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Course Information

Course web page: http://research.nii.ac.jp/~satoh/utpr/

Credits will be given based on final report (mandatory) and assignments (3 out of 7 are
mandatory)

Attendance record will NOT be taken

If you fail to submit minimum 3 assignments and final report, you will not obtain credits.
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Schedule (subject to change)

Orientation, Bayes decision theory, probability distribution

Random variable, random vector, normal distributions

Parametric density estimation, discriminant function

Nonparametric density estimation, Parzen windows, k-nearest neighbor estimate
k-nearest neighbor classification, classification error estimation

Bayes error estimation, classification error estimation, cross-validation, bootstrap
Linear classifier, perceptron, MSE classifier, Widrow-Hoff rule

neural network, deep learning

all about SVM

Orthogonal expansions, Eigenvalue decomposition

no class

Clustering, dendrogram, aggromerative clustering, k-means

Graphs, normalized cut, spectral clustering, Laplacian Eigenmaps

extra (if needed)



Roadmap

We learned that we can perform classification based on Bayes Theorem if we know
probability distributions.

Today we learn how to estimate parameters which describe probability distributions such
as normal distributions.

Especially parameter estimation based on samples, and statistical properties of estimated
parameters will be visited.

We also consider linear transformation of the space.

It can be used to select statistically principal features and to reduce correlations among
features.



Random Vectors and Distributions
Input to pattern recognition system to be a random vector:
X=[x1x2 "+ x,,]T.

Distribution function:
P(x1y..oyxn) = Pr{x1 < x1 ..., %y < Xp}

P(X) = Pr{X < X}

Density Function:

p(X) = im Prixi <x1 <x3+Axy, ..., xp < Xp < Xp+ Axi }
Ax; — 0 Axy - Axq

Ax, =0
9"P(X)
Oxq...0x,



Random Vectors and Distributions

e

P

p(x)

B A g Ty T Ty 0T AT

CL LR L LT R
ABLBLGLLUD LR T
RERTA Brds Lo B Eat RN e
LRI R R B Y BV S
A e e A s T S R o R}

e D P o o A
dd A Aot AN A D
e o W ke B W 0 e e R R
et o s nd b o) o o
AN NSNS AN AN
A AN ol 2 e

=3 il [WAT




Random Vectors and Distributions

O"P(X)
O Oxp...0x

X X1 Xn
P(X):/ p(Y)dY:/ / p(yi, ..., Yn)dyr ... dy,

Example 1 Coin toss, x takes H (head) or T (tail) where P(H) = P(T) = 1.

Example 2 Uniform distribution x
(x) = 1 0<x<«1
PYI=91 0 otherwise

Example 3 Normal distribution x




Conditional density, prior probability, and posterior
probability
Conditional density
p(X|wi) = pi(X)

Prior probability
P(w,-) = P,'

(unconditional) Density

p(X) = ZP:’(X)PI

Posterior probability
P(wilX)



Parameters of Distributions

A random vector X is fully characterized by its distribution, however, its function is hard to
represent. Instead distribution is characterized by parameters.

Expectation
M= E{X} = /Xp(X)dX
m; = /x,-p(X)dX = /00 xip(x;)dx;
p(xi) = /OO /OO p(X)dxy - - - dxi—1dxiq1 - - - dxp

(marginal density)

Conditional expectation
M; = E{X[w;} = / Xpi(X)dX



Parameters of Distributions

Covariance matrix:

5 = E{(X — M)(X — M)}

—X1—m1
—E : (X1 =m0 Xy — my)
_xn*mn

[(x1 — m)(x1 —m1) ... (xg— m)(xp — mp)
=E ; ;
[(Xn = mp)(x1 —m1) ... (X — mp)(Xp — mp)




Covariance matrix:

Y =

Properties:

[E{(x1 — m1)(x1 — m)}

E{(% — ma)(x1 — m)}

ci1 ... Cip

_Cnl ... Cpn

Parameters of Distributions

E{(x1 — m)(xn — mn)}

E{(%n — ma)(%n — ma)}

® Covariance matrix is composed of variances and covariances.

® Covariance matrix is symmetric.



Normal Distributions

N(M.E) = 3 exp(—5(X — M)TE (X — M)

(2m)? |z

Characteristics:
® M and X are sufficient statistics for the normal distribution.

® |f x; are mutually uncorrelated they are also independent.

® x ~ Ny (0,0) and y = x* are uncorrelated but dependent (proof?).

® X and Y are uncorrelated = E{XY} = E{X}E{Y}

® X and Y are independent = P(X=x,Y =y) = P(X=x)P(Y =y)
® Normal marginal densities are normal.
® Physical justification due to central limit theorem.

