

パターン認識
Pattern Recognition

佐藤真一
Shin’ichi Satoh

国立情報学研究所
National Institute of Informatics

May 23, 2023

Course Information

• Course web page: https://research.nii.ac.jp/∼satoh/utpr/
• Course materials can be found in the above page

• Course videos can be found in ITC-LMS

• Credits will be given based on final report (mandatory)

• Attendance record will not be taken

• Assignments may be imposed (3 out of 7 are mandatory: subject to change)

• If you fail to submit minimum 3 assignments and final report, you will not obtain credits.

Schedule (subject to change)
4/11 Orientation, Bayes decision theory, probability distribution
4/18 Random variable, random vector, normal distributions
4/25 Parametric density estimation, discriminant function
5/2 Nonparametric density estimation, Parzen windows, k-

nearest neighbor estimate
5/9 k-nearest neighbor classification, classification error esti-

mation
5/16 Bayes error estimation, classification error estimation,

cross-validation, bootstrap
5/23 Hybrid Linear classifier, perceptron, MSE classifier, Widrow-Hoff

rule
5/30 Online, zoom only neural network, deep learning
6/6 Hybrid all about SVM
6/13 Online, zoom only Orthogonal expansions, Eigenvalue decomposition
6/20 no class
6/27 Hybrid Clustering, dendrogram, aggromerative clustering, k-

means
7/4 Hybrid Graphs, normalized cut, spectral clustering, Laplacian

Eigenmaps
7/11 extra (if needed)

Today’s agenda

• Linear classifier / linear discriminant function

• Perceptron

Discriminant Functions

Let’s consider the problem to classify given observation into one of c classes.
We can formalize this problem using discriminant functions gi (x), i = 1, . . . , c .
The classifier is then assign a feature vector x to class ωi if

gi (x) > gj(x) for all j ̸= i .

Linear Discriminant Functions

Assume that the input is d-dimensional vector:

x = [x1 x2 · · · xd]T

and weight vector:
w = [w1 w2 · · · wd]

T .

The linear discriminant function is

g(x) = w0 +
d∑

j=1

wjxj .

Linear Discriminant Functions

We consider an augmented feature vector and an augmented weight vector:

x̂ = [1 x1 x2 · · · xd]T

ŵ = [w0 w1 w2 · · · wd]
T .

The linear discriminant function is then:

g(x) = w0 +
d∑

j=1

wjxj

= w0 + wT x

= ŵT x̂ .

(We will use w and ŵ , x and x̂ interchangeably if not ambiguous.)

Linear Discriminant Functions

When a linear discriminant function is used?
Parametric density estimation case when Σi = σ2I .
Then the discriminant functions are:

gi (x) = −
||x − µi ||2

2σ2
+ logP(ωi)

= − 1

2σ2
[xT x − 2µT

i x + µT
i µi] + logP(ωi).

By ommitting common terms we obtain linear discriminant functions:

gi (x) = wT
i x + wi0

where

wi =
1

σ2
µi and wi0 = −

1

2σ2
µT
i µi + logP(ωi).

Linear Discriminant Functions

The nearest neighbor classifier is another example.
Assume that there are n prototypes p1, p2, · · · , pn.
The nearest neighbor rule chooses the prototype to whom distance from input vector x is
smallest:

∥x − pi∥2 = ∥x∥2 − 2pTi x + ∥pi∥2.

Thus the discriminant function:

gi (x)
def
= pTi x −

1

2
∥pi∥2.

The decision boundaries are piece-wise linear.

Linear Discriminant Functions

Linear Discriminant Functions

How do we obtain a linear discriminant function from a given set of training data?
Consider the set of training data X where the set of the training data of each class ωi is Xi

(i = 1, 2, · · · , c).
The training of linear discriminant functions is to determine ŵi so that for all samples in Xi ,

gi (x) > gj(x) for all j ̸= i .

holds.
If there are such ŵi s, X is said to be linearly separable.

Linear Discriminant Functions

Let’s consider two classes case (ω1 and ω2).
We then can simplify the problem by

g(x) = g1(x)− g2(x) = (w1 − w2)
T x

= wT x

w
def
= w1 − w2

and

decide ω1 if g(x) = wT x > 0

decide ω2 if g(x) = wT x < 0.

We can then normalize data by replacing all samples labeled ω2 by their negatives.
Then g(x) = wT x > 0 for all training samples.

The Perceptron

Rosenblatt, 19571

We want to determine w so that wT x > 0 for all training samples.
The Perceptron criterion function:

J(w) =
∑
x∈X̃

(−wT x)

where X̃ is the set of samples misclassified.
J is never negative, and we want it to be zero (X̃ to be empty).

