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Today's topics

® Example applications of linear algebra in pattern recognition
® Face detection and recognition

® Principal Component Analysis (PCA) and Eigenface method
® Linear Discriminant Analysis (LDA) and Fisherface method



Eigenface: Introduction
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® Assume that we have points scattered in the vector space.

® Principal Component Analysis (PCA) is a powerful tool to obtain linear manifold which
“best” fits with the scatter

® How we compute? What can be possible applications?
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Face detection and recognition

® Assume that we have a set of face images (with identity)
® Face detection: decide if given unknown image is face or not

® Face recognition: decide the identity of given face image












Images as intensity data




Image transformation

original

gray scale

crop

discretize

quantize

X=[x1x2x3 -+ Xp]




The Space of Faces

v

An image is a point in a high dimensional space
® An N x M image is a point in RMM
® We can define vectors in this space as we did in the 2D case

[Thanks to Chuck Dyer, Steve Seitz, Nishino]
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The Space of Faces
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An image is a point in a high dimensional space
® An N x M image is a point in RVM
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Multivariate normal distribution

® We typically assume normal distribution

® Let's assume p(x|non-face) yields uniform distribution, and p(x|face) yields normal
distribution

® multivariate normal distribution

N,(M, ) = exp(—5(X — M)TE (X — M)

1
(2m)3 T3



Normal distribution

> X,

FIGURE 2.9. Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean p. The ellipses show lines of equal probability density of the Gaussian.

From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copy-
right © 2001 by John Wiley & Sons, Inc.
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Eigenface method

Key idea: the distribution of face images in the image space yields low dimensional linear
manifold

find principal components by principal component analysis (PCA) via eigenvalue
decomposition

project unknown images onto the manifold spanned by the obtained principal components
face detection: decide face if it's close enough to the manifold

face recognition: decide the identity of the closest face image within the mainfold



Eigenface method
® Assume we have samples of faces:
X =[x1x2x3 - Xp]

® \We can then obtain covariance matrix:

1 n
p=E[x] = " in
i=1

T =Elx— p)x— )= (X~ )X )T



Eigenface method

We then apply eigenvalue decomposition to the covariance matrix

Yoi = Aigi

where )\; are eigenvalues and ¢; are eigenvectors
Retain m eigenvectors (¢; , i = 1,--- , m) corresponding to the m largest eigenvalues

Then each image x can be converted into m-dimensional vector

S =[p1h2 - Pm)
X =0T (x - pu)



Covariance matrix and its algebraic/geometric
interpretation
What is the quadratic form ¢"¥¢ ?
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Covariance matrix and its algebraic/geometric
interpretation
How to maximize ¢ ¢ wrt ¢" ¢ = 17
J=¢"¥X¢p — \N¢T$—1) Lagrange multipliers method
aJ
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=25 ¢ — 2)\¢ = 0
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Face detection and recognition by Eigenface method

X
Y =Exx”
Yo =Nipi
AL>X 2> 2 A,
‘e e S =[p12 - pm] mM<n
‘e y =0Tx
X, e =x— Py

PCA is an orthonormal projection of a random vector x onto a lower-dimensional subspace Y
that minimizes mean square error.

J. M. Rehg (©2002
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Face detection and recognition by Eigenface method

Y =Exx”
Yo =Nipi
AL>X 2> 2 A,
S =[p12 - pm] mM<n
y =0Tx
e =x— by

® Detection of faces based on distance from face space
® Recognition of faces based on distance within face space

J. M. Rehg (©2002



Eigenface

Eigenfaces

mean 7517.23 4417.63 2515.54 1577.88 1139.56 996.586 766.105 642.852 618.14

PCA extracts the eigenvec- H - . i H . . i i

tors of ¥ 527.857 503.581 453.627 393573 362.128 335.53 308.648 290.13 257.461 237.984
< @ 15
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® Gives a set of vectors
G1, 2, ¢35+ -

® Each one of these
vectors is a direction in
face space

® what do these look 86.4987 82.0051 80.18 77.1989 75.7128 72.8878 71.4762 7
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Fisherface method

Eigenface finds principal components which maximize the variance of face distribution
What happens if we use identity information?

it would be reasonable idea to maximize the variance between different people, while
minimize the variance within the same people

find such components by Linear Discriminant Analysis (LDA)
project unknown images onto the space spanned by the obtained components
face recognition (only): decide the identity of the closest face image within the space



Fisherface method

Poor Projection Good Projection



Assume that we have N sample images:

{X17 X2yt Xn}

Assume that we have C classes (identities):

Then average of each class is:

Total average:

{Xla X2, ", XC}

pi =

1
PN

|X XEX

Fisherface method



Scatter of class i:

Within class scatter:

Between class scatter:

Total scatter:

Fisherface method

Si= 3 (- u)x — )T

XEX
C
Sw=Y_5
i=1

C
Se =D Iil(ui — )i — )"
i=1

St=5w+ 58



Fisherface method
® We want to obtain linear projection W which converts input x to low-dimensional vector y:
y=WTx
® Between class scatter in the space of y:
Sg = WTSgW
® Within class scatter in the space of y:

Sw=WTs,w



Fisherface method
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Good separation



Fisherface method
® The wanted projection:

Wopt = arg max |§B| = arg max'WTiWI
> wo |Swl wo [(WTSwW|

® This can be obtained by generalized Eigen value decomposition

SBW,':)\,'SWW,' I:].7 ,m



Fisherface method: experiments

Yale dataset having variation in Facial Expression, Eyewear, and Lighting
® input: 160 images of 16 people
® Train: 159, text: 1 (Leave-one-out)

With Without 3 Lighting

._ 5 expressions
glasses  glasses conditions
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Fisherface method: experiments
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Demo

The experiments of Eigenfaces and Fisherfaces using public face dataset
Eigenfaces visualization

Face reconstruction using Eigenfaces

Head to head comparison of Eigenfaces vs Fisherfaces in face recognition
Olivetti faces dataset

40 individuals 10 images (different times, varying the lighting, facial expressions (open /
closed eyes, smiling / not smiling) and facial details (glasses / no glasses))
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