RE— VR

Pattern Recognition
i E—
Shin’ichi Satoh

[ESZAHERARSE AT
National Institute of Informatics

Apr 25, 2023

Course Information

Course web page: http://research.nii.ac.jp/~satoh/utpr/

Credits will be given based on final report (mandatory) and assignments (3 out of 7 are
mandatory)

Attendance record will NOT be taken

If you fail to submit minimum 3 assignments and final report, you will not obtain credits.

4/11
4/18
4/25

5/2

5/9
5/16
5/23
5/30

6/6
6/13
6,20
6/27

7/4
7/11

Schedule (subject to change)

Orientation, Bayes decision theory, probability distribution

Random variable, random vector, normal distributions

Parametric density estimation, discriminant function

Nonparametric density estimation, Parzen windows, k-nearest neighbor estimate
k-nearest neighbor classification, classification error estimation

Bayes error estimation, classification error estimation, cross-validation, bootstrap
Linear classifier, perceptron, MSE classifier, Widrow-Hoff rule

neural network, deep learning

all about SVM

Orthogonal expansions, Eigenvalue decomposition

no class

Clustering, dendrogram, aggromerative clustering, k-means

Graphs, normalized cut, spectral clustering, Laplacian Eigenmaps

extra (if needed)

Review of last class

® Normal distributions (Gaussian distributions)
® Sufficient statistics of normal distributions: mean and covariance matrix

® Sample estimates: sample mean and sample covariance matrix

Roadmap of Today

® Estimation of parametric probability distribution

® Design of classifier based on Bayes decision theory

Discriminant Functions:
General, Multicategory Case

Let's consider the problem to classify given observation into one of ¢ classes.
We can formalize this problem using discriminant functions

gi(x), i=1,...,c

The classifier is then assign a feature vector x to class w; if

gi(x) > gj(x) forall j # i.

Discriminant Functions:

General, Multicategory Case

Recall Bayes decsion Theory:

Decide wj if P(wi|x) > P(wj|x) for all j # i
we can use:

gi(x) = P(wilx).
With risk:

Risk: R(cilx) = >_; XiiP(wj|x)
and

Decide w; if R(ai|x) < R(aj|x) for all j # i

we can use:
8i(x) = —R(ai|x).

Discriminant Functions:
General, Multicategory Case

In the case of Bayes decsion rule (minimum error rate)
p(x|wi) P(wi)
8i(x) = P(wilx) = =<

2 j—1 P(X|wj) P(w;)

8i(x) = p(x|wi) P(wi)
gi(x) = log p(x|w;) + log P(w;)

Discriminant Functions:
Two Category Case

We can use one dichotomizer instead of ¢ discriminant functions:

g(x) = &(x) — &(x)

with the rule: Decide wy if g(x) > 0 otherwise ws.
Other forms:

£(x) = Plwrlx) — P(walx)
o p(X|wr) P(w1)
g0) =08 i) T Blas)

Discriminant Functions for the Normal Density

Recall the normal density:

ep(—2(x—)= (x —)

and discriminant function:
gi(x) = log p(x|w;) + log P(w;).

The discriminant function for normal density is then:

1 _ d 1
gi(x) = —E(x — u;)TZi 1(x — i) = > log 21 — 3 log |X;| + log P(w;).

Case 1: ¥; = o2l

The simplest case: features are statistically independent and each feature has the same

variance o2.

Particularly |X;| = 0?@ and X; ' = (1/5?)].
Then the discriminant functions are:

2
X — i
gi(x) = —% + log P(w)

1
= —Q[XTX —2p] x + pf] + log P(w)).
By ommitting common terms we obtain linear discriminant functions:
_ T
gi(x) = w; x + wj
where

1 1
wi = — i and wjo = —?N,T,Ui + log P(w;).

Case 1: ¥; = o2l

Two-category case:

g(x) =w'(x = x)
W= 1 — [2

1 o? P(w1)
X0 = = + — o — .
0 2(Ml 12) 1 — 12| 2 g P(,2)(M1 1i2)

The decision surfaces are then hyperplanes perpendicular to the line connecting w1 and po.
If P(w1) = P(w2), the hyperplanes go through the middle point of the line.
This finally results in nearest neighbor classifier.

Case 1: ¥; = o2l

Pixiwy)
w,

Ply)=5 Ply)=5

FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity
matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of
d — 1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional
examples, we indicate p(x|e;) and the boundaries for the case P(w;) = P(w,). In the three-dimensional case,
the grid plane separates R, from R,. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Case

FIGURE 2.11. As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these one-, two- and
three-dimensional spherical Gaussian distributions. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley &

Case 2: >, =%

Another simple case: the covariance matrices are identical.
Then the discriminant functions can be simplified as

g1() = — 5 (x —)5 (x — 1) + log P().

By expanding quadratic form (x — ;)T ~1(x — ;) we can further simplify by dropping
common terms:
gi(x) = w/ x 4+ wio
where 1
w; =X ;i and wip = —E/ML,-TZ&/L,- + log P(wj).

