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k-Nearest-Neighbor Classifier

Suppose that we have c classes and that class ωi contains ni points in the training data with
n1 + n2 + · · ·+ nc = n

P(ωi |x) =
pn(x|ωi )P(ωi )

pn(x)
.

Given a point x , we find the kn nearest neighbors.
Suppose that ki points from kn belong to class ωi then

pn(x |ωi ) =
ki

niVn
.



















































































k-Nearest-Neighbor Classifier



















































































k-Nearest-Neighbor Classifier

The prior probabilities can be computed as:

P(ωi ) =
ni
n
.

Using the Bayes’ rule, the posterior probabilities can be computed as follows:

P(ωi |x) =
pn(x |ωi )P(ωi )

pn(x)
=

ki
niVn

ni
n

kn
nVn

=
ki
kn

where pn(x) =
kn
nVn

is used.



















































































k-Nearest-Neighbor Classifier

k-nearest-neighbor classification rule:

Given a data point x , find a hypershpere around it that contains k points and assign x to
the class having the largest number of representatives inside the hypersphere.

P(ωi |x) =
pn(x |ωi )P(ωi )

pn(x)
=

ki
kn

When k = 1 we get the nearest-neighbor rule.



















































































Error Rate for the Nearest-Neighbor Rule

We want to show that
P∗ ≤ P ≤ P∗(2− c

c − 1
P∗) ≤ 2P∗.

where P is the error rate based on the nearest-neighbor rule with infinitely many samples, and
P∗ is the minimum possible error rate (Bayes error rate).



















































































Error Rate for the Nearest-Neighbor Rule

A set of n labeled prototypes: Dn = {x1, · · · , xn}.
The prototype nearest to a test point x : x ′ ∈ Dn.
The nearest-neighbor rule: classifying x to the label associated with x ′.
Random variable denoting the label of x ′: θ′.
The probability that θ′ = ωi : the a posteriori probability P(ωi |x ′).
When the number of samples is very large, it is reasonable to assume that x ′ is sufficiently
close to x that P(ωi |x ′) ≃ P(ωi |x).
Thus the nearest-neighbor rule is effectively matching probabilities with nature.



















































































Error Rate for the Nearest-Neighbor Rule

We define:
P(ωm|x) = maxiP(ωi |x).

The Bayes decision rule always selects ωm.
Defining the infinite-sample conditional average probability of error P(e|x) and the
unconditional average probability of error P(e), we have:

P(e) =

∫
P(e|x)p(x)dx .

If we further let P∗(e|x) be the minuimum possible value of P(e|x) and P∗ be the minimum
possible value of P(e), then

P∗(e|x) = 1− P(ωm|x) and P∗ =

∫
P∗(e|x)p(x)dx .



















































































Error Rate for the Nearest-Neighbor Rule

Assume Pn(e) is the n-sample error rate, and if

P = lim
n→∞

Pn(e)

then we want to show that
P∗ ≤ P ≤ P∗(2− c

c − 1
P∗).

Given x ′ as the nearest-neighbor of x , we have

P(e|x) =
∫

P(e|x , x ′)p(x ′|x)dx ′.

It is very difficult to obtain the conditional density p(x ′|x).



















































































Error Rate for the Nearest-Neighbor Rule

However, because x ′ is the nearest neighbor of x , we expect p(x ′|x) to approach a delta
function centered at x .
Consider the probability that any sample falls with in a hyper sphere S centered about x

PS =

∫
x′∈S

p(x ′)dx ′.

The probability that all n samples fall outside S is (1− PS)
n which approaches zero as n goes

to infinity.
Thus x ′ converges to x in probability, and p(x ′|x) approaches a delta function, as expected.



















































































Error Rate for the Nearest-Neighbor Rule

We now turn to the calculation of the conditional probability of error Pn(e|x , x ′).
• x ′n: the nearest neighbor of x with the number of samples n.

• n independently drawn labeled samples (x1, θ1), . . . , (xn, θn)

We assume that these pairs were generated by

1 selecting a state ot nature ωj for θj with probability P(ωj),

2 then selecting an xj according to the probability law p(x |ωj),

with each pair selected independently.



















































































Error Rate for the Nearest-Neighbor Rule

Suppose that during classification, nature selects a pair (x , θ) and also suppose that x ′n labeled
θ′n is the training sample nearest x .
Because the state of nature when x ′n was drawn is independent of the state of nature when x is
drawn, we have

P(θ, θ′n|x , x ′n) = P(θ|x)P(θ′n|x ′n).