® Average of independent and identically distributed (i.i.d.) random samples converges to
normal.



ibutions (normdist.py)
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Mahalanobis Distance

d?(X)=(X-M)TEHX - M)
=tr{Z 1 (X - M)(X -M)"}

—Zzhu xi — m;)(x; — m;)

where hj; is the i,j component of ¥ 1.
Normal distribution is an exponential function of the Mahalanobis distance.

exp(~2(X — M)TE (X — M))

N,(M,X) = 5



Estimation of Parameters
Let y be a function of xy,...,x, as
y="f(X1,...,Xn)
with the expected value m, and variance o7}
m, = E{y} and o, = Var{y}.

(components of) M and ¥ are special case of y.
Especially, when y = x{ - --x/, m, is called (i; + - - - + i)th order moment.

nt



Moments of the estimates

Sample estimate:

Sample estimate m, is unbiased:
L
E{m,} = N Z E{y«}
k=1

1 N
= N E my = my.
k=1



Moments of the estimates

Variance:

Var{nf, } = E{( - my)*}

N N
ZZ (yk — my)(ye — my)}

10=1

3= \

Ellye —m P} = 100

Il
=
Mz T

»
Il
—

Since Var{m,} goes to zero along with N to infinity, sample estimates are consistent.



Central Moments

Central moments such as variances and covariance matrices are more complicated.
y = (xi — mi)(xj — m;)

since m; and m; are unknown, should be replaced by sample estimates:

A

y = (x; — m;)(x; — my)



Sample Covariance Matrix

- ;i(xk )X~ )T
NZ{ Xic = M) = (M = M)H{(Xe = M) — (M = M)}

=N Z(xk — M)(Xe = M) = (N1 — M)(N1 — M)T

E{¥f}=x- E{( )( M)}

:szz—
N N T



Sample Covariance Matrix

thus biased. Unbiased sample covariance matrix is then:

N
. 1 . .
S k§_1j(xk — M)(Xi — M7



biasvar.py (biasvar.m, biasvar.sci)

Exercise

Compute variances at each sample size of unit random values with biased and unbiased
methods and plot the means of N (=1000) epochs.
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Linear Transformation
When a vector X is transformed linearly by A to another vector Y,
Y =ATX
Then expected vector and covariance matrix of Y:
My = E{Y} = ATE{X} = AT Mx
Ty = E{(Y — My)(Y — My)T}

= ATE{(X — Mx)(X — Mx)"}A
= ATY A



Python sample (linearnorm.py)

import numpy as np
import matplotlib.pyplot as plt

cov = np.matrix([[1, 0], [0, 3]1)
icov = np.linalg.inv(cov)
r = np.matrix([[np.cos(np.pi / 3), -np.sin(np.pi / 3)],
[np.sin(ap.pi / 3), np.cos(ap.pi / 3)11)
xx, yy = np.meshgrid(np.linspace(-5, 5), np.linspace(-5, 5))
plt.figure()
plt.axis(’equal’)
p=1./ (2. *x np.pi * np.sqrt(np.linalg.det(cov))) \
* np.exp(-1. / 2. * \
(icov[0, 0] * xx * xx \
+ (dicov[0, 1] + icov[1l, 0]) * xx * yy \
+ icov[1l, 1] * yy * yy))
plt.contour(xx, yy, p)



# plt.savefig(’linearnorm-1.eps’)
plt.figure()

plt.axis(’equal’)

cov2 = r.T.dot(cov).dot(xr)

icov2 = np.linalg.inv(cov2)

Python sample (linearnorm.py)

pp = 1. / (2. * np.pi * np.sqrt(np.linalg.det(cov2))) \

* np.exp(-1. / 2. \

* (icov2[0, 0] * xx * xx \
+ (icov2[0, 1] + icov2[1l, 0]) * xx * yy \
+ icov2[1, 1] * yy * yy))

plt.contour(xx, yy, pp)
# plt.savefig(’linearnorm-2.eps’)
plt.show()



-2

Python sample (linearnorm.py)




Matlab sample

cov=[1 0; 0 3];

r=[cos(pi/3) -sin(pi/3); sin(pi/3) cos(pi/3)];

[xx,yy]l=meshgrid(-5:0.5:5,-5:0.5:5);

xy=[xx(:) yy(:)];

figure

p=1/(2*pi*sqrt(det(cov))) * ...
exp(-1/2*diag(xy*inv(cov)*xy’));

contour (xx,yy,reshape(p,size(xx)),10);

figure

p=1/(2*pi*sqrt(det(cov))) * ...
exp(-1/2*diag(xy*inv(r’*cov*r)*xy’));

contour (xx,yy,reshape(p,size(xx)),10);



Invariance of Mahalanobis Distance

dy(Y) = (Y = My) T3 1(Y — My)
— (X o MX)TAAflz)—(I(AT)flAT(X _ MX)
(X — Mx)ZxH(X — M)



Orthonormal Transformation

Let’s shift the coordinate system to be zero mean:
Z=X-M
Then
di(2)=2"x"'z.

