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Course Information

• Course web page: http://research.nii.ac.jp/∼satoh/utpr/

• Credits will be given based on final report (mandatory) and assignments (3 out of 7 are
mandatory)

• Attendance record will NOT be taken

• If you fail to submit minimum 3 assignments and final report, you will not obtain credits.



















































































Schedule (subject to change)

4/11 Orientation, Bayes decision theory, probability distribution

4/18 Random variable, random vector, normal distributions

4/25 Parametric density estimation, discriminant function

5/2 Nonparametric density estimation, Parzen windows, k-nearest neighbor estimate

5/9 k-nearest neighbor classification, classification error estimation

5/16 Bayes error estimation, classification error estimation, cross-validation, bootstrap

5/23 Linear classifier, perceptron, MSE classifier, Widrow-Hoff rule

5/30 neural network, deep learning

6/6 all about SVM

6/13 Orthogonal expansions, Eigenvalue decomposition

6/20 no class

6/27 Clustering, dendrogram, aggromerative clustering, k-means

7/4 Graphs, normalized cut, spectral clustering, Laplacian Eigenmaps

7/11 extra (if needed)



















































































Roadmap

• We learned that we can perform classification based on Bayes Theorem if we know
probability distributions.

• Today we learn how to estimate parameters which describe probability distributions such
as normal distributions.

• Especially parameter estimation based on samples, and statistical properties of estimated
parameters will be visited.

• We also consider linear transformation of the space.

• It can be used to select statistically principal features and to reduce correlations among
features.



















































































Random Vectors and Distributions

Input to pattern recognition system to be a random vector:

X = [x1 x2 · · · xn]T .

Distribution function:
P(x1, . . . , xn) = Pr{x1 ≤ x1 . . . , xn ≤ xn}

P(X ) = Pr{X ≤ X}

Density Function:

p(X ) = lim
∆x1 → 0

...
∆xn → 0

Pr{x1 < x1 ≤ x1 +∆x1, . . . , xn < xn ≤ xn +∆x1}
∆x1 · · ·∆xn

=
∂nP(X )

∂x1 . . . ∂xn



















































































Random Vectors and Distributions

P(x) p(x)



















































































Random Vectors and Distributions

p(X ) =
∂nP(X )

∂x1 . . . ∂xn

P(X ) =

∫ X

−∞
p(Y )dY =

∫ x1

−∞
. . .

∫ xn

−∞
p(y1, . . . , yn)dy1 . . . dyn

Example 1 Coin toss, x takes H (head) or T (tail) where P(H) = P(T ) = 1
2 .

Example 2 Uniform distribution x

p(x) =

{
1 0 ≤ x < 1
0 otherwise

Example 3 Normal distribution x

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .



















































































Conditional density, prior probability, and posterior
probability

Conditional density
p(X |ωi ) = pi (X )

Prior probability
P(ωi ) = Pi

(unconditional) Density

p(X ) =
∑
i

pi (X )Pi

Posterior probability

P(ωi |X ) =
pi (X )Pi

p(X )



















































































Parameters of Distributions

A random vector X is fully characterized by its distribution, however, its function is hard to
represent. Instead distribution is characterized by parameters.

Expectation

M = E{X} =

∫
Xp(X )dX

mi =

∫
xip(X )dX =

∫ ∞

−∞
xip(xi )dxi

p(xi ) =

∫ ∞

−∞
. . .

∫ ∞

−∞
p(X )dx1 · · · dxi−1dxi+1 · · · dxn

(marginal density)

Conditional expectation

Mi = E{X|ωi} =

∫
Xpi (X )dX



















































































Parameters of Distributions

Covariance matrix:

Σ = E{(X−M)(X−M)T}

= E


x1 −m1

...
xn −mn

 [
x1 −m1 . . . xn −mn

]
= E


(x1 −m1)(x1 −m1) . . . (x1 −m1)(xn −mn)

...
...

(xn −mn)(x1 −m1) . . . (xn −mn)(xn −mn)






















































































Parameters of Distributions

Covariance matrix:

Σ =

E{(x1 −m1)(x1 −m1)} . . . E{(x1 −m1)(xn −mn)}
...

