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Final Report

• Find any pattern recognition paper in top journals or top conferences

• e.g., IEEE TPAMI, IJCV, CVPR, ICCV, NeurIPS, ICML, ACMMM...

• Describe the following:
• bibliographic info of the paper
• brief of the paper
• what is the problem, why it’s important, how it’s solved, validation?
• why you selected the paper, what is exciting?
• feedback to the lecture, any comments

• (about) 2-4 pages A4

• due: 07/31/2023

• send via ITC-LMS



Final Report
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• Belkin and Niyogi, Laplacian Eigenmaps and Spectral Techniques for Embedding and
Clustering, NIPS, 2001.

• Zhang and Sim, When Fisher meets Fukunaga-Koontz: A New Look at Linear
Discriminants, CVPR, 2006.

• Felzenszwalb, Girshick, McAllester, and Ramanan, Object Detection with Discriminatively
Trained Part Based Models, TPAMI, 2009.

• Antonio Torralba and Alexei A. Efros, Unbiased look at dataset bias, CVPR 2011.



Clustering Experiments

Four types of dataset:

• Two Gaussians (two flattened Gaussians)

• Four squares

• Four Gaussians

• Swiss role

Three clustering algorithms:

• k-means

• Single linkage

• Complete linkage.



Clustering methods (recap)

k-means Select k representatives randomly, assign each data to its closest representative,
and iteratively update representatives by their means of assigned data.

Single linkage Hierarchical aggromerative clustering method with cluster distance defined as
minimum distance among items.

Complete linkage Hierarchical aggromerative clustering method with cluster distance defined
as maximum distance among items.



Data
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Two Gaussians
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Two Gaussians
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Two Gaussians
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Four Squares
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Four Squares
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
four squares complete linkage 4 clusters



Swiss Role
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Graph Spectral Clustering

• So far we assume that data to be clustered have corresponding vectors, and distances can
be evaluated as the Euclidean distances.

• But what if only distances (or similarities) are given?

• What if “distances” are effective in local region only?

• Graph-based clustering techniques may work in such situations.

• We represent data along with similarities as graph, and solve clustering as graph
partitioning problem.



Graph Spectral Clustering

• Each data: node.
• Similarity between two nodes (if any): edge.
• Edge weight: similarity.
• Cut: sum of weights of edges which are cut.



Graph Spectral Clustering

Represent n-node graph as n × n matrix W where wi,j represents similarity between i-th and
j-th nodes.
First we consider simple case to partition data into two sets.
We want to determine membership indicator qi :

qi =

{
1 if i ∈ A

−1 if i ∈ B

J =CutSize =
1

4

∑
i,j

wi,j(qi − qj)
2 =

1

4

∑
i,j

wi,j(q
2
i + q2j − 2qiqj)

=
1

2

∑
i,j

qi (diδi,j − wi,j)qj

=
1

2
qT (D −W )q

di =
∑
j

wi,j



Graph Spectral Clustering

Minimization of J =
1

2
qT (D −W )q is hard (NP-complete).

So we relax q from discrete values to continuous values: then the solution of min J(q) can be
obtained by the eigenvectors of

(D −W )q =λq



Properties of Graph Laplacian

L = D −W is called Laplacian matrix of the graph.
L is semi-positive definite: xTLx ≥ 0 for any x .
First eigenvector is q1 = [1 1 · · · 1]T = eT with λ1 = 0.
Second eigenvector q2 is the desired solution (called Fiedler vector).

λ2 =
cutsize

|A|
+

cutsize

|B |

Since J is insensitive to additive constant to q

J =
1

4

∑
i,j

wi,j((qi + c)− (qj + c))2

we sort q2 and cut in the middle point.



Clustering Objective Functions

• Ratio Cut

JRcut =
s(A,B)

|A|
+

s(A,B)

|B |
• Normalized Cut

JNcut =
s(A,B)

dA
+

s(A,B)

dB

=
s(A,B)

s(A,A) + s(A,B)
+

s(A,B)

s(B ,B) + s(A,B)

• Min-Max Cut

JMMcut =
s(A,B)

s(A,A)
+

s(A,B)

s(B ,B)

s(A,B) =
∑
i∈A

∑
j∈B

wi,j , d(A) =
∑
i∈A

di



Laplacian Eigenmaps

We embed low dimensional vector representation to each node.
To do so, we solve the following generalized eigenvalue problem:

Lf = λDf .

(FYI the same solution with Normalized Cut.)
For f0, f1, . . . , fn corresponding to 0 = λ0 ≤ λ1 ≤ · · · ≤ λn,
we correspond [f1(i) f2(i) . . . fm(i)]

T to the i-th node.



Experiment

• The weights of edges are defined as:

wi,j =

{
e−

d2i,j

σ2 if i ∈ knn(j) or j ∈ knn(i)
0 otherwise

• Convert i-th node to [f1(i) f2(i) . . . fm(i)]
T using Laplacian eigenmaps.

• Apply k-means to the converted vectors.

• Constants: k of knn: 5, σ: 10, m: 2.



Laplacian Eigenmaps (Matlab)

k=10;

sigma=10;

n=size(x,1);

dt=squareform(pdist(x));

[sdt,idx]=sort(dt,’ascend’);

dt=sdt(1:k+1,:);

nidx=idx(1:k+1,:);

tW=exp(-dt.^2/(sigma^2));

ii=repmat(1:n,k+1,1);

W=sparse(ii(:),double(nidx(:)),tW(:),n,n);

W=full(W);

W=max(W,W’);

D=diag(sum(W,2));

[v,d]=eigs(D-W,D,10,’sa’);

xx=v(:,2:3);

c=kmeans(xx,numc);



Laplacian Eigenmaps (Python)

k = 10

sigma = 5.

n = x.shape[0]

dt = squareform(pdist(x))

idx = np.argsort(dt)

dt = np.array([dt[i, idx[i, range(k)]] for i in range(n)])

W = np.zeros([n, n])

for i in range(n):

for j in range(k):

W[i, idx[i, j]] = np.exp(-(dt[i, j]**2) / (sigma**2))

W = np.maximum(W, W.T)

D = np.diag(np.sum(W, axis=0))

dd, v = scipy.sparse.linalg.eigs(D - W, k=5, M=D, which=’SR’)

v = np.real(v)

idxdd = np.argsort(np.real(dd))

xx = v[:, idxdd][:, range(1, 4)]

c = sklearn.cluster.KMeans(n_clusters=numc).fit_predict(xx)



Two Gaussians
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Two Gaussians
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Two Gaussians
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Swiss Role
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