# パターン認識 <br> Pattern Recognition 

佐藤真一<br>Shin＇ichi Satoh

国立情報学研究所
National Institute of Informatics
June 13， 2023

## Final Report

- Find any PR paper in top journals or top conferences
- e.g., IEEE TPAMI, IJCV, CVPR, ICCV, NeurIPS, ICML, ACMMM...
- Describe the following:
- bibliographic info of the paper
- brief of the paper
- what is the problem, why it's important, how it's solved, validation?
- why you selected the paper, what is exciting?
- feedback to the lecture, any comments
- 2-4 pages A4
- due: 07/31/2023
- send via ITC-LMS


## Today's topics

- Example applications of linear algebra in pattern recognition
- Face detection and recognition
- Principal Component Analysis (PCA) and Eigenface method
- Linear Discriminant Analysis (LDA) and Fisherface method


## Eigenface: Introduction



- Assume that we have points scattered in the vector space.
- Principal Component Analysis (PCA) is a powerful tool to obtain linear manifold which "best" fits with the scatter
- How we compute? What can be possible applications?
$\qquad$


## Eigenface：Introduction


－Assume that we have points scattered in the vector space．
－Principal Component Analysis（PCA）is a powerful tool to obtain linear manifold which ＂best＂fits with the scatter
－How we compute？What can be possible applications？

## Face detection and recognition

- Assume that we have a set of face images (with identity)
- Face detection: decide if given unknown image is face or not
- Face recognition: decide the identity of given face image





## Images as intensity data



# Image transformation 


original
discretize

discretize

gray scale

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & \cdots
\end{array} x_{n}\right]
$$

crop


quantize

## The Space of Faces



An image is a point in a high dimensional space

- An $N \times M$ image is a point in $\mathbb{R}^{N M}$
- We can define vectors in this space as we did in the 2D case
[Thanks to Chuck Dyer, Steve Seitz, Nishino]


## The Space of Faces



An image is a point in a high dimensional space

- An $N \times M$ image is a point in $\mathbb{R}^{N M}$
- We can define vectors in this space as we did in the 2D case
[Thanks to Chuck Dyer, Steve Seitz, Nishino]


## The Space of Faces



An image is a point in a high dimensional space

- An $N \times M$ image is a point in $\mathbb{R}^{N M}$
- We can define vectors in this space as we did in the 2D case
[Thanks to Chuck Dyer, Steve Seitz, Nishino]


## The Space of Faces



An image is a point in a high dimensional space

- An $N \times M$ image is a point in $\mathbb{R}^{N M}$
- We can define vectors in this space as we did in the 2D case
[Thanks to Chuck Dyer, Steve Seitz, Nishino]


## Multivariate normal distribution

- We typically assume normal distribution
- Let's assume $p(x \mid$ non-face $)$ yields uniform distribution, and $p(x \mid$ face $)$ yields normal distribution
- multivariate normal distribution

$$
N_{x}(M, \Sigma)=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(X-M)^{T} \Sigma^{-1}(X-M)\right)
$$

## Normal distribution



FIGURE 2.9. Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean $\boldsymbol{\mu}$. The ellipses show lines of equal probability density of the Gaussian. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

## Eigenface method

- Key idea: the distribution of face images in the image space yields low dimensional linear manifold
- find principal components by principal component analysis (PCA) via eigenvalue decomposition
- project unknown images onto the manifold spanned by the obtained principal components
- face detection: decide face if it's close enough to the manifold
- face recognition: decide the identity of the closest face image within the mainfold


## Eigenface method

- Assume we have samples of faces:

$$
X=\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & \cdots & x_{n}
\end{array}\right]
$$

- We can then obtain covariance matrix:

$$
\begin{aligned}
& \mu=E[\mathbf{x}]=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& \Sigma=E\left[(\mathbf{x}-\mu)(\mathbf{x}-\mu)^{T}\right]=\frac{1}{n}(X-\mu)(X-\mu)^{T}
\end{aligned}
$$

## Eigenface method

- We then apply eigenvalue decomposition to the covariance matrix

$$
\Sigma \phi_{i}=\lambda_{i} \phi_{i}
$$

- where $\lambda_{i}$ are eigenvalues and $\phi_{i}$ are eigenvectors
- Retain $m$ eigenvectors ( $\phi_{i}, i=1, \cdots, m$ ) corresponding to the $m$ largest eigenvalues
- Then each image $x$ can be converted into $m$-dimensional vector

$$
\begin{aligned}
\Phi & =\left[\phi_{1} \phi_{2} \cdots \phi_{m}\right] \\
x^{\prime} & =\Phi^{T}(x-\mu)
\end{aligned}
$$

## Covariance matrix and its algebraic/geometric interpretation

What is the quadratic form $\phi^{T} \Sigma \phi$ ?

