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Course Information

Course web page: https://research.nii.ac.jp/~satoh/utpr/

Course materials can be found in the above page

Course videos can be found in ITC-LMS

Credits will be given based on final report (mandatory)

Attendance record will not be taken

Assignments may be imposed (3 out of 7 are mandatory: subject to change)

If you fail to submit minimum 3 assignments and final report, you will not obtain credits.
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Schedule (subject to change)

Orientation, Bayes decision theory, probability distribution
Random variable, random vector, normal distributions
Parametric density estimation, discriminant function
Nonparametric density estimation, Parzen windows, k-
nearest neighbor estimate

k-nearest neighbor classification, classification error esti-
mation

Bayes error estimation, classification error estimation,
cross-validation, bootstrap

Linear classifier, perceptron, MSE classifier, Widrow-Hoff
rule

neural network, deep learning

all about SVM

Orthogonal expansions, Eigenvalue decomposition

no class

Clustering, dendrogram, aggromerative clustering, k-
means

Graphs, normalized cut, spectral clustering, Laplacian



Today's agenda

® Linear classifier / linear discriminant function

® Perceptron



Discriminant Functions

Let’s consider the problem to classify given observation into one of ¢ classes.
We can formalize this problem using discriminant functions g;(x), i =1,...,c.
The classifier is then assign a feature vector x to class wj; if

gi(x) > gj(x) forall j # i.



Linear Discriminant Functions

Assume that the input is d-dimensional vector:
x=[x1x - Xd]T

and weight vector:
w=[wywy - Wd]T.

The linear discriminant function is

d
g(x) = wo +)_ wx.
j=1



Linear Discriminant Functions
We consider an augmented feature vector and an augmented weight vector:
R=[lx1x - xq]"
W= [wowwy - wy].

The linear discriminant function is then:

d
g(x) =wo + > wpx;
=1

+ WTX

S 3

x>

T

(We will use w and W, x and X interchangeably if not ambiguous.)



Linear Discriminant Functions

When a linear discriminant function is used?
Parametric density estimation case when ¥; = o?/.
Then the discriminant functions are:

[lx — puil |2

&) =~ 202

+ log P(w;)
1
= —ﬁ[xrx — 2] x + p] pi] + log P(wy).
By ommitting common terms we obtain linear discriminant functions:
_ T
gi(x) = w; x + wip
where

1 1
w; = ?,LL, and Wijo — _T‘Q,UIT;LLI + |Og P(w’)



Linear Discriminant Functions

The nearest neighbor classifier is another example.

Assume that there are n prototypes p1, p2,- - , Pn-

The nearest neighbor rule chooses the prototype to whom distance from input vector x is
smallest:

Ix = pill® = lIxI* = 2p] x + || pil|.

Thus the discriminant function:

def T

1
gi(x) = p; x — §||Pi|\2-

The decision boundaries are piece-wise linear.



Linear Discriminant Functions
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Linear Discriminant Functions

How do we obtain a linear discriminant function from a given set of training data?

Consider the set of training data X where the set of the training data of each class wj; is &
(i=12,---,¢).

The training of linear discriminant functions is to determine w; so that for all samples in A},

gi(x) > gj(x) forall j # i.

holds.
If there are such wj;s, X is said to be linearly separable.



Linear Discriminant Functions

Let's consider two classes case (w; and ws).
We then can simplify the problem by

g(x) = gi(x) — ga(x) = (w1 — w2) " x

=w'x
def
w = W — Wy
and
decide wy if g(x) =wTx >0
decide wy if g(x) =w'x < 0.
We can then normalize data by replacing all samples labeled w, by their negatives.
Then g(x) = w'x > 0 for all training samples.



The Perceptron

Rosenblatt, 19571
We want to determine w so that w’x > 0 for all training samples.
The Perceptron criterion function:

where X is the set of samples misclassified.
J is never negative, and we want it to be zero (X to be empty).

LF. Rosenblatt, The perceptron - A perceiving and recognizing automaton, Technical Report 85-460-1,
Cornell Aeronautical Laboratory, Ithaca, New York, January, 1957.



The Perceptron

Since the gradient of J is

V= (-x)

xeX

we can update the weight vector based on Gradient Descent (aka batch Gradient Descent) as

w(k +1) = w(k) — pVJ = w(k) —i—pr.

p is called learning rate.



The Perceptron

Algorithm 1 Batch Perceptron

1: Initialization: w,p, criterion 6, k =0
2: repeat

3 k+—k+1

4: W wHpd oopX

5 Recalculate X

6: until |pz)~<€)g X <0
7: Return w




The Perceptron

We can instead use Stocastic (or on-line) Gradient Descent:

Algorithm 2 Fixed-Increment Single-Sample Perceptron

1. Initialization: w, X = {X1,%,--}, k=0
2: repeat

3 k< k+1

4 i+ mod(k,|X|)+1

5: W — w + pX;

6 Recalculate X

7: until all patterns properly classified
8: Return w




The Perceptron

The Perceptron is known to converge if given training data is linearly separable.



Minimum Squared-Error and the Pseudoinverse

Let's assume that we have n training data

X ={x1,x, -, X}
Given p-th data x,, we observe outputs of ¢ discriminant functions as a vector

[g1 (%) &2(%0) -+~ ge(xp)] "

We further assume that we have a vector as the target signal

by = [blp bop -+ bCP]T'
Note that b, > bj, (j # i) if x, € &j.

For example,

for x, € Xj.
Then we want to determine w, such that gi(x,) ~ bjp.



