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Purpose of this course

Special emphasis will be laid on statistical pattern recognition theory

These techniques are indispensable for media analysis, feature extraction, media
conversion, and so on

The course will NOT explain very recent pattern recognition and machine learning tools.
But the course will focus on basics how core methods work.

Project works such as actual pattern classification will be assigned upon necessity to
deepen the understanding.



Schedule and credits

Course web page: https://research.nii.ac.jp/~satoh/utpr/
Course materials, sample codes, and data will be posted (hopefully before each class).
Language: Japanese, materials: Japanese and English

Credits will be given based on final report (mandatory) and assignments (3 out of 7 are
mandatory)

Attendance record will NOT be taken
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Orientation, Bayes decision theory, probability distribution

Random variable, random vector, normal distributions

Parametric density estimation, discriminant function

Nonparametric density estimation, Parzen windows, k-nearest neighbor estimate
k-nearest neighbor classification, classification error estimation

Bayes error estimation, classification error estimation, cross-validation, bootstrap
Linear classifier, perceptron, MSE classifier, Widrow-Hoff rule

neural network, deep learning

all about SVM

Orthogonal expansions, Eigenvalue decomposition

no class

Clustering, dendrogram, aggromerative clustering, k-means

Graphs, normalized cut, spectral clustering, Laplacian Eigenmaps

extra (if needed)



Example of assignment

Real data will also be used

Exercises and assignments impose analysis of
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Recommended textbooks

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons,
Inc., 1973.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, John Wiley & Sons, 2001.
K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 1990.

E. Oja, Subspace Methods of Pattern Recognition, John Wiley & Sons, Inc., 1983.
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D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2003.
D. H. Ballard and C. M. Brown, Computer Vision, Prentice Hall, 1982.



What is pattern recognition?

® To recognize patterns
® QObserving raw data, and taking an action based on the category of the pattern of raw data

® Crucial for our life, and living creatures (including us) can do this very well



What can be solved by pattern recognition?

perception of insects

face recognition

speech recognition

document classification/understanding
navigation and planning

scene analysis



Preprocessing

Feature extraction
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FIGURE 1.1. The objects to be classified are first sensed by a transducer (camera),
whose signals are preprocessed. Next the features are extracted and finally the clas-
sification is emitted, here either “salmon” or “sea bass.” Although the information flow
is often chosen to be from the source to the classifier, some systems employ information
flow in which earlier levels of processing can be altered based on the tentative or pre-
liminary response in later levels (gray arrows). Yet others combine two or more stages
into a unified step, such as simultaneous segmentation and feature extraction. From:
Richard O. Duda, Peter E. Han, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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Example

salmon sea bass
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FIGURE 1.2. Histograms for the length feature for the two categories. No single thresh-
old value of the length will serve to unambiguously discriminate between the two cat-
egories; using length alone, we will have some errors. The value marked /* will lead to
the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Example

count
14t salmon

sea bass

FIGURE 1.3. Histograms for the lightness feature for the two categories. No single
threshold value x* (decision boundary) will serve to unambiguously discriminate be-
tween the two categories; using lightness alone, we will have some errors. The value x*
marked will lead to the smallest number of errors, on average. From: Richard O. Duda,
Peter E. Han, and David C. Stork, Partern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.



Example

lightness
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FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
still be some errors. From: Richard O. Duda, Peter E. Hart, and David C. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 1.5. Overly complex models for the fish will lead to decision boundaries that
are complicated. While such a decision may lead to perfect classification of our training
samples, it would lead to poor performance on future patterns. The novel test point
marked ? is evidently most likely a salmon, whereas the complex decision boundary
shown leads it to be classified as a sea bass. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 1.6. The decision boundary shown might represent the optimal tradeoff be-
tween performance on the training set and simplicity of classifier, thereby giving the
highest accuracy on new patterns. From: Richard O. Duda, Peter E. Hart, and David C.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



Bayesian decision theory

Probability: P(x)

Probability distribution: p(x)

P(x)
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Bayesian decision theory

® w : a variable to denote the state (state of nature)
e.g., w =wi : fish is sea bass, w = wo: fish is salmon

® Prior (a priori probability): our knowledge of how likely we observe the state e.g.,
P(w1): prior that the next fish is sea bass
P(wy): prior that the next fish is salmon

® class-conditional probability (density function): the probability density function for a
continuous random variable x given that the state of nature w

e.g. p(x|w)



Bayesian decision theory
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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category ;. If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,
Inc.
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Bayesian decision theory

® A posteriori probability (posterior): the probability of the state of nature given that the
feature value x has been observed for the random variable x
e.g., P(w|x)
® Likelihood: the likelihood of the state of nature with respect to the feature value
e.g., p(x|w)
® Bayes formula
p(x|w)P(w)

PEbI=""0

p(x) = p(x|w)P(w)



Exercise

Three different machines M1, M2, and M3 were used for producing a large batch of
similar manufactured items.