$$
\begin{aligned}
\phi^{T} \Sigma \phi & =\phi^{T}\left[\frac{1}{n} \sum_{i}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{T}\right] \phi \\
& =\frac{1}{n} \sum_{i}\left[\phi^{T}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{T} \phi\right] \\
& =\frac{1}{n} \sum_{i}\left[\phi^{T}\left(x_{i}-\mu\right)\right]\left[\left(x_{i}-\mu\right)^{T} \phi\right] \\
& =\frac{1}{n} \sum_{i}\left[\phi^{T}\left(x_{i}-\mu\right)\right]\left[\phi^{T}\left(x_{i}-\mu\right)\right]^{T} \\
& =\frac{1}{n} \sum_{i}\left[\phi^{T}\left(x_{i}-\mu\right)\right]^{2} \\
& =\frac{1}{n} y_{i}^{2}
\end{aligned}
$$



## Covariance matrix and its algebraic/geometric interpretation

How to maximize $\phi^{T} \Sigma \phi$ wrt $\phi^{T} \phi=1$ ?

$$
\begin{aligned}
J & =\phi^{T} \Sigma \phi-\lambda\left(\phi^{T} \phi-1\right) \text { Lagrange multipliers method } \\
\frac{\partial J}{\partial \phi} & =\cdots \\
& =2 \Sigma \phi-2 \lambda \phi=0 \\
\Sigma \phi & =\lambda \phi
\end{aligned}
$$

## Face detection and recognition by Eigenface method



$$
\begin{aligned}
\Sigma= & E x_{x}{ }^{T} \\
\Sigma \phi_{i}= & \lambda_{i} \phi_{i} \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \\
\Phi= & {\left[\phi_{1} \phi_{2} \cdots \phi_{m}\right] m \ll n } \\
y= & \Phi^{T} x \\
e= & x-\Phi y
\end{aligned}
$$

PCA is an orthonormal projection of a random vector $\mathbf{x}$ onto a lower-dimensional subspace $Y$ that minimizes mean square error.

## Face detection and recognition by Eigenface method



$$
\begin{aligned}
\Sigma= & E x^{T} \\
\Sigma \phi_{i}= & \lambda_{i} \phi_{i} \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \\
\Phi= & {\left[\phi_{1} \phi_{2} \cdots \phi_{m}\right] m \ll n } \\
y= & \Phi^{T} x \\
e= & x-\Phi y
\end{aligned}
$$

PCA is an orthonormal projection of a random vector $\mathbf{x}$ onto a lower-dimensional subspace $Y$ that minimizes mean square error.

## Face detection and recognition by Eigenface method



$$
\begin{aligned}
\Sigma= & E x_{x}^{T} \\
\Sigma \phi_{i}= & \lambda_{i} \phi_{i} \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \\
\Phi= & {\left[\phi_{1} \phi_{2} \cdots \phi_{m}\right] m \ll n } \\
y= & \Phi^{T} x \\
e= & x-\Phi y
\end{aligned}
$$

PCA is an orthonormal projection of a random vector $\mathbf{x}$ onto a lower-dimensional subspace $Y$ that minimizes mean square error.

Face detection and recognition by Eigenface method


$$
\begin{aligned}
\Sigma= & E x^{T} \\
\Sigma \phi_{i}= & \lambda_{i} \phi_{i} \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \\
\Phi= & {\left[\phi_{1} \phi_{2} \cdots \phi_{m}\right] m \ll n } \\
y= & \Phi^{T} x \\
e= & x-\Phi y
\end{aligned}
$$

Face detection and recognition by Eigenface method


$$
\begin{aligned}
\Sigma= & E x^{T} \\
\Sigma \phi_{i}= & \lambda_{i} \phi_{i} \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \\
\Phi= & {\left[\phi_{1} \phi_{2} \cdots \phi_{m}\right] m \ll n } \\
y= & \Phi^{T} x \\
e= & x-\Phi y
\end{aligned}
$$

Face detection and recognition by Eigenface method


$$
\begin{aligned}
\Sigma= & E x_{x}^{T} \\
\Sigma \phi_{i}= & \lambda_{i} \phi_{i} \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \\
\Phi= & {\left[\phi_{1} \phi_{2} \cdots \phi_{m}\right] m \ll n } \\
y= & \Phi^{T} x \\
e= & x-\Phi y
\end{aligned}
$$

## Face detection and recognition by Eigenface method



$$
\begin{aligned}
\Sigma= & E \mathbf{x x}^{T} \\
\Sigma \phi_{i}= & \lambda_{i} \phi_{i} \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \\
\Phi= & {\left[\phi_{1} \phi_{2} \cdots \phi_{m}\right] m \ll n } \\
y= & \Phi^{T} x \\
e= & x-\Phi y
\end{aligned}
$$

- Detection of faces based on distance from face space
- Recognition of faces based on distance within face space


## Eigenface

PCA extracts the eigenvectors of $\Sigma$

- Gives a set of vectors $\phi_{1}, \phi_{2}, \phi_{3}, \cdots$
- Each one of these vectors is a direction in face space
- what do these look like?

