi/research/mpml2a
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/AudioVideo

[25] S. Descamps, MPML3.0: towards building a standard for multimodal presentations using affective

agents, Master’s Thesis, University of Tokyo, January, 2002.

[26] S. Beard, Design decisions underlying virtual conversational character scripting languages, in:

Proceedings HF-02 Workshop on Virtual Conversational Characters: Applications, Methods, and

Research Challenges, 2002.

[27] T. Takahashi, H. Takeda, Y. Katagiri, Script language for embodied agents as personal

conversational media in online communities, in: Proceedings AAMAS-02 Workshop on Embodied

Conversational Agents: Let’s Specify and Compare Them! 2002.

ARTICLE IN PRESS
H. Prendinger et al. / Journal of Visual Languages and Computing 15 (2004) 183–203 203

	MPML: a markup language for controlling the behavior of life-like characters
	Introduction
	Related work
	Requirements for a presentation markup language
	The MPML system
	System architecture
	MPML specification
	Introductory tagging structures
	Tagging structures for character control
	Tagging structures for presentation control
	Tagging structures for interfacing MPML with external objects

	Working with MPML - the MPML3.0 Visual Editor
	Illustration
	Discussion
	Conclusion
	Acknowledgements
	References

