
パターン認識
Pattern Recognition

佐藤真一
Shin’ichi Satoh

国立情報学研究所
National Institute of Informatics

June 6, 2023

Schedule (subject to change)
5/23

Hybrid
Linear classifier, perceptron, MSE classifier, Widrow-Hoff
rule

5/30
Online, zoom only

neural network, deep learning

6/6
Hybrid

all about SVM

6/13
Online, zoom only

Orthogonal expansions, Eigenvalue decomposition

6/20 no class
6/27

Hybrid→may be Online
Clustering, dendrogram, aggromerative clustering, k-
means

7/4
Hybrid

Graphs, normalized cut, spectral clustering, Laplacian
Eigenmaps

7/11 extra (if needed)

Introduction of Support Vector Machines

• Original Support Vector Machines (SVM) algorithm, aka linear SVM, was invented by
Vladimir N. Vapnik in 1960s.

• SVM minimizes “Structural Risk” which combines training error (empirical risk) and the
complexity of the model (the VC dimension) and can thus effectively avoid overfitting.

• Nonlinear extension by kernel trick was suggested by Bernhard E. Boser, Isabelle M. Guyon
and Vladimir N. Vapnik in 1992. 1

• Soft margin was proposed by Corinna Cortes and Vapnik in 1993. 2

1Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin
classifiers. Proc. of COLT, 1992.

2Cortes, C., Vapnik, V. Support-vector networks. Mach Learn 20, 273–297 (1995).

Linear Support Vector Machines: Intuition

Linear Support Vector Machines select discriminant plane with margin maximized.

margin

Linear Support Vector Machines: Intuition

Consider the set of training data X = {xi ∈ Rd}, i = 1, · · · , n and their labels yi ∈ {−1, 1}.
We now assume that the training data is linearly separable.
We want to find discriminant (hyper-)plane:

w · x − b = 0

with maximum-margin.
The margin is then represented as a margin between two hyper-planes:

w · x − b = 1 and w · x − b = −1.

The margin is then
2

∥w∥
.

Linear Support Vector Machines: Formulation

So we want to minimize ∥w∥ with constraints:

w · xi − b ≥ 1 for xi with yi = 1

w · xi − b ≤ −1 for xi with yi = −1.

The constraints are equivalent to:

yi (w · xi − b) ≥ 1 for all i = 1, · · · , n.

So we obtain the optimization problem:

Minimize ∥w∥
subject to yi (w · xi − b) ≥ 1 for all i = 1, · · · , n.

Linear Support Vector Machines: Primal form

The problem can be formulated as a quadratic programming optimization problem as follows:

arg min
(w ,b)

1

2
∥w∥2

subject to (for any i = 1, · · · , n)
yi (w · xi − b) ≥ 1.

Linear Support Vector Machines: Dual form

By introducing Lagrange multipliers αi , the problem will then be:

L =

{
1

2
∥w∥2 −

n∑
i=1

αi [yi (w · xi − b)− 1]

}

argmin
w ,b

max
α

L

with Karush-Kuhn-Tucker conditions:

∂L

∂w
= 0,

∂L

∂b
= 0

αi ≥ 0, αi [yi (w · xi − b)− 1] = 0

Karush-Kuhn-Tucker conditions

Maximize f (x)
subject to gi (x) ≤ 0, hj(x) = 0

Karush-Kuhn-Tucker conditions:

∇f (x)−
∑

αi∇gi (x)−
∑

λj∇hj(x) = 0

gi (x) ≤ 0, hj(x) = 0

αi ≥ 0

αigi (x) = 0

Lagrange Multipliers Method

Maximize f (x)
subject to hj(x) = 0

Lagrangian:

L = f (x)−
∑

λjhj(x)

Conditions:

∇L = ∇f (x)−
∑

λj∇hj(x) = 0

hj(x) = 0

Linear Support Vector Machines: Dual form

∂L

∂w
= 0 → w =

∑
αiyixi

∂L

∂b
= 0 →

∑
αiyi = 0

αi [yi (w · xi − b)− 1] = 0 → · · ·

if yi (w · xi − b)− 1 > 0 then αi = 0, otherwise (yi (w · xi − b)− 1 = 0) αi > 0
xi corresponding to αi > 0 is called support vector.

b =
1

|{αi > 0}|
∑
αi>0

(w · xi − yi)

Linear Support Vector Machines: Dual form

Put everything back to the original problem:
Maximize:

L(α) =
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj

subject to:

αi ≥ 0 and
n∑

i=1

αiyi = 0

We solve this by quadratic programming optimization method.

