

パターン認識
Pattern Recognition

佐藤真一
Shin’ichi Satoh

国立情報学研究所
National Institute of Informatics

May 2, 2023

Course Information

• Course web page: https://research.nii.ac.jp/∼satoh/utpr/

• Course materials can be found in the above page

• Course videos can be found in ITC-LMS

• Credits will be given based on final report (mandatory)

• Attendance record will not be taken

• Assignments may be imposed (3 out of 7 are mandatory: subject to change)

• The first assignment issued on April 18 will be due on today, the second issued on April 25
will be due on next week, and the third issued today will be due on the next to next week
(May 16)

• If you fail to submit minimum 3 assignments and final report, you will not obtain credits.

Recap

• We visited “parametric” methods so far.

• Probability distribution functions (or equivalently decision boundaries) can be represented
by parametric forms.

• e.g., Normal density case: mean and variance (or covariance matrix)

• These methods assume that the underlying probability distribution of the actual
observations is known and yields parametric forms.

• However, in many cases this assumption is suspect.

Today’s topics

• Nonparametric Density Estimation Methods
• Parzen Window
• k-Nearest Neighbor Estimation

Nonparametric Methods

• Simple approach is to compose histogram
• Knowing sample data, we can compose histogram with certain bin size (division of each

axis)
• Treat the histogram as probability distribution function

Nonparametric Methods

• The optimal number of bins M (or bin
size) is the issue.

• If bin width is small (i.e., big M), then
the estimated density is very spiky (i.e.,
noisy).

• If bin width is large (i.e., small M), then
the true structure of the density is
smoothed out.

• In practice, we need to find an optimal
value for M that compromises between
these two issues.

• Also, how we extend to the
multidimensional case?

Nonparametric Density Estimation

• The probability that a given vector x, drawn from the unknown density p(x), will fall
inside some region R in the input space is given by:

P =

∫
R

p(x′)dx′

• If we have n data points {x1, x2, . . . , xn} drawn independently from p(x), the probability
that k of them will fall in R is given by the binomial law:

P(k) = Pk =

(
n
k

)
Pk(1− P)n−k

Nonparametric Density Estimation

• The expected value of k is:
E{k} = nP

• The expected percentage of points falling in R is:

E{k
n
} = P

• The variance is given by:

Var{k
n
} = E{(k

n
− P)2} =

P(1− P)

n

Nonparametric Density Estimation

The distribution is sharply peaked as n → inf, thus:

P ≈ k

n
→ Approximation 1

Nonparametric Density Estimation

If we assume that p(x) is continuous and does not vary significantly over the region R , we can
approximate P by:

P =

∫
R

p(x′)dx′ ≈ p(x)V

→ Approximation 2
where V is the volume enclosed by R .

Nonparametric Density Estimation

• Combining these two approximations we have:

p(x) ≈ k/n

V

• The above approximation is based on contradictory assumptions:
• R is relatively large (i.e., it contains many samples so that Pk is sharply peaked):

Approximation 1
• R is relatively small so that p(x) is approximately constant inside the integration region:

Approximation 2

• We need to choose an optimum R in practice ...

Nonparametric Density Estimation

• Suppose we form regions R1,R2, . . . containing x.
• R1 contains k1 sample, R2 contains k2 samples, etc.
• We assume that each case corresponds to n samples.

• Ri has volume Vi and contains ki samples.

• The n-th estimate pn(x) of p(x) is given by:

pn(x) ≈
kn/n

Vn

Nonparametric Density Estimation

The following conditions must be satisfied in order for pn(x) to converge to p(x):

lim
n→∞

Vn = 0 Approximation 1

lim
n→∞

kn = ∞ Approximation 2

lim
n→∞

kn
n

= 0 to allow pn(x) to converge

Nonparametric Density Estimation� �
pn(x) ≈

kn/n

Vn� �
How to choose the optimum values for Vn and kn?
Two leading approaches:

(1) Fix the volume Vn and determine kn from the data (kernel-based density estimation
methods), e.g.,

