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Final Report

• Find any PR paper in top journals or top conferences

• e.g., IEEE TPAMI, IJCV, CVPR, ICCV, NeurIPS, ICML, ACMMM...

• Describe the following:
• bibliographic info of the paper
• brief of the paper
• what is the problem, why it’s important, how it’s solved, validation?
• why you selected the paper, what is exciting?
• feedback to the lecture, any comments

• 2-4 pages A4

• due: 07/31/2023

• send via ITC-LMS



Today’s topics

• Example applications of linear algebra in pattern recognition

• Face detection and recognition
• Principal Component Analysis (PCA) and Eigenface method
• Linear Discriminant Analysis (LDA) and Fisherface method



Eigenface: Introduction

• Assume that we have points scattered in the vector space.
• Principal Component Analysis (PCA) is a powerful tool to obtain linear manifold which

“best” fits with the scatter
• How we compute? What can be possible applications?
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Face detection and recognition

• Assume that we have a set of face images (with identity)

• Face detection: decide if given unknown image is face or not

• Face recognition: decide the identity of given face image









Images as intensity data



Image transformation

original gray scale crop

x = [x1 x2 x3 · · · xn]
discretize quantize



The Space of Faces

An image is a point in a high dimensional space
• An N ×M image is a point in RNM

• We can define vectors in this space as we did in the 2D case

[Thanks to Chuck Dyer, Steve Seitz, Nishino]
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Multivariate normal distribution

• We typically assume normal distribution

• Let’s assume p(x |non-face) yields uniform distribution, and p(x |face) yields normal
distribution

• multivariate normal distribution

Nx(M,Σ) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(X −M)TΣ−1(X −M))



Normal distribution



Eigenface method

• Key idea: the distribution of face images in the image space yields low dimensional linear
manifold

• find principal components by principal component analysis (PCA) via eigenvalue
decomposition

• project unknown images onto the manifold spanned by the obtained principal components

• face detection: decide face if it’s close enough to the manifold

• face recognition: decide the identity of the closest face image within the mainfold



Eigenface method

• Assume we have samples of faces:

X = [x1 x2 x3 · · · xn]

• We can then obtain covariance matrix:

µ =E [x] =
1

n

n∑
i=1

xi

Σ =E [(x− µ)(x− µ)T ] =
1

n
(X − µ)(X − µ)T



Eigenface method

• We then apply eigenvalue decomposition to the covariance matrix

Σϕi = λiϕi

• where λi are eigenvalues and ϕi are eigenvectors

• Retain m eigenvectors (ϕi , i = 1, · · · ,m) corresponding to the m largest eigenvalues

• Then each image x can be converted into m-dimensional vector

Φ = [ϕ1 ϕ2 · · · ϕm]

x ′ =ΦT (x − µ)



Covariance matrix and its algebraic/geometric
interpretation

What is the quadratic form ϕTΣϕ ?

ϕTΣϕ =ϕT

[
1

n

∑
i

(xi − µ)(xi − µ)T

]
ϕ

=
1

n

∑
i

[
ϕT (xi − µ)(xi − µ)Tϕ

]
=
1

n

∑
i

[
ϕT (xi − µ)

] [
(xi − µ)Tϕ

]
=
1

n

∑
i

[
ϕT (xi − µ)

] [
ϕT (xi − µ)

]T
=
1

n

∑
i

[
ϕT (xi − µ)

]2
=
1

n
y2
i



Covariance matrix and its algebraic/geometric
interpretation

How to maximize ϕTΣϕ wrt ϕTϕ = 1?

J =ϕTΣϕ− λ(ϕTϕ− 1) Lagrange multipliers method

∂J

∂ϕ
= · · ·

=2Σϕ− 2λϕ = 0

Σϕ =λϕ



Face detection and recognition by Eigenface method

Σ =ExxT

Σϕi =λiϕi

λ1 ≥ λ2 ≥ · · · ≥ λn

Φ = [ϕ1 ϕ2 · · · ϕm] m ≪ n

y =ΦT x

e =x − Φy

PCA is an orthonormal projection of a random vector x onto a lower-dimensional subspace Y
that minimizes mean square error.