...
E{(xn −mn)(x1 −m1)} . . . E{(xn −mn)(xn −mn)}


=

c11 . . . c1n
...

...
cn1 . . . cnn


Properties:

• Covariance matrix is composed of variances and covariances.

• Covariance matrix is symmetric.



















































































Normal Distributions

Nx(M,Σ) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(X −M)TΣ−1(X −M))

Characteristics:

• M and Σ are sufficient statistics for the normal distribution.

• If xi are mutually uncorrelated they are also independent.
• x ∼ Nx(0, σ) and y = x2 are uncorrelated but dependent (proof?).
• X and Y are uncorrelated ⇌ E{XY} = E{X}E{Y}
• X and Y are independent ⇌ P(X = x ,Y = y) = P(X = x)P(Y = y)

• Normal marginal densities are normal.

• Physical justification due to central limit theorem.
• Average of independent and identically distributed (i.i.d.) random samples converges to

normal.



















































































Normal Distributions (normdist.py)
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Mahalanobis Distance

d2(X ) = (X −M)TΣ−1(X −M)

= tr{Σ−1(X −M)(X −M)T}

=
∑
i

∑
j

hij(xi −mi )(xj −mj)

where hij is the i , j component of Σ−1.
Normal distribution is an exponential function of the Mahalanobis distance.

Nx(M,Σ) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(X −M)TΣ−1(X −M))



















































































Estimation of Parameters

Let y be a function of x1, . . . , xn as

y = f (x1, . . . , xn)

with the expected value my and variance σ2
y :

my = E{y} and σy = Var{y}.

(components of) M and Σ are special case of y.
Especially, when y = xi11 · · · xinn , my is called (i1 + · · ·+ in)th order moment.



















































































Moments of the estimates

Sample estimate:

m̂y =
1

N

N∑
k=1

yk .

Sample estimate m̂y is unbiased:

E{m̂y} =
1

N

N∑
k=1

E{yk}

=
1

N

N∑
k=1

my = my .



















































































Moments of the estimates

Variance:

Var{m̂y} = E{(m̂y −my )
2}

=
1

N2

N∑
k=1

N∑
ℓ=1

E{(yk −my )(yℓ −my )}

=
1

N2

N∑
k=1

E{(yk −my )
2} =

1

N
σ2
y .

Since Var{m̂y} goes to zero along with N to infinity, sample estimates are consistent.



















































































Central Moments

Central moments such as variances and covariance matrices are more complicated.

y = (xi −mi )(xj −mj)

since mi and mj are unknown, should be replaced by sample estimates:

y = (xi − m̂i )(xj − m̂j)



















































































Sample Covariance Matrix

Σ̂ =
1

N

N∑
k=1

(Xk − M̂)(Xk − M̂)T

=
1

N

N∑
k=1

{(Xk −M)− (M̂−M)}{(Xk −M)− (M̂−M)}T

=
1

N

N∑
k=1

(Xk −M)(Xk −M)T − (M̂−M)(M̂−M)T

E{Σ̂} = Σ− E{(M̂−M)(M̂−M)T}

= Σ− 1

N
Σ =

N − 1

N
Σ



















































































Sample Covariance Matrix

thus biased. Unbiased sample covariance matrix is then:

Σ̂ =
1

N − 1

N∑
k=1

(Xk − M̂)(Xk − M̂)T .



















































































Exercise

biasvar.py (biasvar.m, biasvar.sci)
Compute variances at each sample size of unit random values with biased and unbiased
methods and plot the means of N (=1000) epochs.
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Linear Transformation

When a vector X is transformed linearly by A to another vector Y,

Y = ATX

Then expected vector and covariance matrix of Y:

MY = E{Y} = ATE{X} = ATMX

ΣY = E{(Y −MY )(Y −MY )
T}

= ATE{(X−MX )(X−MX )
T}A

= ATΣXA.



















































