Case 2: ¥, =%
Two-category case:

T

g(x) = wT (x — %)
w=X""(u1 — p)
0= 3l +4a) = G wzl—l(m o) ﬁgiﬂ(m)

AN
N
MR
RN
AR
RN
I
NN
SN

0
AN
AN
S NN

AN
NN
NN
N
N

FIGURE 2.12. Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmet-
ric Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means. From: Richard O. Duda, Peter E. Hart, and David G. Stork,

Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Case 3: X; = arbitrary

We can drop only (d/2) log 2.
The discriminant functions are then quadratic:

gi(x) = xTWix + w. x + wjp
1
W,=—--y1
2 1
wi =X i

1
Wio = MiTWiMi 5 log |X;| + log P(w).

Case 3: X ; = arbitrary

FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadric, one can find two Gaus-
sian distributions whose Bayes decision boundary is that hyperquadric. These variances
are indicated by the contours of constant probability density. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.

Case 3: X ; = arbitrary

Assignment 1

Generate two sets of 2-D points yielding two normal distributions.
Case 1 ¥; = o2l
Case2 &, =%
Case 3 X¥; = arbitrary

Classify points by discriminant functions knowing parameters of normal distributions.
Plot scatter of points (different colors for classes and different shapes for correct/error
classification), contour maps of distributions, and discrimination boundary.

Observe the phenomena by changing the parameters and priors.

Assignment 1 (cov_diag.py)

Assignment 1 (cov_diag.py)

import numpy as np
import matplotlib.pyplot as plt

def gausscontour(c, m, xx, yy):

xt = xx - m[0, O]

yt = yy - m[1, 0]

ic = np.linalg.inv(c)

p=1./ (2. * np.pi * np.sqrt(np.linalg.det(c))) \

* np.exp(-1. / 2. * \

(ic[0, 0] * xt * xt \
+ (ic[0, 1] + ic[1, 0]) * xt * yt \
+ ic[1, 1] * yt * yt))

return p

Assignment 1 (cov_diag.py)

d =2

n 1000

ml = np.array([0., 2.]1)[:, np.newaxis]
m2 = np.array([3., 0.])[:, np.newaxis]

pl = 0.3

p2 =1 - pl

covl = np.eye(2)
cov2 = covl

x1 = np.random.randn(d, n) + ml.dot(np.ones([1, nl))

x2 = np.random.randn(d, n) + m2.dot(np.ones([1, n]))

ml - m2

x0=1. / 2. * (m1 + m2) - 1. / np.linalg.norm(ml - \
m2)**2. * np.log(pl / p2) * (ml - m2)

(w.T.dot(x1 - x0) > 0)[-1]

(w.T.dot(x2 - x0) > 0)[-1]

=
I

11
12

Assignment 1 (cov_diag.py)

[xx,yy]l=np.meshgrid(np.linspace(-2,5) ,np.linspace(-2,5))
plt.figure()

plt.axis(’equal’)

pl=gausscontour(covl,ml,xx,yy)
plt.contour(xx,yy,pl,cmap="hsv’)

p2=gausscontour (cov2,m2,xx,yy)
plt.contour(xx,yy,p2,cmap="hsv’)

correct x1
plt.plot(x1[0,np.where(11)],x1[1,np.where(11)],’bo’)

wrong x1
plt.plot(x1[0,np.where(“11)],x1[1,np.where("11)],’ro’)

correct x2
plt.plot(x2[0,np.where(1-12)],x2[1,np.where(1-12)],°r"~’)
wrong x2
plt.plot(x2[0,np.where(12)],x2[1,np.where(12)],’b"")

Assignment 1 (cov_diag.py)

xxyy = np.c_[np.reshape(xx, -1), np.reshape(yy, -1)].T
pp = w.T.dot(xxyy - xO * np.ones([1, xxyy.shapel[1]]))
pp = np.reshape(pp, xx.shape)

cs = plt.contour(xx, yy, pp, cmap=’hsv’)
plt.clabel(cs)

plt.savefig(’cov_diag.eps’)

plt.show()

Assignment 1

The MNIST Data

The MNIST data is consisted of images of handwritten digits with groundtruth.
Each image is the size of 28 pixel by 28 pixel with gray scale value for each pixel.
Training data: 60,000 images, Test data: 10,000 images.

7]2] /olu] [al<]]
olelgloli]=la[ols]4]
76l e cla]olo 4ol
BENBEEEanEn
HANZBENEND

MNIST preparation

Download MNIST data from http://yann.lecun.com/exdb/mnist/.

train-images-idx3-ubyte.gz training set images (9912422 bytes)
train-labels-idx1-ubyte.gz training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz test set labels (4542 bytes)

mnread.py is prepared (find in the program package).
To properly use mnread.py prepare ‘mnist’ directory under your working directory and put
MNIST data there.

mnread.readim : read MNIST images
mnread.readlabel : read MNIST labels

Assignment 2 (MNIST)

Train classifiers using MNIST training data and classify MNIST test data.
Assume each image of is 784 (= 28 x 28) dimensional vector.
Further assume that each digit follows normal distribution:

Case 1 ¥; = o2l
Case2 &, =%
Case 3 ¥; = arbitrary

Estimate parameters of normal distributions by MNIST training data.
Classify test data by discriminant functions using the estimated parameters.