Minimum Squared-Error and the Pseudoinverse

The error for a pattern x, is €, = gi(Xp) — bip.
The criterion function:

o 1
JP(W17 Wo, -, WC) = 5 Zg%p
i=1
1 (o}
=5 > (8i(x) — bip)?
i=1

1, . 7.
=5 > (W% = byp)?
i=1



Minimum Squared-Error and the Pseudoinverse

The batch criterion function:

n

J(W17W27"' 7WC) = ZJp(WhWZa" . 7WC)

;:117 c
=5 YD (&%) — bip)?

p=1 i=1

1 n c
=5 >S5 — byp)?

p=1i=1

We want w;s which minimize the function.
In other words,



Minimum Squared-Error and the Pseudoinverse

Two class case

where b, can be



Minimum Squared-Error and the Pseudoinverse
Now we minimize J in closed form using the pseudoinverse.

oJ oJ o0J oJ
V= 5% T Gwe wn T wg

We can minimize J by
oJ

ow;

=ViJ=0(i=1--,c)

namely,

8W, Z 6W,

= Z(WIT)?P - bip)XAp =0
p=1



Minimum Squared-Error and the Pseudoinverse
We assume
X=[% %"
bi=[biibip -+ bin]” (i=1,-++,¢c)

then the criterion function will be

o NN IV
J(W17W27""WC):EZHXWiibi”2
i=1

a9J
=XT(Xw; — b)) =
o (Xw; —b;)=0

X" X, = XTb;

Wi = (XTX)1X b
This gives MSE solution of || Xw; — b;|?.



Minimum Squared-Error and the Pseudoinverse
Xt = (XTX)71XT is called the pseudoinverse of X.



The Widrow-Hoff or LMS Procedure

We now consider gradient descent:

oJ
W,(k + 1) = W,(k) — pa ~ = W,(k) — pV,J

AW,' = —pv,'J

We can also consider stochastic gradient descent:

J,
P ow;

Aw; =



Here we denote gi(x,) as gip.

where

therefore

The Widrow-Hoff or

0Jy 0y gy
8W,' o 8g,-p 8W,'

0,

—— =&ip — bpp = ¢

g p P p

dg; .

avf: G

— bip)Xp = €ipXp

LMS Procedure



The Widrow-Hoff or LMS Procedure

The update rule becomes

AMA/,' = —pé‘,‘p)?p
= —p(gip — bip)Xp
= —p(W; TXAP - bip)XAp'

This is the Widrow-Hoff or LMS rule (least-mean-squared).



The Widrow-Hoff or LMS Procedure

Algorithm 3 LMS

1: Initialization: w;, k=10
repeat

k + mod(k,|X|) +1

Wi < W — p(W, Xie — bip) Xk
until all patterns properly classified
Return w;

S




Assignment

Programming project and non-programming project are imposed.

You are expected to solve either programming project OR non-programming project.
Programming project is recommended.

Of course you are most welcomed to solve both.

Due on June 6.



Programming Project

Generate three sets of training data using the following matlab programs:
Linearly separable linear.m

Linearly non-separable nonlinear.m

Skewed linearly separable slinear.m

In Python case, put one of the following lines in your program:

Linearly separable from linear import *

Linearly non-separable from nonlinear import *

Skewed linearly separable from slinear import *

(1) Implement augmented feature/weight vectors and normalization, and the Perceptron
(batch and/or on-line). Train the Perceptron with the three data sets. Discuss on its behavior.
Hint: augumented feature vectors can be obtained by:

ax=np.concatenate((np.ones((1,n)),x))

(2) Then implement MSE classifier and train it with the three data sets. Discuss on its
behavior.



Programming Project (1)

import numpy as np
import matplotlib.pyplot as plt
from linear import *

rho = 0.1

ax = np.concatenate((np.ones((1, n)), x))

aw = (2 * np.random.rand(d + 1) - np.array([1, 1, 1]1))[:, np.newaxis]
ax[:, np.where(l == -1)] = -ax[:, np.where(l == -1)]

plt.figure()

k=0

neg = ((ax.T.dot(aw)).T < 0) [-1]



Programming Project (1)

while len(np.where(neg)[-1]) > O:
k+=1
aw += rho*<<< some code to update aw >>>
neg = <<< some code to update neg >>>

plt
plt
plt
plt
plt
plt

plt

.clfQ)
.x1im([-1,
ylim([-1,
.plot (x[O0,
x[1,
.plot(x[0,
x[1,
.plot (x[0,
x[1,
.plot (x[0,
x[1,

11D

11D

np.where((1 == 1) & “neg)],
np.where((1 == 1) & “neg)], ’bo’)
np.where((1 == -1) & “neg)],
np.where((1 == -1) & "neg)], ’bx’)
np.where((1 == 1) & neg)],
np.where((1 == 1) & neg)], ’ro’)
np.where((1 == -1) & neg)],
np.where((1 == -1) & neg)], ’rx’)



Programming Project (1)

if abs(aw[1]) > abs(aw[2]):
plt.plot([-1, 11, [-(aw[0] - aw[1]) / aw[2], -(aw[0] + aw[1]) / aw[2]])
else:
plt.plot([-(aw[0] - aw[2]) / aw[1], -(aw[0] + aw[2]) / aw[1]l, [-1, 11)
print (aw)
plt.pause(0.2)
plt.show()



Programming Project (2)

import numpy as np
import matplotlib.pyplot as plt
from linear import *

ax = np.concatenate((np.ones((1, n)), x))
aw = <<< some code to compute aw >>>

neg = (ax.T.dot(aw)).T < O

# Similar code to perceptron follows...

Similar code to perceptron follows...



Non-Programming Project

(1) Show the proof of the Perceptron convergence theorem (batch and/or on-line).
(2) Show that MSE solution is obtained by pseudo inverse. Namely, assuming that

Jp(V/I}17V|72,"', c 2 § WI _blp

J =0is W;:X+bi.

derive that the solution of —
6W,'
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