パターン認識
 Pattern Recognition

佐藤真一
Shin＇ichi Satoh

国立情報学研究所
National Institute of Informatics
June 6， 2023

Schedule (subject to change)

5/23
5/30
6/6
6/13
6/20
6/27

7/11

Hybrid
Online, zoom only
Hybrid
Online, zoom only

Hybrid \rightarrow may be Online
Hybrid

Linear classifier, perceptron, MSE classifier, Widrow-Hoff rule
neural network, deep learning
all about SVM
Orthogonal expansions, Eigenvalue decomposition no class
Clustering, dendrogram, aggromerative clustering, kmeans
Graphs, normalized cut, spectral clustering, Laplacian Eigenmaps
extra (if needed)

Introduction of Support Vector Machines

- Original Support Vector Machines (SVM) algorithm, aka linear SVM, was invented by Vladimir N. Vapnik in 1960s.
- SVM minimizes "Structural Risk" which combines training error (empirical risk) and the complexity of the model (the VC dimension) and can thus effectively avoid overfitting.
- Nonlinear extension by kernel trick was suggested by Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik in 1992. ${ }^{1}$
- Soft margin was proposed by Corinna Cortes and Vapnik in 1993. ${ }^{2}$

[^0]
Linear Support Vector Machines: Intuition

Linear Support Vector Machines select discriminant plane with margin maximized.

Linear Support Vector Machines: Intuition

Consider the set of training data $\mathcal{X}=\left\{x_{i} \in \mathbb{R}^{d}\right\}, i=1, \cdots, n$ and their labels $y_{i} \in\{-1,1\}$. We now assume that the training data is linearly separable.
We want to find discriminant (hyper-)plane:

$$
w \cdot x-b=0
$$

with maximum-margin.
The margin is then represented as a margin between two hyper-planes:

$$
w \cdot x-b=1 \text { and } w \cdot x-b=-1
$$

The margin is then

$$
\frac{2}{\|w\|}
$$

Linear Support Vector Machines: Formulation

So we want to minimize $\|w\|$ with constraints:

$$
\begin{aligned}
w \cdot x_{i}-b \geq 1 \text { for } x_{i} \text { with } y_{i} & =1 \\
w \cdot x_{i}-b \leq-1 \text { for } x_{i} \text { with } y_{i} & =-1 .
\end{aligned}
$$

The constraints are equivalent to:

$$
y_{i}\left(w \cdot x_{i}-b\right) \geq 1 \text { for all } i=1, \cdots, n .
$$

So we obtain the optimization problem:
Minimize \|w\|
subject to $y_{i}\left(w \cdot x_{i}-b\right) \geq 1$ for all $i=1, \cdots, n$.

Linear Support Vector Machines: Primal form

The problem can be formulated as a quadratic programming optimization problem as follows:

$$
\underset{(w, b)}{\arg \min } \frac{1}{2}\|w\|^{2}
$$

subject to (for any $i=1, \cdots, n$)

$$
y_{i}\left(w \cdot x_{i}-b\right) \geq 1
$$

Linear Support Vector Machines: Dual form

By introducing Lagrange multipliers α_{i}, the problem will then be:

$$
\begin{gathered}
L=\left\{\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(w \cdot x_{i}-b\right)-1\right]\right\} \\
\arg \min _{w, b} \max _{\alpha} L
\end{gathered}
$$

with Karush-Kuhn-Tucker conditions:

$$
\begin{aligned}
\frac{\partial L}{\partial w}=0, \frac{\partial L}{\partial b} & =0 \\
\alpha_{i} \geq 0, \alpha_{i}\left[y_{i}\left(w \cdot x_{i}-b\right)-1\right] & =0
\end{aligned}
$$

Karush-Kuhn-Tucker conditions

Maximize $f(x)$
subject to $g_{i}(x) \leq 0, h_{j}(x)=0$
Karush-Kuhn-Tucker conditions:

$$
\begin{gathered}
\nabla f(x)-\sum \alpha_{i} \nabla g_{i}(x)-\sum \lambda_{j} \nabla h_{j}(x)=0 \\
g_{i}(x) \leq 0, h_{j}(x)=0 \\
\alpha_{i} \geq 0 \\
\alpha_{i} g_{i}(x)=0
\end{gathered}
$$

Lagrange Multipliers Method

Maximize $f(x)$
subject to $h_{j}(x)=0$
Lagrangian:

$$
L=f(x)-\sum \lambda_{j} h_{j}(x)
$$

Conditions:

$$
\begin{gathered}
\nabla L=\nabla f(x)-\sum \lambda_{j} \nabla h_{j}(x)=0 \\
h_{j}(x)=0
\end{gathered}
$$

