

パターン認識
Pattern Recognition

佐藤真一
Shin’ichi Satoh

国立情報学研究所
National Institute of Informatics

May 30, 2023

Linear discriminant functions

x0

x1

x2

xd

..
.

w0

w1

w2

wd

y

g(x) = w0 +
d∑

j=1

wjxj .

Summary of linear discriminant functions
Classifier Criterion function Solver

Perceptron J =
∑
x∈X̃

(−wT x) SGD

MSE Jp =
1

2
(ŵT x̂p − bp)

2 Pinv

Widrow-Hoff Jp =
1

2
(ŵT x̂p − bp)

2 SGD

Neural network Jp =
1

2
(f (ŵT x̂p)− bp)

2 SGD

The Perceptron (recap)

Rosenblatt, 19571

We want to determine w so that wT x > 0 for all training samples.
The Perceptron criterion function:

J(w) =
∑
x∈X̃

(−wT x)

where X̃ is the set of samples misclassified.
J is never negative, and we want it to be zero (X̃ to be empty).

1F. Rosenblatt, The perceptron - A perceiving and recognizing automaton, Technical Report 85-460-1,
Cornell Aeronautical Laboratory, Ithaca, New York, January, 1957.

The Perceptron (recap)

Since the gradient of J is

∇J =
∑
x∈X̃

(−x)

we can update the weight vector based on Gradient Descent (aka batch Gradient Descent) as

w(k + 1) = w(k)− ρ∇J = w(k) + ρ
∑
x∈X̃

x .

ρ is called learning rate.

Minimum Squared-Error and the Pseudoinverse (recap)

We assume

X = [x̂1 x̂2 · · · x̂n]T

bi = [bi1 bi2 · · · bin]T (i = 1, · · · , c)

then the criterion function will be

J(ŵ1, ŵ2, · · · , ŵc) =
1

2

c∑
i=1

∥Xŵi − bi∥2

∂J

∂ŵi
= XT (Xŵi − bi) = 0

XTXŵi = XTbi

ŵi = (XTX)−1XTbi

This gives MSE solution of ∥Xwi − bi∥2.

The Widrow-Hoff or LMS Procedure (recap)

We now consider gradient descent:

ŵi (k + 1) = ŵi (k)− ρ
∂J

∂ŵi
= ŵi (k)− ρ∇iJ

∆ŵi = −ρ∇iJ

We can also consider stochastic gradient descent:

∆ŵi = −ρ
∂Jp
∂ŵi

The Widrow-Hoff or LMS Procedure (recap)

Here we denote gi (xp) as gip.

∂Jp
∂ŵi

=
∂Jp
∂gip

∂gip
∂ŵi

where

∂Jp
∂gip

= gip − bip = εip (∵ Jp =
1

2

c∑
i=1

(ŵi
T x̂p − bip)

2)

∂gip
∂ŵi

= x̂p (∵ gip = gi (xp) = ŵi
T x̂p)

therefore

∂Jp
∂ŵi

= (gip − bip)x̂p = εip x̂p

The Widrow-Hoff or LMS Procedure (recap)

The update rule becomes

∆ŵi =
∂Jp
∂ŵi

= −ρεip x̂p

= −ρ(gip − bip)x̂p

= −ρ(ŵi
T x̂p − bip)x̂p.

This is the Widrow-Hoff or LMS rule (least-mean-squared).

Neural Network

• A brain is a information processing system composed of the network of huge number of
neural cells, and can flexibly perform intelligent processes such as pattern recognition

• An (artificial) neural network is a computation model for pattern recognition and other
intelligent processes by artificially implemented neural cells and networks with software
and so on

• One aim is to explore the mechanism of neurons and brains, i.e., biological aspect, and
another aim is to explore the basic principle of parallel and distributed processes by neural
network, i.e., computer science aspect

• McCulloch-Pitts model (1943), Hebb rule (1949)

• Feed forward network, recurrent neural network

• supervised learning, unsupervised learning

Multilayer Neural Network

i j k l

Multilayer Neural Network

i j k l

y = [wkl] [wjk] [wij] x

=

∑
j,k

wijwjkwkl

 x

Multilayer Neural Network

i j k l

y = f ([wkl] f ([wjk] f ([wij] x)))

Multilayer Neural Network

Simply stacking linear discriminant functions does not work: combination of linear functions is
equal to a linear function.
So we introduce non-linear function f (·).

hjp =
∑
i

wijgip

gjp = f (hjp)

Then the criterion function

Jp =
1

2

∑
l

(glp − blp)
2

J =
∑
p

Jp

Multilayer Neural Network

We can solve this by gradient descent.

∂Jp
∂wij

=
∂Jp
∂hjp

· ∂hjp
∂wij

εjp
def
=

∂Jp
∂hjp

∂hjp
∂wij

= gip (∵ hjp =
∑
i

wijgip)

∂Jp
∂wij

= εjpgip

∆wij = −ρ
∂Jp
∂wij

= −ρεjpgip

Multilayer Neural Network

How to determine εjp for each unit?

εjp =
∂Jp
∂hjp

=
∂Jp
∂gjp

· ∂gjp
∂hjp

=
∂Jp
∂gjp

· f ′(hjp) (∵ gjp = f (hjp))

If the unit j is in the output layer,

∂Jp
∂gjp

= gjp − bjp (∵ Jp =
1

2

∑
l

(glp − blp)
2).