Then the conditional probability of error

P(e|x , x ′n) = 1−
c∑

i=1

P(θ = ωi , θ
′
n = ωi |x , x ′n)

= 1−
c∑

i=1

P(ωi |x)P(ωi |x ′n).



















































































Error Rate for the Nearest-Neighbor Rule

Considering

P(e|x) =
∫

P(e|x , x ′)p(x ′|x)dx ′

p(x ′|x) = δ(x ′ − x)

we have:

lim
n→∞

Pn(e|x) =
∫
[1−

c∑
i=1

P(ωi |x)P(ωi |x ′n)]δ(x ′n − x)dx ′n

= 1−
c∑

i=1

P2(ωi |x).



















































































Error Rate for the Nearest-Neighbor Rule

The asymptotic nearest-neighbor eror rate is given by

P = lim
n→∞

Pn(e)

= lim
n→∞

∫
Pn(e|x)p(x)dx

=

∫
[1−

c∑
i=1

P2(ωi |x)]p(x)dx .



















































































Error Rate for the Nearest-Neighbor Rule

Recall
P∗(e|x) = 1− P(ωm|x).

We want to know how small
∑c

i=1 P
2(ωi |x) can be for a given P(ωm|x), i.e., a given P∗.



















































































Error Rate for the Nearest-Neighbor Rule

We write
c∑

i=1

P2(ωi |x) = P2(ωm|x) +
∑
i≠m

P2(ωi |x).

We want to minimize this subject to:

• P(ωi |x) ≥ 0

• ∑
i ̸=m P(ωi |x) = 1− P(ωm|x) = P∗(e|x).



















































































Error Rate for the Nearest-Neighbor Rule

We can minimize
∑c

i=1 P
2(ωi |x) if all of the a posteriori probabilities except P(ωm|x) are equal.

P(ωi |x) =

 P∗(e|x)
c − 1

i ̸= m

1− P∗(e|x) i = m

Thus

c∑
i=1

P2(ωi |x) ≥ (1− P∗(e|x))2 + (P∗(e|x))2

c − 1

1−
c∑

i=1

P2(ωi |x) ≤ 2P∗(e|x)− c

c − 1
(P∗(e|x))2.

This immediately shows that P ≤ 2P∗.



















































































Error Rate for the Nearest-Neighbor Rule

To seek for a tighter bound:

Var [P∗(e|x)] =
∫
[P∗(e|x)− P∗]2p(x)dx

=

∫
(P∗(e|x))2p(x)dx − P∗2 ≥ 0

so that ∫
(P∗(e|x))2p(x)dx ≥ (P∗)2

with equality holding if and only if the variance of P∗(e|x) is zero.



















































































Error Rate for the Nearest-Neighbor Rule

Then...
P∗ ≤ P ≤ P∗(2− c

c − 1
P∗).



















































































Error Rate for the Nearest-Neighbor Rule



















































































Error Rate for the Nearest-Neighbor Rule

• How well the nearest-neighbor rule works in the finite-sample case?

• How rapidly the performance converges to the asymptotic value?

• The convergence can be arbitrarily slow, and the error rate Pn(e) need not even decrease
monotonically with n.

• It is difficult to obtain anything other than asymptotic results without making further
assumptions about the underliying probability structure.



















































































The k-Nearest-Neighbor Rule

We can make decision by examining the labels on the k nearest neighbors and taking a vote.
We can consider two-class case

• k odd: avoiding ties

• k even: reject ties

The error of k-NN PkNN yields:

1

2
P∗ ≤ P2NN ≤ P4NN ≤ · · · ≤ P∗ ≤ · · · ≤ P3NN ≤ PNN ≤ 2P∗.

If you are interested, see chapter 7 of Fukunaga “Statistical Pattern Recognition” for the
detailed derivation.



















































































The k-Nearest-Neighbor Rule



















































































Exercise

Two normal distributions

Class 1 Σ1 = I , µ1 = [s, 0, · · · , 0]T

Class 2 Σ2 = I , µ2 = [−s, 0, · · · , 0]T

Bayes error:

P∗ =

∫ ∞

s

∫ ∞

−∞
· · ·

∫ ∞

−∞
N(0, I )dx1 · · · dxn

=
1

2
(1− erf(

s√
2
))

erf(x) =
2√
π

∫ x

0

e−t2dt

Given n class 1 and n class 2 data, observe the error rate by using k-NN classifier



















































































Exercise (knnclass.py)

1-D case
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Exercise

2-D case
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Exercise

10-D case
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Exercise

Extreme: 100-D case
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Exercise

Try k-NN classifier for MNIST data.
Very simple modification to mntest.py should work.
Strongly suggested (but not assignment).

My simple implementation of 1-NN classifier achieves 97% accuracy.
How about k-NN classifier?