Linear Support Vector Machines: Dual form

$$
\begin{gathered}
\frac{\partial L}{\partial w}=0 \rightarrow w=\sum \alpha_{i} y_{i} x_{i} \\
\frac{\partial L}{\partial b}=0 \rightarrow \sum \alpha_{i} y_{i}=0 \\
\alpha_{i}\left[y_{i}\left(w \cdot x_{i}-b\right)-1\right]=0 \rightarrow \cdots
\end{gathered}
$$

if $y_{i}\left(w \cdot x_{i}-b\right)-1>0$ then $\alpha_{i}=0$, otherwise $\left(y_{i}\left(w \cdot x_{i}-b\right)-1=0\right) \alpha_{i}>0$ x_{i} corresponding to $\alpha_{i}>0$ is called support vector.

$$
b=\frac{1}{\left|\left\{\alpha_{i}>0\right\}\right|} \sum_{\alpha_{i}>0}\left(w \cdot x_{i}-y_{i}\right)
$$

Linear Support Vector Machines: Dual form

Put everything back to the original problem:
Maximize:

$$
L(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
$$

subject to:

$$
\alpha_{i} \geq 0 \text { and } \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

We solve this by quadratic programming optimization method.

Quadratic Programming Optimization

Minimize

$$
\frac{1}{2} x^{T} Q x+p^{T} x
$$

subject to

$$
\begin{gathered}
C x \leq b \\
C_{e q} x=b_{e q} \\
L B \leq x \leq U B
\end{gathered}
$$

In our case,

$$
\begin{gathered}
x=\alpha, Q_{i, j}=y_{i} y_{j} x_{i}^{T} x_{j}, p=-[11 \cdots 1] \\
L B=0, C_{e q}=y, b_{e q}=0
\end{gathered}
$$

Linear Support Vector Machines: Implementation (Python)

```
h = x * l
qpP = cvxopt.matrix(h.T.dot(h))
qpq = cvxopt.matrix(-np.ones(n), (n, 1))
qpG = cvxopt.matrix(-np.eye(n))
qph = cvxopt.matrix(np.zeros(n), (n, 1))
qpA = cvxopt.matrix(l.astype(float), (1, n))
qpb = cvxopt.matrix(0.)
cvxopt.solvers.options['abstol'] = 1e-5
cvxopt.solvers.options['reltol'] = 1e-10
cvxopt.solvers.options['show_progress'] = False
res = cvxopt.solvers.qp(qpP, qpq, qpG, qph, qpA, qpb)
alpha = np.reshape(np.array(res['x']), -1)
w = np.sum(x * (np.ones(n) * (l * alpha)), axis=1)
sv = alpha > 1e-5
isv = np.where(sv) [-1]
```


Linear Support Vector Machines：Implementation （Matlab）

```
h=x;
h(:,l<0)=-h(:,l<0);
options=optimset('Algorithm','interior-point-convex');
alpha=quadprog(h'*h,-ones(1,size(x,2)),[],[],l,0,\ldots
    zeros(1,size(x,2)),[],[],options)';
w=sum(x.*(ones(size(x,1),1)*(l.*alpha)),2);
sv=alpha>1e-5;
isv=find(sv);
b=sum(w'*x(:,isv)-l(isv))/sum(sv);
```


Linear Support Vector Machines: Implementation (Scilab)

```
h=x;
h(:,l<0)=-h(:,l<0);
alpha=quapro(h'*h,-ones(size(x,2),1),l,0,\ldots
    zeros(size(x,2),1),[],1)';
w=sum(x.*(ones(size(x,1),1)*(l.*alpha)),2);
sv=alpha>1e-5;
isv=find(sv);
b=sum(w'*x(:,isv)-l(isv))/sum(sv);
```


Example（linear）

Example (slinear)

Linear Support Vector Machines: Soft Margin

What if the training data is not linearly separable?
We introduce soft margin to linearly separate the training data "as much as possible." Non-negative slack variables ξ_{i} are introduced:

$$
y_{i}\left(w \cdot x_{i}-b\right) \geq 1-\xi_{i}
$$

Our objective function is then

$$
\underset{w, \xi, b}{\arg \min }\left\{\frac{1}{2}\|w\|^{2}+C \sum_{i}^{n} \xi_{i}\right\}
$$

subject to

$$
y_{i}\left(w \cdot x_{i}-b\right) \geq 1-\xi_{i}, \xi \geq 0
$$

Linear Support Vector Machines: Soft Margin

This is equivalent to

$$
\underset{w, b}{\arg \min }\left\{\frac{1}{2}\|w\|^{2}+C \sum_{i}^{n} \max \left(1-y_{i}\left(w \cdot x_{i}+b\right), 0\right)\right\}
$$

$\max \left(1-y_{i}\left(w \cdot x_{i}+b\right), 0\right)$ is called hinge loss.

Linear Support Vector Machines: Soft Margin

This is solved similarly using Lagrange Multipliers method with KKT conditions.
Maximize

$$
L(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

subject to

$$
0 \leq \alpha_{i} \leq C, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

Support vectors:
x_{i} with $0<\alpha_{i}<C$ (x_{i} with $\alpha_{i}=C$ are misclassified).

