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Today's topics

Clustering Techniques
® k-Means
® Agglomerative Hierarchical Clustering

® Dendrogram

Evaluation



Clustering

So far we assumed that the class labels are given for training
samples.

Sometimes it's very costly to provide class labels.
What can we do if we don’t know class labels?
Unsupervised methods, or smart preprocessing methods

Clustering discovers distinct subclasses observed in the data
distribution.



Clustering

FIGURE 10.6. These four data sets have identical statistics up to second-order—that
is, the same mean p and covariance X. In such cases it is important to include in the
model more parameters to represent the structure more completely. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by
John Wiley & Sons, Inc.




Algorithm k-means

Input: N data points
Output: k cluter centers

® Determine the number of clusters: k

® (Randomly) guess k cluster center locations

© Each data point finds out which center it's closest to

O Each center finds the centroid of the points it owns

® Terminate if assignment of N data points does not change

@ Repeat from 3 otherwise



K-means Clustering: Step 1
Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 1

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 2

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 2

Algorithm: k-means, Distance Metric: Euclidean Distance

5

@ ®
@ ‘o’
@ — e
k; ® o
o
M /4 kz ' /
* I * ¢
* / A4
Te Vg
oo / .k ¢ ¢ .
3




K-means Clustering: Step 3

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 4

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 4

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 5

Algorithm: k-means, Distance Metric: Euclidean Distance

expression in condition 2
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Hierarchical Clustering

Algorithm (Agglomerative Hierarchical Clustering)

Input: N data points x;, i=1,--- N
Output? c clusters D;, j=1,---, ¢
@ initialize ¢: desired number of clusters, ¢; = n, D; = x; for
i=1---,n
®@c=c-1

© find nearest clusters, say, D; and D;
® merge D; and D;
@ repeat from 2 until c = ¢

@ return c clusters



Hierarchical Clustering

Dendrogram
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FIGURE 10.11. A dendrogram can represent the results of hierarchical clustering algo-
rithms. The vertical axis shows a generalized measure of similarity among clusters. Here,
at level 1 all eight points lie in singleton clusters; each point in a cluster is highly similar
to itself, of course. Points x; and x; happen to be the most similar, and are merged at
level 2, and so forth. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.



The Nearest-Neighbor Algorithm

® |f minimum distance between elements of two clusters is used, the
method is called the nearest-neighbor cluster algorithm.

® [f it is terminated when the distance between nearest clusters exceeds
an arbitrary threshold, it is called the single-linkage algorithm.



The Nearest-Neighbor Algorithm

FIGURE 10,13, Two Gaussians were used to generate two-dimensional samples, shown
in pink and black. The nearest-neighbor clustering algorithm gives two clusters that well
approximate the generating Gaussians (left), If, however, another particular sample is
generated (circled red point at the right) and the procedure is restarted, the clusters do
not well approximate the Gaussians. This illustrates how the algorithm is sensitive to
the details of the samples. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



The Farthest-Neighbor Algorithm

® |f maximum distance between elements of two clusters is used, the
method is called the farthest-neighbor cluster algorithm.

® [f it is terminated when the distance between nearest clusters exceeds
an arbitrary threshold, it is called the complete-linkage algorithm.



The Farthest-Neighbor Algorithm

FIGURE 10.14. The farthest-neighbor clustering algorithm uses the separation between
the most distant points as a criterion for cluster membership. If this distance is set very
large, then all points lie in the same cluster. In the case shown at the left, a fairly large
e leads to three clusters; a smaller dy,., gives four clusters, as shown at the right. From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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Clustering Validation

® How to evaluate the performance of clutering?

® Assume that Xi, ---, X, are ground truth clusters (classes), and
Yy, -+, Ys are generated clusters.



Purity

Purity(X,Y) Z max 1X; 0 Yy

® Purity measure sums purities of all clusters.

® Problem: high purity is easy to achieve when the number of clusters
is large.

® Extreme case: one item per cluster.



Normalized Mutual Information (NMI)
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Rand Index

For each pair of items (p, q),

TP: number of pairs belong to X; and Y;
TN: not belong to either any X; or any Y;
FP: belong not to any X; but to Y;

FN: belong to X; but not to any Y;

TP + TN
RI(X,Y) =
XY = Py AN T T
TP+ TN
TN(N-1))2



F measure

TP
T TP+ FP
TP

TP+ FN
g _(B+1PR
PTBP LR

P

R



Application of clustering: Fast
multi-dimensional data search

® We want to index large number of multi-dimensional vectors y

® Given query vector x we want to return vector(s) in the database
nearest from the query

® Basic idea:

Coarsely divide vectors via clustering

Register each data to an entry corresponding to the cluster center
the data belongs to

(Optional) Compute residuals of data from cluster centers and
register the residuals to a similar structure with clustering

In search, inspect data which belong to the entry corresponding to
the cluster center closest to x

(Optional) Inspect only data which have similar redisuals to the query



Application of clustering: Fast

multi-dimensional data search
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Jégou, Douze, Schmid, Searching with quantization: approximate nearest
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