1F. Rosenblatt, The perceptron - A perceiving and recognizing automaton, Technical Report 85-460-1,
Cornell Aeronautical Laboratory, Ithaca, New York, January, 1957.

The Perceptron

Since the gradient of J is

∇J =
∑
x∈X̃

(−x)

we can update the weight vector based on Gradient Descent (aka batch Gradient Descent) as

w(k + 1) = w(k)− ρ∇J = w(k) + ρ
∑
x∈X̃

x .

ρ is called learning rate.

The Perceptron

Algorithm 1 Batch Perceptron

1: Initialization: w ,ρ, criterion θ, k = 0
2: repeat
3: k ← k + 1
4: w ← w + ρ

∑
x̃∈X̃ x̃

5: Recalculate X̃
6: until |ρ

∑
x̃∈X̃ x̃ | < θ

7: Return w

The Perceptron

We can instead use Stocastic (or on-line) Gradient Descent:

Algorithm 2 Fixed-Increment Single-Sample Perceptron

1: Initialization: w , X̃ = {x̃1, x̃2, · · · }, k = 0
2: repeat
3: k ← k + 1
4: i ← mod(k , |X̃ |) + 1
5: w ← w + ρx̃i
6: Recalculate X̃
7: until all patterns properly classified
8: Return w

The Perceptron

The Perceptron is known to converge if given training data is linearly separable.

Minimum Squared-Error and the Pseudoinverse

Let’s assume that we have n training data

X = {x1, x2, · · · , xn}.

Given p-th data xp, we observe outputs of c discriminant functions as a vector

[g1(xp) g2(xp) · · · gc(xp)]T .

We further assume that we have a vector as the target signal

bp = [b1p b2p · · · bcp]T .

Note that bip > bjp (j ̸= i) if xp ∈ Xi .
For example,

bp = [0 · · · 0 1
i
0 · · · 0]T

for xp ∈ Xi .
Then we want to determine wp such that gi (xp) ≈ bip.

Minimum Squared-Error and the Pseudoinverse

The error for a pattern xp is εip = gi (xp)− bip.
The criterion function:

Jp(ŵ1, ŵ2, · · · , ŵc) =
1

2

c∑
i=1

ε2ip

=
1

2

c∑
i=1

(gi (xp)− bip)
2

=
1

2

c∑
i=1

(ŵi
T x̂p − bip)

2

Minimum Squared-Error and the Pseudoinverse

The batch criterion function:

J(w1,w2, · · · ,wc) =
n∑

p=1

Jp(w1,w2, · · · ,wc)

=
1

2

n∑
p=1

c∑
i=1

(gi (xp)− bip)
2

=
1

2

n∑
p=1

c∑
i=1

(ŵi
T x̂p − bip)

2

We want wi s which minimize the function.
In other words,

[
ŵ1 ŵ2 · · · ŵc

]T [
x̂1 x̂2 · · · x̂n

]
≈

...

· · · bip · · ·
...

Minimum Squared-Error and the Pseudoinverse

Two class case

Jp(ŵ) =
1

2
(g(xp)− bp)

2

=
1

2
(ŵT x̂p − bp)

2

where bp can be

bp =

{
1 (xp ∈ X1)
−1 (xp ∈ X2)

Minimum Squared-Error and the Pseudoinverse

Now we minimize J in closed form using the pseudoinverse.

∇J =
∂J

∂ŵ
= [

∂J

∂w0

∂J

∂w1
· · · ∂J

∂wd
]

We can minimize J by
∂J

∂ŵi
= ∇iJ = 0 (i = 1, · · · , c)

namely,

∂J

∂ŵi
=

n∑
p=1

∂Jp
∂ŵi

=
n∑

p=1

(ŵi
T x̂p − bip)x̂p = 0

Minimum Squared-Error and the Pseudoinverse

We assume

X = [x̂1 x̂2 · · · x̂n]T

bi = [bi1 bi2 · · · bin]T (i = 1, · · · , c)

then the criterion function will be

J(ŵ1, ŵ2, · · · , ŵc) =
1

2

c∑
i=1

∥Xŵi − bi∥2

∂J

∂ŵi
= XT (Xŵi − bi) = 0

XTXŵi = XTbi

ŵi = (XTX)−1XTbi

This gives MSE solution of ∥Xwi − bi∥2.

Minimum Squared-Error and the Pseudoinverse

X+ = (XTX)−1XT is called the pseudoinverse of X .