Linear Support Vector Machines: Soft Margin

Implementation: Try! Very straightforward.

Example (slinear)

Example (qlinear)

Support Vector Machines: Kernel Extension

- What if the data is severely linearly non-separable, which cannot be handled by soft margin?
- Converts input vector x with nonlinear mapping function, namely, $\phi(x)$, and applies linear discriminant function to the converted space.
- Example: $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}, \phi(x)=\left[x_{1} x_{2} x_{1}^{2} x_{1} x_{2} x_{2}^{2}\right]^{T}$. Application of linear discriminant function to $\phi(x)$ is equivalent to applying quadratic discriminant function to x.

Support Vector Machines: Kernel Extension

- If explicit form of nonlinear mapping function works, we can simply convert data and apply linear SVM.
- However, in many interesting nonlinear mapping functions can be represented only as kernel functions.

$$
k(x, y)=\phi(x) \cdot \phi(y)
$$

- Examples:
- Polynomial Kernel

$$
k(x, y)=(x \cdot y+1)^{p}, k(x, y)=(x \cdot y)^{p}
$$

- Gaussian Kernel (Radial Basis Function (RBF) Kernel)

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

Support Vector Machines: Kernel Extension

Recall:
Maximize

$$
L(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
$$

subject to

$$
0 \leq \alpha_{i} \leq C, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

Note that all x_{i} appear in dot products between x_{i}.

Support Vector Machines: Kernel Extension

So our problem is then:
Maximize

$$
\begin{aligned}
L(\alpha) & =\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right) \\
& =\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(x_{i}, x_{j}\right)
\end{aligned}
$$

subject to

$$
0 \leq \alpha_{i} \leq C, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

Support Vector Machines: Kernel Extension

Suppose that α_{i} are obtained by QP.

$$
w=\sum \alpha_{i} y_{i} \phi\left(x_{i}\right)
$$

Note that w cannot be explicitly obtained.

$$
\begin{aligned}
b & =\frac{1}{\# s v} \sum_{i \in s v}\left(w \cdot \phi\left(x_{i}\right)-y_{i}\right) \\
& =\frac{1}{\# s v} \sum_{i \in s v}\left(\sum_{j} \alpha_{j} y_{j} \phi\left(x_{j}\right)^{T} \phi\left(x_{i}\right)-y_{i}\right) \\
& =\frac{1}{\# s v} \sum_{i \in s v}\left(\sum_{j} \alpha_{j} y_{j} k\left(x_{j}, x_{i}\right)-y_{i}\right)
\end{aligned}
$$

Support Vector Machines: Kernel Extension

Suppose we want to classify x.

$$
\begin{aligned}
f(x) & =w \cdot \phi(x)-b \\
& =\sum \alpha_{i} y_{i} \phi\left(x_{i}\right)^{T} \phi(x)-b \\
& =\sum \alpha_{i} y_{i} k\left(x_{i}, x\right)-b
\end{aligned}
$$

We can then classify x according to the sign of $f(x)$.

Example (qlinear, Polynomial kernel)

Example (nonlinear, C=1, RBF kernel)

Example (nonlinear, $\mathrm{C}=1000$, RBF kernel)

Assignment

- Programming project and non-programming project are imposed.
- You are expected to solve either programming project OR non-programming project.
- Programming project is recommended.
- Of course you are most welcomed to solve both.
- Due on June 27.

Programming Project

- Extend Linear SVM to be able to handle soft margin and see how it works.
- Further extend to kernel version with RBF kernel and see how it works (extended project).
- Note: don't use existing SVM packages! Implement by yourself.
- QP solvers can be used.
- Python: cvxopt ("conda install cvxopt" may work)
- Matlab: quadprog (requires optimization toolbox)
- Scilab: quapro (requires quapro toolbox)
- Try to classify couple of datasets: linear, slinear, qlinear, nonlinear.

Non-Programming Project 1

Show that the margin between the following two hyper-planes

$$
w \cdot x-b=1 \text { and } w \cdot x-b=-1
$$

is

$$
\frac{2}{\|w\|}
$$

Non-Programming Project 2

Given the primal form of soft-margin SVM:

$$
\underset{w, \xi, b}{\arg \min }\left\{\frac{1}{2}\|w\|^{2}+C \sum_{i}^{n} \xi_{i}\right\}
$$

subject to

$$
y_{i}\left(w \cdot x_{i}-b\right) \geq 1-\xi_{i}, \xi \geq 0
$$

derive the dual form:
Maximize

$$
L(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
$$

subject to

$$
0 \leq \alpha_{i} \leq C, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

[^0]: ${ }^{1}$ Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. Proc. of COLT, 1992.
 ${ }^{2}$ Cortes, C., Vapnik, V. Support-vector networks. Mach Learn 20, 273-297 (1995)