Intrinsic problems? Consider regularization, pseudo inverse, etc.

Assignment 2 (mntest.py)

Classification results assuming identical isotropic normal distributions (X; = o?/): reported
accuracy is 82%.

s1o]z]lol /14 oo
2]e]7]i]4]olelol4]/]
]u]s]ols121oli]7]al
a]7]s]el 213651 7] 7]
BENZAnENEY

bads

9(5) 1(7) 5(6 3(8) 16) 1(8) 9(4) 1(3) 4(9 5(6)

5(3) 4(9) 9(4) 8(5) 4(9) 37) 3(8) 1(7 7(5) 3(5)

9(8) 1(5) 8(9) 3(5) 9(4) 3(8) 2(8) 4(2) 4(8) 3(5)

IE!IIII

8(2) 8(7) 0(9) 2(6) 12) 6(5) 3(8) 3(8) 3(2) 9(4)

2(6) 6(0) 5(0) 5(6) 1(5) 97) 1(2) 5(0 7(9) 1(7)

Assignment 2 (mntest.py)

import numpy as np
import matplotlib.pyplot as plt
import mnread

def train(label, data):
data = np.reshape(data, [data.shape[0], -1])
lset set (label)
model = np.empty((len(lset), data.shape[l]), dtype=float)
for x in lset:
model[x, :] = np.mean(datal[np.where(label == x), :], axis=1)
return model

def classify(data, model):
data = np.reshape(data, [data.shape[0], -1])
label = np.empty(data.shape[0], dtype=int)

Eman 2 2 (Tt aharma AT .

Assignment 2 (mntest.py)

trlabel = mnread.readlabel (mnread.trlabelfz)
trdata = mnread.readim(mnread.trdatafz)
tstlabel = mnread.readlabel (mnread.tstlabelfz)
tstdata = mnread.readim(mnread.tstdatafz)

model = train(trlabel, trdata)
estlabel = classify(tstdata, model)
print (’accuracy: %g’ % (float(sum(estlabel == tstlabel)) / len(tstlabel)))

Assignment 2 (mntest.py)

plt.figure()
plt.suptitle(’goods’)
goods = np.random.permutation(np.where(estlabel == tstlabel) [-1]) [range(50)]
for i, good in enumerate(goods):
plt.subplot(5, 10, i + 1)
plt.axis(’off’)
plt.imshow(tstdatalgood, :, :], cmap=’gray’)
plt.title(estlabel[good])
plt.savefig(’good.eps’)
plt.figure()
plt.suptitle(’bads’)
bads = np.random.permutation(np.where(” (estlabel == tstlabel))[-1]) [range(50)]
for i, bad in enumerate(bads):
plt.subplot(5, 10, i + 1)
plt.axis(’off’)
plt.imshow(tstdatalbad, :, :], cmap=’gray’)
plt.title(%s(%s)’ % (estlabel[bad], tstlabel[bad]))

ATl + amtrAafrs~l(P Thad Ara)

Hint of Assignment 2

Case 1 As mntest.py shows, simply compute mean vector for each digit in training, and the
classify each digit to the class of the nearest mean.

Case 2 As in case 1, you compute mean vector for each digit in training.

Then in computing common covariance matrix, compute residuals from corresponding means
then compute covariance matrix.

Case 3 Rather simple: compute mean and covariance matrix for each digit.

95% accuracy was achieved in case 3.

Hint of Assignment 2

You might face difficulty in obtaining the inverse of covariance matrices because of the
singularity.
One reason is because some locations have zero intensities for all training data.

This can be remedied by using generalized inverse (aka pseudoinverse, Moore-Penrose
pseudoinverse).

Available as Matlab pinv, Python numpy.linalg.pinv.
Inverse:

Y& = ®A (eigenvalue decomposition of X)

Y = dADT
= Z)\mﬁid)iT

B 1
=) el

Generalized inverse ignores all (close to) zero eigenvalues in obtaining the inverse.
This equivalently ignores all-zero pixels (and linearly dependent pixels if any).

Hint of Assignment 2
You might also consider regularization.

Regularization: Instead of computing ¥ ! when ¥ is singular, compute (X + a/)~! with some
constant a.

How it works?

(Z+ah)™t=(dAT +al)?
=[®AdT + d(al)d]!
=[o(A+al)o’]!
=D (i +a)eis] 1!

1
- Z >\f+0é¢i¢i7—

Hint of Assignment 2

Original

Regularizati

Generalized
Inverse

Hint of Assignment 2

In the case when X; are singular, the handling of log |X;| should also be considered.
Please consider why this term is needed.
Then you may know how to modify this term.

	Discriminant Functions