Let's find a vector Z which maximizes d2(Z) subject to Z7Z =1 (unit vector).

%{ZTZ*lz —w(Z7Z —1)} =2¥71Z —2uZ = 0. (derive!)



Lagrange multipliers method

To solve optimization problem below:
maximize f(x) subject to g(x) =0
with Lagrangian with Lagrange multiplier A:
A(x, A) = f(x) + Ag(x)

the original problem can be solved by

ZA=NA=0



Orthonormal Transformation

Y Z=pZor¥Z=2Z(\= ﬁ) can be solved as Eigenvalue problem.
The characteristic equation:

|= — M| =0.

Any value of \ satisfies the equation is eigenvalue and corresponding Z is called eigenvector.
For a symmetric n X n matrix ¥ we have n real eigenvalues A1, ..., A, and n real eigenvectors

¢17~~';¢n-

Properties: the eigenvectors corresponding to different eigenvalues are orthogonal

¢l =0i#]

Eigenvector matrix ® = [¢1 -+ ¢,]
Eigenvalue matrix A = diag(A1, ..., An)



Orthonormal Transformation

Apparently

Yb = dA
oTd =1



Orthonormal Transformation

Let's use ® as the transformation matrix

Y=0TX
Then
Yy =0T¥xd =A.
Properties:
® Y represents X in the new coordinate system spanned by ¢1,...,¢,.

® A covariance matrix is diagonalized. This means the corresponding random variables are
uncorrelated in general and independent for normal distributions.

® Since eigenvectors maximize d2(Z), the transformation selects principal components of
the distribution.
® The transformation is called orthonormal transformation.



Whitening Transformation

After applying the orthonormal transformation, we can add another transformation A2 that
will make the covariance matrix to be identity matrix:

Y =A"20TX = (oA 2)TX
Yy =A 20T dA"2 = ATIAATE = /.
This transformation ®A~z is called the whitening transformation or the whitening process.
Properties:

® Whitening transformations are not orthonormal.

® After a whitening transformation, the covariance matrix is invariant under any
orthonormal transformation
Vi =vTv =1



Whitening Transformation (whitening.py)




Simultaneous Diagonalization

We can diagonalize two symmetric matrices X1 and ¥, simultaneously by a linear
transformation.

(1) Whiten X, by
Yy =007 X

where © and @ are the eigenvalue and eigenvector matrices of X as
Y0 =0dO and d T =1,
Then ¥; and X, are transformed to
O 0T, 007 =/
0 10 5,007 = K.

In general, K is not diagonal matrix.



Simultaneous Diagonalization
(2) We apply the orthonormal transformation to diagonalize K.
Z=vTy
where W and A are the eigenvector and eigenvalue matrices of K as
KV =WAand VTV = 1.
Then by using W

viiw=vwy =y
UKW = A

Thus both matrices are diagonalized.



Assignment

Programming project and non-programming project will be imposed.
You are expected to solve either programming project OR non-programming project.
Programming project is recommended.

Of course you are most welcomed to solve both.



Programming project

® Two data files (data.mat and data2.mat) are given: each contains data matrix itself (2D
2000 points) yielding two different normal distributions, and sufficient statistics of the
normal distributions.
Implement simultaneous diagonalization using parameters and apply it to the data.
Show scatter plot of points for two cases: before and after diagonalization, for each data
file.

T

@® (Complicated, OPTIONAL) Apply the simultaneous diagonalization to the parameters of
the normal distributions and overlay the contour maps.



Programming project

You can load data as follows:

from scipy.io import loadmat

data = loadmat(’data.mat’)

x = data[’x’] # data matrix

covl = data[’covl’] # covariance matrix 1
cov2 = data[’cov2’] # covariance matrix 2
ml = data[’m1’] # mean vector 1

m2 = data[’m2’] # mean vector 2

The files can be downloaded from the course web page.

The files can be obtained from the shared folder on Google drive in you use Google
Colaboratory. Please refer to the colab link in the course web page for the method. You can
also put downloaded files in your Google drive to refer from Google Colaboratory.



Programming project




Non-programming project

(1) Assume that (x1, X2, - --) yield multivariate normal distribution. Show that x; and
xj(i # j) independent if they are uncorrelated.

(2) Show that x ~ N,(0,0) and y = x? are uncorrelated but not independent.



How to submit assignment

Submit your report as a PDF file.

As for a report for the programming project, prepare a PDF file including your code, brief
explanation of your code, example of the output, and explanation of the output. Don't
just send your code!

By default the due date will be two weeks after the issued date (for instace the due of
today’s assignment would be May 2).

Upload your assignment via ITC-LMS. Don't send your assignment via email!
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