Suppose that 20% of the items were produced by M1, 30% by M2, and 50% by M3.
Suppose further than 1% of the items produced by M1 are defective, that 2% of the items

produced by M2 are defective, and that 3% of the items produced by machine M3 are
defective.

Finally, suppose that one item is selected at random from the entire batch and it is found
to be defective.

Which machine produced this item? Determine the probability that this item was
produced by M1, M2, and M3, respectively.



Hint
® Prior probability
P(M1)=0.2
P(M2)=10.3
P(M3) =0.5

<

® conditional probability
P(F|M1) =0.01
P(F|M2) = 0.02
P(F|M3) =0.03
(F is the state of defective product)
® Then you can obtain the followings by using the Bayes theorem:
P(M1|F)
P(M2|F)
P(M3|F)



Exercise: Python code

import numpy as np

mlfrac = 0.2
m2frac = 0.3
m3frac = 0.5
mldef = 0.01
m2def = 0.02
m3def = 0.03
numprod = 10000. # total number of products

# ml, m2, m3: O- flawless, 1- defective

ml = np.random.rand(int (numprod * mifrac)) < midef
11 = np.ones(int (numprod * mifrac), dtype=int)

m2 = np.random.rand(int (numprod * m2frac)) < m2def
12 = np.ones(int (numprod * m2frac), dtype=int) * 2
m3 = np.random.rand(int (numprod * m3frac)) < m3def
13 = np.ones(int (numprod * m3frac), dtype=int) * 3



Exercise: Python code

m = np.r_[ml, m2, m3]
1 = np.r_[11, 12, 13]
print ("defective rate: %g’ % (float(sum(m)) / len(m)))
numtrial = 10000
count = np.zeros(3)
numdef = 0
for i in range(numtrial):
k = int(np.floor(np.random.rand() * len(m)))
if m[k]:
numdef += 1
count [1[k] - 1] += 1
for i in range(3):
print (’prob. drawn from M/d: %g’ % (i + 1, count[i] / numdef))



Exercise

mifrac=0.2; m2frac=0.3; m3frac=0.5;
mldef=0.01; m2def=0.02; m3def=0.03;
numprod=100000; % total number of products
% ml, m2, m3: O- flawless, 1- defective
mi=rand (numprod*mifrac,1)<mldef;

l1=ones (numprod*mifrac,1);

m2=rand (numprod*m2frac, 1) <m2def ;

12=ones (numprod*m2frac, 1) *2;

m3=rand (numprod*m3frac, 1) <m3def ;

13=ones (numprod*m3frac, 1) *3;

m=[ml;m2;m3]; 1=[11;12;13];

fprintf (’defective rate: %g\n’,sum(m)/length(m));

- Matlab code



numtrial=1000;
count=zeros(3,1);
numdef=0;
for i=1:numtrial
k=ceil (rand(1)*length(m));
if m(k)
numdef=numdef+1;
count (1(k))=count (1(k))+1;
end
end
for i=1:3

Exercise: Matlab code

fprintf (’prob. drawn from M/d: %g\n’, i, count(i)/numdef);

end



Exercise

mifrac=0.2; m2frac=0.3; m3frac=0.5;
mldef=0.01; m2def=0.02; m3def=0.03;
numprod=100000; // total number of products
// m?: 0 - flawless, 1 - defective

mi=rand (numprod*mifrac,1)<mldef;

l1=ones (numprod*mifrac,1);

m2=rand (numprod*m2frac, 1) <m2def ;

12=ones (numprod*m2frac, 1) *2;

m3=rand (numprod*m3frac, 1) <m3def ;

13=ones (numprod*m3frac, 1) *3;

m=[ml;m2;m3]; 1=[11;12;13];
printf(’defective rate: Y%g\n’, sum(m)/length(m));

: Scilab code



Exercise: Scilab code

numtrial=1000;
count=zeros(3,1);
numdef=0;
for i=1:numtrial
k=ceil (rand(1)*length(m));
if m(k)
numdef=numdef+1;
count (1(k))=count (1(k))+1;
end
end
for i=1:3
printf (’prob. drawn from M%d: %g\n’, i, count(i)/numdef);
end



Exercise

® Plot posterior probabilities P(w|x) and P(ws|x) for priors P(w;) = % and P(w;) = 1.



Exercise
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FIGURE 2.2. Posterior probabilities for the particular priors P(@) = 2/3 and P(w,)
= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category w, is roughly 0.08, and that it is in w; is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc. =2 =
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Exercise

® Assume conditional distributions
p(x|w1) to be Gaussian (=normal distribution) with mean 2 and standard deviation 1
and p(x|ws) to be also Gaussian with mean 4 and std 1 resp.

