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On Assignments

• Since there was system trouble on ITC LMS on May 9 and 10, the deadline of the
assignment issued on April 25 has been extended from May 9 to May 16, by one week.

• Thus forthcoming deadlines are as follows.
• Assignment issued on April 25, due on May 9 now extended to May 16
• Assignment issued on May 2, due on May 16
• No assignment on May 9
• Assignment issued on May 16 (today), due on May 30

• PDF format file should be submitted to ITC LMS

• IMPORTANT: Don’t submit fines in Jupyter Notebook (ipynb) or Python (py)!



















































































Today’s Roadmap

• Error rate estimation from samples

• The Resubstitution (R) method

• The Holdout (H) method

• The Cross-Validation (CV) method

• The bootstrap method



















































































Estimation of Classificaiton Errors

For simplicity, we think about two-class classification problem. A classifier is expressed by

h(X )
ω1

≶
ω2

0

where h(X ) is the discriminant function of a vector X . The probability of error for this
classifier is

ε1 =

∫
h(X )>0

p1(X )dX =

∫
u(h(X ))p1(X )dX

where u(·) is the step function and pi (X ) is the distribution of the class i .



















































































Estimation of Classificaiton Errors

Let’s consider Fourier and inverse Fourier transform

F [x(t)] = X (ω) =

∫ ∞

−∞
x(t)e−jωtdt

F−1[X (ω)] = x(t) =
1

2π

∫ ∞

−∞
X (ω)ejωtdω

Step function u(t) is defined as follows:

u(t) =


0 t < 0
1

2
t = 0

1 t > 0



















































































Estimation of Classificaiton Errors

Its Fourier transform

F [u(t)] =
1

2
F [1] +

∫ ∞

0

e−jωtdt

=
1

2
(2πδ(ω))− 1

jω

[
e−jωt

]∞
0

= πδ(ω) +
1

jω

and its inverse Fourier transform

u(t) =
1

2π

∫ ∞

−∞
[πδ(ω) +

1

jω
]ejωtdω



















































































Estimation of Classificaiton Errors

Therefore

ε1 =

∫
h(X )>0

p1(X )dX =

∫
u(h(X ))p1(X )dX

=
1

2π

∫∫
[πδ(ω) +

1

jω
]ejωh(X )p1(X )dωdX

=
1

2
+

1

2π

∫∫
ejωh(X )

jω
p1(X )dωdX



















































































Estimation of Classificaiton Errors

Likewise

ε2 =

∫
h(X )<0

p2(X )dX =
1

2
− 1

2π

∫∫
ejωh(X )

jω
p2(X )dωdX .

Then the total probability of error is

ε =P1ε1 + P2ε2

=
1

2
+

1

2π

∫∫
ejωh(X )

jω
p̃(X )dωdX

where

p̃(X ) = P1p1(X )− P2p2(X ).



















































































Error Estimation by Samples

We show the justification of error-counting procedure when only finite number of samples
available.
pi (X ) may be replaced by

p̂i (X ) =
1

Ni

Ni∑
j=1

δ(X − X
(i)
j )

where X
(i)
j are Ni test samples drawn from pi (X ).



















































































Error Estimation by Samples

Then the estimate of the error probability is

ε̂ =
1

2
+

1

2π

∫∫
ejωh(X )

jω
[
P1

N1

N1∑
j=1

δ(X − X
(1)
j )− P2

N2

N2∑
j=1

δ(X − X
(2)
j )]dωdX

=
1

2
+

P1

N1

N1∑
j=1

α
(1)
j − P2

N2

N2∑
j=1

α
(2)
j

where

α
(i)
j =

1

2π

∫
ejωh(X

(i)
j )

jω
dω =

sign(h(X
(i)
j ))

2



















































































Error Estimation by Samples

Then

1

N1

N1∑
j=1

α
(1)
j =

1

2N1
[(# ω1-errors)− (# ω1-corrects)]

=
1

N1
(# ω1-errors)−

1

2
.

Likewise,

1

N2

N2∑
j=1

α
(2)
j = − 1

N2
(# ω2-errors) +

1

2
.