J. M. Rehg ©2002
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Face detection and recognition by Eigenface method

Σ =ExxT

Σϕi =λiϕi

λ1 ≥ λ2 ≥ · · · ≥ λn

Φ = [ϕ1 ϕ2 · · · ϕm] m ≪ n

y =ΦT x

e =x − Φy

• Detection of faces based on distance from face space
• Recognition of faces based on distance within face space

J. M. Rehg ©2002



Eigenface

PCA extracts the eigenvec-
tors of Σ

• Gives a set of vectors
ϕ1, ϕ2, ϕ3, · · ·

• Each one of these
vectors is a direction in
face space

• what do these look
like?

mean 7517.23 4417.63 2515.54 1577.88 1139.56 996.586 766.105 642.852 618.14

527.857 503.581 453.627 393.573 362.128 335.53 308.648 290.13 257.461 237.984

235.809 220.528 194.027 184.335 179.851 172.422 167.897 162.202 156.528 144.476

139.273 126.904 121.281 114.261 105.609 101.138 99.7682 96.3293 94.2734 89.0666

86.4987 82.0051 80.18 77.1989 75.7128 72.8878 71.4762 70.1716 69.5897 65.9524

Eigenfaces



Projecting onto the Eigenfaces

The eigenfaces
ϕ1, ϕ2, ϕ3, · · · , ϕm span
the space of faces
A face is converted to eigen-
face coordinates by

org 0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 200

Eig recon

x →[(x − x̄)Tϕ1︸ ︷︷ ︸
y1

(x − x̄)Tϕ2︸ ︷︷ ︸
y2

· · · (x − x̄)Tϕm︸ ︷︷ ︸
ym

]

x ≈x̄ + y1ϕ1 + y2ϕ2 + · · ·+ ymϕm



Fisherface method

• Eigenface finds principal components which maximize the variance of face distribution

• What happens if we use identity information?

• it would be reasonable idea to maximize the variance between different people, while
minimize the variance within the same people

• find such components by Linear Discriminant Analysis (LDA)

• project unknown images onto the space spanned by the obtained components

• face recognition (only): decide the identity of the closest face image within the space



Fisherface method



Fisherface method

• Assume that we have N sample images:

{x1, x2, · · · , xn}

• Assume that we have C classes (identities):

{χ1, χ2, · · · , χC}

• Then average of each class is:

µi =
1

|χi |
∑
x∈χi

x

• Total average:

µ =
1

N

N∑
k=1

xk



Fisherface method

• Scatter of class i :
Si =

∑
x∈χi

(x − µi )(x − µi )
T

• Within class scatter:

SW =
C∑
i=1

Si

• Between class scatter:

SB =
C∑
i=1

|χi |(µi − µ)(µi − µ)T

• Total scatter:
ST = SW + SB



Fisherface method

• We want to obtain linear projection W which converts input x to low-dimensional vector y :

y = W T x

• Between class scatter in the space of y :

S̃B = W TSBW

• Within class scatter in the space of y :

S̃W = W TSWW



Fisherface method



Fisherface method

• The wanted projection:

Wopt = arg max
W

|S̃B |
|S̃W |

= arg max
W

|W TSBW |
|W TSWW |

• This can be obtained by generalized Eigen value decomposition

SBwi = λiSWwi i = 1, · · · ,m



Fisherface method: experiments

Yale dataset having variation in Facial Expression, Eyewear, and Lighting

• input: 160 images of 16 people

• Train: 159, text: 1 (Leave-one-out)



Fisherface method: experiments



Demo

• The experiments of Eigenfaces and Fisherfaces using public face dataset

• Eigenfaces visualization

• Face reconstruction using Eigenfaces

• Head to head comparison of Eigenfaces vs Fisherfaces in face recognition

• Olivetti faces dataset

• 40 individuals 10 images (different times, varying the lighting, facial expressions (open /
closed eyes, smiling / not smiling) and facial details (glasses / no glasses))
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