The Widrow-Hoff or LMS Procedure

We now consider gradient descent:

ŵi (k + 1) = ŵi (k)− ρ
∂J

∂ŵi
= ŵi (k)− ρ∇iJ

∆ŵi = −ρ∇iJ

We can also consider stochastic gradient descent:

∆ŵi = −ρ
∂Jp
∂ŵi

The Widrow-Hoff or LMS Procedure

Here we denote gi (xp) as gip.

∂Jp
∂ŵi

=
∂Jp
∂gip

∂gip
∂ŵi

where

∂Jp
∂gip

= gip − bip = εip

∂gip
∂ŵi

= x̂p

therefore

∂Jp
∂ŵi

= (gip − bip)x̂p = εip x̂p

The Widrow-Hoff or LMS Procedure

The update rule becomes

∆ŵi = −ρεip x̂p
= −ρ(gip − bip)x̂p

= −ρ(ŵi
T x̂p − bip)x̂p.

This is the Widrow-Hoff or LMS rule (least-mean-squared).

The Widrow-Hoff or LMS Procedure

Algorithm 3 LMS

1: Initialization: ŵi , k = 0
2: repeat
3: k ← mod(k , |X |) + 1
4: ŵi ← ŵi − ρ(ŵi

T x̂k − bip)x̂k
5: until all patterns properly classified
6: Return ŵi

Assignment

• Programming project and non-programming project are imposed.

• You are expected to solve either programming project OR non-programming project.

• Programming project is recommended.

• Of course you are most welcomed to solve both.

• Due on June 6.

Programming Project

Generate three sets of training data using the following matlab programs:

Linearly separable linear.m

Linearly non-separable nonlinear.m

Skewed linearly separable slinear.m

In Python case, put one of the following lines in your program:

Linearly separable from linear import *

Linearly non-separable from nonlinear import *

Skewed linearly separable from slinear import *

(1) Implement augmented feature/weight vectors and normalization, and the Perceptron
(batch and/or on-line). Train the Perceptron with the three data sets. Discuss on its behavior.
Hint: augumented feature vectors can be obtained by:

ax=np.concatenate((np.ones((1,n)),x))

(2) Then implement MSE classifier and train it with the three data sets. Discuss on its
behavior.

Programming Project (1)

import numpy as np

import matplotlib.pyplot as plt

from linear import *

rho = 0.1

ax = np.concatenate((np.ones((1, n)), x))

aw = (2 * np.random.rand(d + 1) - np.array([1, 1, 1]))[:, np.newaxis]

ax[:, np.where(l == -1)] = -ax[:, np.where(l == -1)]

plt.figure()

k = 0

neg = ((ax.T.dot(aw)).T < 0)[-1]

Programming Project (1)

while len(np.where(neg)[-1]) > 0:

k += 1

aw += rho*<<< some code to update aw >>>

neg = <<< some code to update neg >>>

plt.clf()

plt.xlim([-1, 1])

plt.ylim([-1, 1])

plt.plot(x[0, np.where((l == 1) & ~neg)],

x[1, np.where((l == 1) & ~neg)], ’bo’)

plt.plot(x[0, np.where((l == -1) & ~neg)],

x[1, np.where((l == -1) & ~neg)], ’bx’)

plt.plot(x[0, np.where((l == 1) & neg)],

x[1, np.where((l == 1) & neg)], ’ro’)

plt.plot(x[0, np.where((l == -1) & neg)],

x[1, np.where((l == -1) & neg)], ’rx’)

Programming Project (1)

if abs(aw[1]) > abs(aw[2]):

plt.plot([-1, 1], [-(aw[0] - aw[1]) / aw[2], -(aw[0] + aw[1]) / aw[2]])

else:

plt.plot([-(aw[0] - aw[2]) / aw[1], -(aw[0] + aw[2]) / aw[1]], [-1, 1])

print(aw)

plt.pause(0.2)

plt.show()

Programming Project (2)

import numpy as np

import matplotlib.pyplot as plt

from linear import *

ax = np.concatenate((np.ones((1, n)), x))

aw = <<< some code to compute aw >>>

neg = (ax.T.dot(aw)).T < 0

Similar code to perceptron follows...

Similar code to perceptron follows...

Non-Programming Project

(1) Show the proof of the Perceptron convergence theorem (batch and/or on-line).
(2) Show that MSE solution is obtained by pseudo inverse. Namely, assuming that

Jp(ŵ1, ŵ2, · · · , ŵc) =
1

2

c∑
i=1

(ŵi
T x̂p − bip)

2

derive that the solution of
∂J

∂ŵi
= 0 is ŵi = X+bi .

	Course Information
	Today's agenda
	Discriminant Functions
	Linear Discriminant Functions
	The Perceptron
	Minimum Squared-Error and the Pseudoinverse
	The Widrow-Hoff or LMS Procedure
	Assignment