Python sample (linearnorm.py)

import numpy as np

import matplotlib.pyplot as plt

cov = np.matrix([[1, 0], [0, 3]])

icov = np.linalg.inv(cov)

r = np.matrix([[np.cos(np.pi / 3), -np.sin(np.pi / 3)],

[np.sin(np.pi / 3), np.cos(np.pi / 3)]])

xx, yy = np.meshgrid(np.linspace(-5, 5), np.linspace(-5, 5))

plt.figure()

plt.axis(’equal’)

p = 1. / (2. * np.pi * np.sqrt(np.linalg.det(cov))) \

* np.exp(-1. / 2. * \

(icov[0, 0] * xx * xx \

+ (icov[0, 1] + icov[1, 0]) * xx * yy \

+ icov[1, 1] * yy * yy))

plt.contour(xx, yy, p)



















































































Python sample (linearnorm.py)

# plt.savefig(’linearnorm-1.eps’)

plt.figure()

plt.axis(’equal’)

cov2 = r.T.dot(cov).dot(r)

icov2 = np.linalg.inv(cov2)

pp = 1. / (2. * np.pi * np.sqrt(np.linalg.det(cov2))) \

* np.exp(-1. / 2. \

* (icov2[0, 0] * xx * xx \

+ (icov2[0, 1] + icov2[1, 0]) * xx * yy \

+ icov2[1, 1] * yy * yy))

plt.contour(xx, yy, pp)

# plt.savefig(’linearnorm-2.eps’)

plt.show()



















































































Python sample (linearnorm.py)
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Matlab sample

cov=[1 0; 0 3];

r=[cos(pi/3) -sin(pi/3); sin(pi/3) cos(pi/3)];

[xx,yy]=meshgrid(-5:0.5:5,-5:0.5:5);

xy=[xx(:) yy(:)];

figure

p=1/(2*pi*sqrt(det(cov))) * ...

exp(-1/2*diag(xy*inv(cov)*xy’));

contour(xx,yy,reshape(p,size(xx)),10);

figure

p=1/(2*pi*sqrt(det(cov))) * ...

exp(-1/2*diag(xy*inv(r’*cov*r)*xy’));

contour(xx,yy,reshape(p,size(xx)),10);



















































































Invariance of Mahalanobis Distance

d2
Y (Y ) = (Y −MY )

TΣ−1
Y (Y −MY )

= (X −MX )
TAA−1Σ−1

X (AT )−1AT (X −MX )

= (X −MX )Σ
−1
X (X −MX )

= d2
X (X ).



















































































Orthonormal Transformation

Let’s shift the coordinate system to be zero mean:

Z = X −M

Then

d2
Z (Z ) = ZTΣ−1Z .

Let’s find a vector Z which maximizes d2
Z (Z ) subject to ZTZ = 1 (unit vector).

∂

∂Z
{ZTΣ−1Z − µ(ZTZ − 1)} = 2Σ−1Z − 2µZ = 0. (derive!)



















































































Lagrange multipliers method

To solve optimization problem below:

maximize f (x) subject to g(x) = 0

with Lagrangian with Lagrange multiplier λ:

Λ(x , λ) = f (x) + λg(x)

the original problem can be solved by

∂

∂x
Λ =

∂

∂λ
Λ = 0



















































































Orthonormal Transformation

Σ−1Z = µZ or ΣZ = λZ (λ = 1
µ ) can be solved as Eigenvalue problem.

The characteristic equation:
|Σ− λI | = 0.

Any value of λ satisfies the equation is eigenvalue and corresponding Z is called eigenvector.
For a symmetric n × n matrix Σ we have n real eigenvalues λ1, . . . , λn and n real eigenvectors
ϕ1, . . . , ϕn.
Properties: the eigenvectors corresponding to different eigenvalues are orthogonal

ϕT
i ϕj = 0 i ̸= j

Eigenvector matrix Φ = [ϕ1 · · · ϕn]
Eigenvalue matrix Λ = diag(λ1, . . . , λn)



















































































Orthonormal Transformation

Apparently

ΣΦ = ΦΛ

ΦTΦ = I



















































































Orthonormal Transformation

Let’s use Φ as the transformation matrix

Y = ΦTX

Then
ΣY = ΦTΣXΦ = Λ.