Vn =
1√
n

(2) Fix the value of kn and determine the corresponding volume Vn from the data (k-nearest
neighbor method), e.g.,

kn =
√
n

Nonparametric Density Estimation

Parzen Windows� �
pn(x) ≈

kn/n

Vn� �
• Problem: Given a vector x, estimate p(x)

• Assume Rn to be a hypercube with sides of length hn, centered on the point x:

Vn = hn
d

• To find an expression for kn (i.e., # points in the hypercube) let us define a kernel
function:

φ(u) =

{
1 |uj | ≤

1

2
(j = 1, . . . , d)

0 otherwise

Parzen Windows

• The total number of points xi falling inside the hypercube is:

kn =
n∑

i=1

φ(
x− xi
hn

)

• Then, the estimate

pn(x) ≈
kn/n

Vn

becomes

pn(x) =
1

n

n∑
i=1

1

Vn
φ(

x− xi
hn

)

→ Parzen windows estimate

Parzen Windows

• The density estimate is a superposition of kernel functions and the samples xi .

pn(x) =
1

n

n∑
i=1

1

Vn
φ(

x− xi
hn

)

• φ(u) interpolates the density between samples.

• Each sample xi contributes to the estimate based on its distance from x.

Parzen Windows

• The kernel function φ(u) can have a more general form (i.e., not just hypercube).

• In order for pn(x) to be a legitimate estimate, φ(u) must be a valid density itself:

φ(u) ≥ 0∫
φ(u)du = 1

Parzen Windows

The parameter hn acts as a smoothing parameter that needs to be optimized.

• When hn is too large, the estimated density is over-smoothed (i.e., superposition of
“broad” kernel functions).

• When hn is too small, the estimate represents the properties of the data rather than the
true density (i.e., superposition of “narrow” kernel functions)

Parzen Windows

φ(u) assuming different hn values:

Parzen Windows

Example: pn(x) estimates assuming 5 samples:

Parzen Windows

Example: both p(x) and φ(u) are Gaussian

hn =
h1√
n

Exercise (parzeng.py)

Parzen Windows

Example: p(x) consists of a uniform and triangular density and φ(u) is Gaussian

hn =
h1√
n

Exercise (parzentr.py)

k-Nearest Neighbor Estimate

Fix kn and allow Vn to vary:

• Consider a hypersphere around x.

• Allow the radius of the hypersphere to grow until it contains kn data points.

• Vn is determined by the volume of the hypersphere.

pn(x) ≈
kn/n

Vn

The size depends on the density

k-Nearest Neighbor Estimate

The parameter kn acts as a smoothing parameter and needs to be optimized.

k-Nearest Neighbor Estimate

Parzen windows kn-nearest-neighbor

kn = k1
√
n

Exercise (knng.py)

k-Nearest Neighbor Estimate

Parzen windows kn-nearest-neighbor

kn = k1
√
n

Exercise (knntr.py)

Assignment

• Programming project and non-programming project are imposed.

• You are expected to solve either programming project OR non-programming project.

• Programming project is recommended.

• Of course you are most welcomed to solve both.

• Due on May 16.

Programming project

• Download data file from the course web site. The file contains two variables: x1 and x2.

• (The data is in Matlab format. Use “loadmatfile” for Scilab or “scipy.io.loadmat” for
python. Refer to the course material on April 13)

• Assume that they are samples of two classes c1 and c2.

• Plot conditional probability distributions p(x|ci) using Parzen windows (both Gaussian and
box functions) and k-NN (with various k).

• Plot posterior probabilities P(ci |x) assuming prior probabilities P(c1) = P(c2) =
1
2 .

Non-programming project

• The probability that a given vector x, drawn from the unknown density p(x), will fall
inside some region R in the input space is assumed to be P .

• If we have n data points {x1, x2, . . . , xn} drawn independently from p(x), we assume that
k of the points will fall in R .

• Show that the expected value of k is:

E{k} = nP

• Show that the expected percentage of points falling in R is:

E{k
n
} = P

• Show that the variance is given by:

Var{k
n
} = E{(k

n
− P)2} =

P(1− P)

n

	Roadmap
	Introduction
	Non-parametric probability density estimation
	Parzen window
	k Nearest Neighbor
	Assignment