Putting all together,

ε̂ = P1
(# ω1-errors)

N1
+ P2

(# ω2-errors)

N2
.



















































































Mean and Variance of the Estimated Error

Let’s derive the mean and variance (w.r.t. test sample) of the estimated error:

Et{α(i)
j } =ᾱi =

1

2π

∫∫
ejωh(X )

jω
pi (X )dωdX

=


ε1 −

1

2
(i = 1)

1

2
− ε2 (i = 2)

Et{α(i)
i

2
} =Et{[

1

2π

∫
ejωh(X)

jω
dω]2} = Et{[

1

2
sign(h(X))]2}

=
1

4

Et{α(i)
j α

(k)
ℓ } =ᾱi ᾱk (i ̸= k or j ̸= ℓ)



















































































Mean and Variance of the Estimated Error

Putting these together:

Et{ε̂} =
1

2
+ P1ᾱ1 − P2ᾱ2

=
1

2
+ P1(ε1 −

1

2
)− P2(

1

2
− ε2) = ε

Vart{ε̂} =
P2
1

N1
Vart{α(1)

j }+ P2
2

N2
Vart{α(2)

j }

=
P2
1

N1
[
1

4
− (ε1 −

1

2
)2] +

P2
2

N2
[
1

4
− (

1

2
− ε2)

2]

=P2
1

ε1(1− ε1)

N1
+ P2

2

ε2(1− ε2)

N2
.

Finally, ε̂ is an unbiased and consistent estimate irrespective of h(X ).



















































































Another solution

Let τ̂i be the number of misclassified samples in class i . Then the random variables τ̂1 and τ̂2
are independent and yielding binomial distribution:

Pr{τ̂1 = τ1, τ̂2 = τ2} =
2∏

i=1

Pr{τ̂i = τi}

=
2∏

i=1

(
Ni

τi

)
ετii (1− εi )

Ni−τi .

The ωi -error, εi , can be estimated by
τ̂i
Ni

:

ε̂ =
2∑

i=1

Pi
τ̂i
Ni

.



















































































Another solution

By using the mean and variance of binomial distribution,

E{ε̂} =P1ε1 + P2ε2 = ε

Var{ε̂} =P2
1

ε1(1− ε1)

N1
+ P2

2

ε2(1− ε2)

N2



















































































Bounds of the Bayes Error

When only a finite number of samples are available for training and testing, we need to take a
compromise: which samples are for training and which are for testing.
We represent the classification error as a function of two sets, the design (training) and test
sets:

ε(PD ,PT )

where P is a set of densities of classes, e.g.,

P = {p1(X ), p2(X )}.



















































































Bounds of the Bayes Error

If the slassifier is the Bayes for the given test distributions, the resulting error is minimum:

ε(PT ,PT ) ≤ ε(PD ,PT ).

The Bayes error for the true P is ε(P,P). Since we never know the true P, let’s try to find
the upper and lower bounds of ε(P,P) by using its estimate obtained by finite number of

samples P̂PP = (p̂1(X ), p̂2(X )):

ε(P,P) ≤ε(P̂PP,P)

ε(P̂PP,P̂PP) ≤ε(P,P̂PP).

Since we know that the error counting procedure is unbiased estimate,

ε(P̂PP,P) = EP̂PPT
{ε(P̂PP,P̂PPT )}

where P̂PPT is another set independent of P̂PP.



















































































Bounds of the Bayes Error

Recap:

ε(P,P) ≤ε(P̂PP,P)

ε(P̂PP,P̂PP) ≤ε(P,P̂PP)

ε(P̂PP,P) =EP̂PPT
{ε(P̂PP,P̂PPT )}.

Similarly,
E{ε(P,P̂PP)} = ε(P,P).

Putting these together,

E{ε(P̂PP,P̂PP)} ≤ ε(P,P) ≤ EP̂PPT
{ε(P̂PP,P̂PPT )}.



















































































Holdout (H) Method

ε(P̂PP,P̂PPT ) can be obtained by two independent sample sets, P̂PP and P̂PPT from P, and using

P̂PP for designing the Bayes classifier and P̂PPT for testing.
As we observed, EP̂PPT

{ε(P̂PP,P̂PPT )} gives the upper bound of the Bayes error.