Quadratic Programming Optimization

Minimize
1

2
xTQx + pT x

subject to
Cx ≤ b

Ceqx = beq

LB ≤ x ≤ UB

In our case,
x = α, Qi,j = yiyjx

T
i xj , p = −[1 1 · · · 1],

LB = 0, Ceq = y , beq = 0

Linear Support Vector Machines: Implementation
(Python)

h = x * l

qpP = cvxopt.matrix(h.T.dot(h))

qpq = cvxopt.matrix(-np.ones(n), (n, 1))

qpG = cvxopt.matrix(-np.eye(n))

qph = cvxopt.matrix(np.zeros(n), (n, 1))

qpA = cvxopt.matrix(l.astype(float), (1, n))

qpb = cvxopt.matrix(0.)

cvxopt.solvers.options[’abstol’] = 1e-5

cvxopt.solvers.options[’reltol’] = 1e-10

cvxopt.solvers.options[’show_progress’] = False

res = cvxopt.solvers.qp(qpP, qpq, qpG, qph, qpA, qpb)

alpha = np.reshape(np.array(res[’x’]), -1)

w = np.sum(x * (np.ones(n) * (l * alpha)), axis=1)

sv = alpha > 1e-5

isv = np.where(sv)[-1]

b = np.sum(w.T.dot(x[:, isv]) - l[isv]) / np.sum(sv)

Linear Support Vector Machines: Implementation
(Matlab)

h=x;

h(:,l<0)=-h(:,l<0);

options=optimset(’Algorithm’,’interior-point-convex’);

alpha=quadprog(h’*h,-ones(1,size(x,2)),[],[],l,0,...

zeros(1,size(x,2)),[],[],options)’;

w=sum(x.*(ones(size(x,1),1)*(l.*alpha)),2);

sv=alpha>1e-5;

isv=find(sv);

b=sum(w’*x(:,isv)-l(isv))/sum(sv);

Linear Support Vector Machines: Implementation (Scilab)

h=x;

h(:,l<0)=-h(:,l<0);

alpha=quapro(h’*h,-ones(size(x,2),1),l,0,...

zeros(size(x,2),1),[],1)’;

w=sum(x.*(ones(size(x,1),1)*(l.*alpha)),2);

sv=alpha>1e-5;

isv=find(sv);

b=sum(w’*x(:,isv)-l(isv))/sum(sv);

Example (linear)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Example (slinear)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Linear Support Vector Machines: Soft Margin

What if the training data is not linearly separable?
We introduce soft margin to linearly separate the training data “as much as possible.”
Non-negative slack variables ξi are introduced:

yi (w · xi − b) ≥ 1− ξi

Our objective function is then

arg min
w ,ξ,b

{
1

2
∥w∥2 + C

n∑
i

ξi

}
subject to

yi (w · xi − b) ≥ 1− ξi , ξ ≥ 0

Linear Support Vector Machines: Soft Margin

This is equivalent to

arg min
w ,b

{
1

2
∥w∥2 + C

n∑
i

max(1− yi (w · xi + b), 0)

}
max(1− yi (w · xi + b), 0) is called hinge loss.

0-1 loss

hinge loss

Linear Support Vector Machines: Soft Margin

This is solved similarly using Lagrange Multipliers method with KKT conditions.
Maximize

L(α) =
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj

subject to

0 ≤ αi≤ C ,

n∑
i=1

αiyi = 0

Support vectors:
xi with 0 < αi < C (xi with αi = C are misclassified).

Linear Support Vector Machines: Soft Margin

Implementation: Try! Very straightforward.