® Plot posterior probabilities P(wy|x) and P(wa|x) for priors P(w;) = 0.3 and P(w;) = 0.7.



bayes2.py

import numpy as np
import matplotlib.pyplot as plt

ml = 2.
sl = 1. # mean and std for model 1
m2 = 4.
s2 = 1. # mean and std for model 2

prl = 0.3 # prior for model 1
pr2 = 0.7 # prior for model 2

condl = lambda x : 1/np.sqrt(2. * np.pi * si%x2.) \
* np.exp(—(x - m1)*%2./(2. * sl1*x2.))
cond2 = lambda x : 1/np.sqrt(2. * np.pi * s2%x2.) \

* np.exp(—(x - m2)*%2./(2. * s2%x2.))



plt
plt
plt

plt.

all
pol
po2

plt
plt
plt
plt

bayes2.py

np.linspace(0, 10)

.figure()
.plot(x, condl(x), ’-’, label="condl")
.plot(x, cond2(x), ’x-’, label="cond2")

legend ()

lambda x : condl(x) * prl + cond2(x) * pr2
lambda x : condl(x) * prl / all(x)
lambda x : cond2(x) * pr2 / all(x)

.figure()
.plot(x, pol(x), ’-’, label=’postl’)
.plot(x, po2(x), ’x-’, label=’post2’)
.legend ()
plt.

show ()



bayes2.m

ml=2; s1=1; % mean and std for model 1

m2=4; s2=1; % mean and std for model 2

pr1=0.3; % prior for model 1

pr2=0.7; % prior for model 2

cond1=0(x) 1/sqrt(2*pi*s1~2) * exp(-(x-m1)~2/(2%s172));
cond2=0(x) 1/sqrt(2*pi*s272) * exp(-(x-m2)°2/(2%s2°2));
x=0:0.1:10;

figure
plot(x,arrayfun(condl,x),’-’,x,arrayfun(cond2,x),’x-’);
legend(’condl’,’cond2’) ;

all=0(x) condl(x)*pri+cond2(x)*pr2;

pol=@(x) condl(x)*prl./all(x);

po2=@(x) cond2(x)*pr2./all(x);

figure
plot(x,arrayfun(pol,x),’-’,x,arrayfun(po2,x),’x-’);
legend(’postl’,’post2’);



bayes2.sci

mi1=2; sl1=1; // mean and std for model 1

m2=4; s2=1; // mean and std for model 2

pr1=0.3; //prior for model 1

pr2=0.7; // prior for model 2

deff (’y=condl1(x)’, ’y=1/sqrt(2*%pi*s1”2) * exp(-(x-m1)."2/(2xs172))’);
deff (’y=cond2(x)’, ’y=1/sqrt(2x%pi*s272) * exp(-(x-m2).72/(2%xs272))’);
x=0:0.1:10;

figure

plot(x,condl(x),’-’,x,cond2(x),’x-");

legend(’condl’,’cond2’) ;

deff (’y=all(x)’, ’y=condl(x)*pri+cond2(x)*pr2’);

deff (’y=pol(x)’, ’y=condl(x)*prl./all(x)’);

deff (’y=po2(x)’, ’y=cond2(x)*pr2./all(x)’);

figure

plot(x,pol(x),’-’,x,po2(x),’x~");

legend(’postl’,’post2’);
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Bayesian decision theory

P(error|x) = P(w1]|x) if we decide w;

P(error|x) = P(wz|x) if we decide wy

Bayes decision rule

Decide w)1 if P(w1|x) > P(waz|x)

otherwise decide wy

P(error|x) = min(P(w1|x), P(w2|x))

other form:

Decide wy if p(x|w1)P(w1) > p(x|w2)P(w2)
otherwise decide wo.

Bayes error: E{P(error|x)} with Bayes decision rule



Bayesian decision theory
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Risk

The loss function A(c|w;) describes the loss incurred for taking action a; when the state
of nature is w;.

Risk: R(ailx) = >2; Aavilw;) P(wj|x)

R(ailx) = Mai|wi) P(wi|x) + A(evj|w2) P(w2|x)
zero-one loss

)\(04,'|(,dj) = )‘U =0 if i :_j;

otherwise 1

Then take action minimizing the loss



Risk

R(a1|x) = A1 P(w1]x) + A12P(wa|x)
R(az|x) = A21 P(wi|x) 4+ A2 P(walx)

wi: BRGNS F 7 aTH 5 (edible fungi)
wp: B ¥ / ATH 2 (poisonous fungi)

ap : B3 (eat!)

s B2 (do not eat)

A2 > Aoy



About exercise and assignment

PC is expected to be used.
either your own or provided by lab.
Please install Anaconda, Matlab or Scilab, and play with sample codes

Google Colaboratory can also be considered (actually very useful)
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