Similarly, EP̂PP{EP̂PPT
{ε(P̂PP,P̂PPT )}} gives the upper bound.

This procedure is called the holdout (H) method.

The Holdout (H) Method

1 Given data set S is decomposed into two disjoint sets, the design set SD and the
test set ST .

2 Train classifier using SD .

3 Estimate the performance using ST .



















































































Resubstitution (R) Method

E{ε(P̂PP,P̂PP)} gives the lower bound of the Bayes error.

This can be obtained by using P̂PP for designing the Bayes classifier and the same P̂PP for testing.
This procedure is called the resubstitution (R) method.

The Resubstitution (R) Method

1 Given data set S is used for training classifier.

2 The same set is then used for estimating the performance.



















































































Cross-Validation (CV) Method

Since the holdout method needs to separate the data into design and test set, it has drawback
in estimating the error rate.
The bias of the estimation is effected by the size of design set, and the variance is effected by
the size of test set.
To alleviate this drawback, the cross-validation (CV) method is also used.

The Cross-Validation (CV) Method

1 Given data set S is separated into N disjoint sets, S1, S2, · · · , SN .
2 Select one set as the test set and combine the remaining N − 1 sets as the design
set, and then perform training and testing.

3 The above procedure is repeated N times by changing the test set, and the resulting
N error rates are then averaged.



















































































Cross-Validation (CV) Method

In CV method, you can treat each item as an independent set.
This extreme case is called the leave-one-out (L) method.



















































































Bootstrap Method

In estimating the Bayes error rate ε, we can obtain the estimate ε̂ using R method.
We then can think of the bias:

b = ε− ε̂.

If we can well estimate b, we can estimate the Bayes error by:

ε = ε̂+ b.



















































































Bootstrap Method

The bootstrap method generate a pseudo sample set S∗ from the original set S by using
sampling with replacement (note that |S | = |S∗|).
We then estimate the bias b by

b∗ = ε∗ − ε̂∗

where ε∗ is the estimated error by using S∗ for training and S for testing, and ε̂∗ by using S∗

for training and testing.
We repeat the above procedure B times using B pseudo sample sets and take average to
obtain b∗.
The estimated Bayes error is then obtained by

ε = ε̂+ b∗.



















































































Bootstrap Method

The Bootstrap Method

1 Obtain the estimated error ε̂ by using the original set S for training and testing (R
method).

2 Generate a pseudo sample set S∗ by |S |-times sampling with replacement from S .

3 Obtain the estimated error rate ε∗ by using S∗ for training and S for testing.

4 Obtain the error rate ε̂∗ by using S∗ for training and testing.

5 Obtain the estimated bias b∗ = ε∗ − ε̂∗.

6 The above procedure is repeated B times by changing the pseudo set and the
resulting B biases are then averaged to obtain final b∗.

7 The estimated error is obtained by ε = ε̂+ b∗.



















































































Exercise

Two normal distributions

Class 1 Σ1 = I , µ1 = [s, 0, · · · , 0]T

Class 2 Σ2 = I , µ2 = [−s, 0, · · · , 0]T

Bayes error:

P∗ =

∫ ∞

s

∫ ∞

−∞
· · ·

∫ ∞

−∞
N(0, I )dx1 · · · dxn

=
1

2
(1− erf(

s√
2
))

erf(x) =
2√
π

∫ x

0

e−t2dt

Given n class 1 and n class 2 data, observe the error rate of quadratic classifier by using the
resubstitution (R) and the holdout (H), and compare them with the Bayes error.



















































































Exercise

103 104
n

0.1

0.2

0.3

0.4

0.5

er
r

dim=50 off=0.8
Bayes
R
H(0.2)
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H(0.8)
B



















































































Exercise
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dim

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

er
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Exercise
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off
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er
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Assignment (Programming project)

• Implement the bootstrap method.

• Following the exercise, compare the estimated error by using the resubstitution (R), the
holdout (H), and the bootstrap methods, along with the Bayes error rate.

• Plot the estimation by changing the dimension, the Bayes error rate, and the number of
samples.

• Due on May 30.

• PDF format file should be submitted to ITC LMS

• IMPORTANT: Don’t submit fines in Jupyter Notebook (ipynb) or Python (py)!
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