Example (slinear)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Example (qlinear)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Support Vector Machines: Kernel Extension

• What if the data is severely linearly non-separable, which cannot be handled by soft
margin?

• Converts input vector x with nonlinear mapping function, namely, ϕ(x), and applies linear
discriminant function to the converted space.

• Example: x = [x1 x2]
T , ϕ(x) = [x1 x2 x

2
1 x1x2 x

2
2]

T . Application of linear discriminant
function to ϕ(x) is equivalent to applying quadratic discriminant function to x .

Support Vector Machines: Kernel Extension

• If explicit form of nonlinear mapping function works, we can simply convert data and apply
linear SVM.

• However, in many interesting nonlinear mapping functions can be represented only as
kernel functions.

k(x , y) = ϕ(x) · ϕ(y)
• Examples:

• Polynomial Kernel
k(x , y) = (x · y + 1)p, k(x , y) = (x · y)p

• Gaussian Kernel (Radial Basis Function (RBF) Kernel)

k(x , y) = exp(−∥x − y∥2

2σ2
)

Support Vector Machines: Kernel Extension

Recall:
Maximize

L(α) =
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj

subject to

0 ≤ αi ≤ C ,

n∑
i=1

αiyi = 0

Note that all xi appear in dot products between xi .

Support Vector Machines: Kernel Extension

So our problem is then:
Maximize

L(α) =
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjϕ(xi)
Tϕ(xj)

=
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjk(xi , xj)

subject to

0 ≤ αi ≤ C ,

n∑
i=1

αiyi = 0

.

Support Vector Machines: Kernel Extension

Suppose that αi are obtained by QP.

w =
∑

αiyiϕ(xi)

Note that w cannot be explicitly obtained.

b =
1

#sv

∑
i∈sv

(w · ϕ(xi)− yi)

=
1

#sv

∑
i∈sv

∑
j

αjyjϕ(xj)
Tϕ(xi)− yi

=

1

#sv

∑
i∈sv

∑
j

αjyjk(xj , xi)− yi

Support Vector Machines: Kernel Extension

Suppose we want to classify x .

f (x) = w · ϕ(x)− b

=
∑

αiyiϕ(xi)
Tϕ(x)− b

=
∑

αiyik(xi , x)− b

We can then classify x according to the sign of f (x).

Example (qlinear, Polynomial kernel)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

-1
.0
0
0

0.000
1
.0
0
0

Example (nonlinear, C=1, RBF kernel)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

-1.000

-1.000

0.000

0.000

1.000

1.000

Example (nonlinear, C=1000, RBF kernel)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

-1.000

-1.
00
0

0
.0
0
0

0.000

1.000

1.
00
0

Assignment

• Programming project and non-programming project are imposed.

• You are expected to solve either programming project OR non-programming project.

• Programming project is recommended.

• Of course you are most welcomed to solve both.

• Due on June 27.

Programming Project

• Extend Linear SVM to be able to handle soft margin and see how it works.

• Further extend to kernel version with RBF kernel and see how it works (extended project).

• Note: don’t use existing SVM packages! Implement by yourself.

• QP solvers can be used.
• Python: cvxopt (“conda install cvxopt” may work)
• Matlab: quadprog (requires optimization toolbox)
• Scilab: quapro (requires quapro toolbox)

• Try to classify couple of datasets: linear, slinear, qlinear, nonlinear.

Non-Programming Project 1

Show that the margin between the following two hyper-planes

w · x − b = 1 and w · x − b = −1

is
2

∥w∥
.

Non-Programming Project 2

Given the primal form of soft-margin SVM:

arg min
w ,ξ,b

{
1

2
∥w∥2 + C

n∑
i

ξi

}

subject to
yi (w · xi − b) ≥ 1− ξi , ξ ≥ 0

derive the dual form:
Maximize

L(α) =
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj

subject to

0 ≤ αi≤ C ,

n∑
i=1

αiyi = 0

.

	Course Information
	Introduction of Support Vector Machines
	Linear Support Vector Machines
	Linear Support Vector Machines with Soft Margin
	Nonlinear Support Vector Machines
	Assignment