$\begin{array}{llllllllll}527.857 & 503.581 & 453.627 & 393.573 & 362.128 & 335.53 & 308.648 & 290.13 & 257.461 & 237.984\end{array}$

$\begin{array}{lllllllllll}235.809 & 220.528 & 194.027 & 184.335 & 179.851 & 172.422 & 167.897 & 162.202 & 156.528 & 144.476\end{array}$

$\begin{array}{lllllllllll}139.273 & 126.904 & 121.281 & 114.261 & 105.609 & 101.138 & 99.7682 & 96.3293 & 94.2734 & 89.0666\end{array}$

$\begin{array}{llllllllllll}86.4987 & 82.0051 & 80.18 & 77.1989 & 75.7128 & 72.8878 & 71.4762 & 70.1716 & 69.5897 & 65.9524\end{array}$



## Projecting onto the Eigenfaces

Eig recon

The eigenfaces $\phi_{1}, \phi_{2}, \phi_{3}, \cdots, \phi_{m} \quad$ span the space of faces
A face is converted to eigenface coordinates by





$$
\begin{aligned}
x & \rightarrow[\underbrace{(x-\bar{x})^{T} \phi_{1}}_{y_{1}} \underbrace{(x-\bar{x})^{T} \phi_{2}}_{y_{2}} \cdots \underbrace{(x-\bar{x})^{T} \phi_{m}}_{y_{m}}] \\
x & \approx \bar{x}+y_{1} \phi_{1}+y_{2} \phi_{2}+\cdots+y_{m} \phi_{m}
\end{aligned}
$$

## Fisherface method

- Eigenface finds principal components which maximize the variance of face distribution
- What happens if we use identity information?
- it would be reasonable idea to maximize the variance between different people, while minimize the variance within the same people
- find such components by Linear Discriminant Analysis (LDA)
- project unknown images onto the space spanned by the obtained components
- face recognition (only): decide the identity of the closest face image within the space

Fisherface method


Poor Projection


Good Projection

## Fisherface method

- Assume that we have $N$ sample images:

$$
\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}
$$

- Assume that we have $C$ classes (identities):

$$
\left\{\chi_{1}, \chi_{2}, \cdots, \chi_{c}\right\}
$$

- Then average of each class is:

$$
\mu_{i}=\frac{1}{\left|\chi_{i}\right|} \sum_{x \in \chi_{i}} x
$$

- Total average:

$$
\mu=\frac{1}{N} \sum_{k=1}^{N} x_{k}
$$

## Fisherface method

- Scatter of class $i$ :

$$
S_{i}=\sum_{x \in \chi_{i}}\left(x-\mu_{i}\right)\left(x-\mu_{i}\right)^{T}
$$

- Within class scatter:

$$
S_{W}=\sum_{i=1}^{C} S_{i}
$$

- Between class scatter:

$$
S_{B}=\sum_{i=1}^{C}\left|\chi_{i}\right|\left(\mu_{i}-\mu\right)\left(\mu_{i}-\mu\right)^{T}
$$

- Total scatter:

$$
S_{T}=S_{W}+S_{B}
$$

## Fisherface method

- We want to obtain linear projection $W$ which converts input $x$ to low-dimensional vector $y$ :

$$
y=W^{T} x
$$

- Between class scatter in the space of $y$ :

$$
\tilde{S_{B}}=W^{T} S_{B} W
$$

- Within class scatter in the space of $y$ :

$$
\tilde{S_{W}}=W^{\top} S_{W} W
$$

Fisherface method


Good separation

## Fisherface method

- The wanted projection:

$$
W_{o p t}=\underset{W}{\arg \max } \frac{\left|\tilde{S_{B}}\right|}{\mid \tilde{S_{W} \mid}}=\underset{W}{\arg \max } \frac{\left|W^{T} S_{B} W\right|}{\left|W^{T} S_{W} W\right|}
$$

- This can be obtained by generalized Eigen value decomposition

$$
S_{B} w_{i}=\lambda_{i} S_{W} w_{i} \quad i=1, \cdots, m
$$

## Fisherface method: experiments

Yale dataset having variation in Facial Expression, Eyewear, and Lighting

- input: 160 images of 16 people
- Train: 159, text: 1 (Leave-one-out)


Fisherface method: experiments


## Demo

- The experiments of Eigenfaces and Fisherfaces using public face dataset
- Eigenfaces visualization
- Face reconstruction using Eigenfaces
- Head to head comparison of Eigenfaces vs Fisherfaces in face recognition
- Olivetti faces dataset
- 40 individuals 10 images (different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses))