Properties:

• Y represents X in the new coordinate system spanned by ϕ1, . . . , ϕn.

• A covariance matrix is diagonalized. This means the corresponding random variables are
uncorrelated in general and independent for normal distributions.

• Since eigenvectors maximize d2
Z (Z ), the transformation selects principal components of

the distribution.

• The transformation is called orthonormal transformation.



















































































Whitening Transformation

After applying the orthonormal transformation, we can add another transformation Λ− 1
2 that

will make the covariance matrix to be identity matrix:

Y = Λ− 1
2ΦTX = (ΦΛ− 1

2 )TX

ΣY = Λ− 1
2ΦTΣXΦΛ

− 1
2 = Λ− 1

2ΛΛ− 1
2 = I .

This transformation ΦΛ− 1
2 is called the whitening transformation or the whitening process.

Properties:

• Whitening transformations are not orthonormal.

• After a whitening transformation, the covariance matrix is invariant under any
orthonormal transformation

ΨT IΨ = ΨTΨ = I .



















































































Whitening Transformation (whitening.py)
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Simultaneous Diagonalization

We can diagonalize two symmetric matrices Σ1 and Σ2 simultaneously by a linear
transformation.

(1) Whiten Σ1 by

Y = Θ− 1
2ΦTX

where Θ and Φ are the eigenvalue and eigenvector matrices of Σ1 as

Σ1Φ = ΦΘ and ΦTΦ = I .

Then Σ1 and Σ2 are transformed to

Θ− 1
2ΦTΣ1ΦΘ

− 1
2 = I

Θ− 1
2ΦTΣ2ΦΘ

− 1
2 = K .

In general, K is not diagonal matrix.



















































































Simultaneous Diagonalization

(2) We apply the orthonormal transformation to diagonalize K.

Z = ΨTY

where Ψ and Λ are the eigenvector and eigenvalue matrices of K as

KΨ = ΨΛ and ΨTΨ = I .

Then by using Ψ

ΨT IΨ = ΨTΨ = I

ΨTKΨ = Λ

Thus both matrices are diagonalized.



















































































Assignment

• Programming project and non-programming project will be imposed.

• You are expected to solve either programming project OR non-programming project.

• Programming project is recommended.

• Of course you are most welcomed to solve both.



















































































Programming project

1 Two data files (data.mat and data2.mat) are given: each contains data matrix itself (2D
2000 points) yielding two different normal distributions, and sufficient statistics of the
normal distributions.
Implement simultaneous diagonalization using parameters and apply it to the data.
Show scatter plot of points for two cases: before and after diagonalization, for each data
file.

2 (Complicated, OPTIONAL) Apply the simultaneous diagonalization to the parameters of
the normal distributions and overlay the contour maps.



















































































Programming project

You can load data as follows:

from scipy.io import loadmat

data = loadmat(’data.mat’)

x = data[’x’] # data matrix

cov1 = data[’cov1’] # covariance matrix 1

cov2 = data[’cov2’] # covariance matrix 2

m1 = data[’m1’] # mean vector 1

m2 = data[’m2’] # mean vector 2

The files can be downloaded from the course web page.
The files can be obtained from the shared folder on Google drive in you use Google
Colaboratory. Please refer to the colab link in the course web page for the method. You can
also put downloaded files in your Google drive to refer from Google Colaboratory.



















































































Programming project
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Non-programming project

(1) Assume that (x1, x2, · · · ) yield multivariate normal distribution. Show that xi and
xj(i ̸= j) independent if they are uncorrelated.

(2) Show that x ∼ Nx(0, σ) and y = x2 are uncorrelated but not independent.



















































































How to submit assignment

• Submit your report as a PDF file.

• As for a report for the programming project, prepare a PDF file including your code, brief
explanation of your code, example of the output, and explanation of the output. Don’t
just send your code!

• By default the due date will be two weeks after the issued date (for instace the due of
today’s assignment would be May 2).

• Upload your assignment via ITC-LMS. Don’t send your assignment via email!
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