If the unit j is in the intermediate layers,

∂Jp
∂gjp

=
∑
k

∂Jp
∂hkp

· ∂hkp
∂gjp

(∵ hkp =
∑
j

wjkgjp).

Multilayer Neural Network

where

∂Jp
∂hkp

= εkp

hkp =
∑
j

wjkgjp

∂hkp
∂gjp

= wjk

therefore

∂Jp
∂gjp

=
∑
k

∂Jp
∂hkp

· ∂hkp
∂gjp

=
∑
k

εkpwjk

Multilayer Neural Network

How about the non-linear function f ·?
We can consider a threshold function but it’s not differentiable.
Instead we use the following sigmoid function

f (u) =
1

1 + e−u

f ′(u) = f (u)(1− f (u))

So,
f ′(hjp) = gjp(1− gjp) (∵ f (hjp) = gjp)

In summary,

εjp =

{
(gjp − bjp)gjp(1− gjp) (j is in the output layer)
(
∑

k εkpwjk)gjp(1− gjp) (j is in the intermediate layers)

Multilayer Neural Network

The sigmoid function

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Backpropagation

How to train overall network?

• When a training vector is input, based on the difference between the training signals and
output in the output layer, εjps are computed.

• The weights between the output layer and the previous layer are then updated.

• Based on them εjps of the previous layer are then computed, then weights of the previous
layer are updated.

• The process is continued up to the input layer.

• The overall process is further continued for all data.

• Again, the overall process is continued multiple times visiting all data (one such step is
called epoch).

Since the error will be propagated from the output layer to the input layer, this algorithm is
called the backpropagation.

Deep Learning

Deep learning is a kind of multilayer neural network especially having huge number of layers.
Theoretically multilayer neural network is equivalent to piece-wise linear classifier, and by using
large number of layers, arbitrarily complex decision boundary can be obtained.
However, the training is getting very hard.
Couple of recent innovations enabled deep learning

• Pre-training, autoencoder, restricted Boltzmann machine (RBM)

• Dropout

• Fast computers, GPUs

Deep convolutional neural network is also very popular.

• Convolutional layer

• Pooling layer

• Fully connected layer

Two key innovations (SGD, convolutional layer) were made by Japanese.

Deep Learning

Krizhevsky, Sutskever, and Hinton, NIPS 2012.

Assignment

• Programming project and non-programming project are imposed.

• You are expected to solve either programming project OR non-programming project.

• Programming project is recommended.

• Of course you are most welcomed to solve both.

• Due on June 13.

Assignment

Programming Project 1. Implement multilayer neural network with the following architecture.

...

input intermediate

output

Train the network with the three data sets provided last week using backpropagation. How
many intermediate units needed?
Note: don’t use neural network tools or libraries. Implement computing responses of units,
sigmoid functions, etc., such as outp = sigmoid(sigmoid(inp.dot(Wim)).dot(Wmo)).

Assignment

Programming Project 2. (mid level) Implement MSE classifier for MNIST. How is the
accuracy?
(FYI. My implementation achieved 86%.)

Programming Project 3. (Optional) Implement neural network classifier for MNIST, with
the same architecture to the assignment 1. How is the accuracy?
(97.7%)

Assignment

Non-Programming Project Explain the following technical terms related to deep learning.
Consider how we can incorporate them into the explained multilayer neural network in the
course.

• dropout

• momentum

• data augmentation

Assignment 1

import numpy as np

import matplotlib.pyplot as plt

from nonlinear import *

inp = 3 # input vector dim

mid = 10 # num of units of intermediate layer

out = 1 # num of units of output layer

rho = 1 # learning rate

wim = np.random.rand(inp, mid) * 2 - 1 # weights from input to intermediate

wmo = np.random.rand(mid, out) * 2 - 1 # weights from intermediate to output

ax = np.concatenate((np.ones((1, n)), x)) # extended vector

sigmoid = lambda x: 1. / (1. + np.exp(-x))

Assignment 1

xx, yy = np.meshgrid(np.linspace(-1, 1), np.linspace(-1, 1))

xf = xx.flatten()[:, np.newaxis]

yf = yy.flatten()[:, np.newaxis]

axy = np.concatenate((np.ones(xf.shape[0])[:, np.newaxis], xf, yf),

axis=1).T

l = (l == 1)

plt.figure()

plt.ion()

Assignment 1

while True: # loop for each epoch

for i in range(n): # loop for each data

gm = <<compute output of the intermediate layer>>

go = <<compute output of the output layer>>

eo = <<compute error of the output layer>>

em = <<compute error of the intermediate layer>>

wim = wim - rho * <<update W_{im}>>

wmo = wmo - rho * <<update W_{mo}>>

Assignment 1

plt.clf()

plt.xlim([-1, 1])

plt.ylim([-1, 1])

plt.plot(x[0, np.where(l == 1)], x[1, np.where(l == 1)], ’bo’)

plt.plot(x[0, np.where(l == 0)], x[1, np.where(l == 0)], ’bx’)

p = sigmoid(axy.T.dot(wim)).dot(wmo) # compute classification results

cs = plt.contour(xx, yy, np.reshape(p, xx.shape),

levels=[-5, 0, 5], colors=’g’)

plt.clabel(cs)

plt.show()

plt.pause(0.01)

	Multilayer Neural Network
	Assignment
	Assignment

