
Discovering Frequent Substructures

in Large Unordered Trees

Tatsuya Asai1, Hiroki Arimura1, Takeaki Uno2, and Shin-ichi Nakano3

1 Kyushu University, Fukuoka 812–8581, JAPAN
{t-asai,arim}@i.kyushu-u.ac.jp

2 National Institute of Informatics, Tokyo 101–8430, JAPAN
uno@nii.jp

3 Gunma University, Kiryu-shi, Gunma 376–8515, JAPAN
nakano@cs.gunma-u.ac.jp

In this paper, we study a data mining problem of discovering frequent
substructures in a large collection of semi-structured data, where both
of the patterns and the data are modeled by labeled unordered trees. An
unordered tree is a directed acyclic graph with a specified node called
the root, and all nodes but the root have at most one parent. Each node
is labeled by a symbol drawn from an alphabet. Such unordered trees
can be seen as either a generalization of itemsets in relational databases
or an efficient specialization of attributed graphs in graph mining. They
are also useful in various applications such as analysis of chemical com-
pounds and mining hyperlink structures in Web. Introducing novel def-
initions of the support and the canonical form for unordered trees, we
present an efficient algorithm called Unot that computes all labeled un-
ordered trees appearing in a collection of data trees with frequency above
a user-specified threshold. We prove that the algorithm enumerates each
frequent pattern T in O(kb2n) per pattern, where k is the size of T , b is
the branching factor of the data tree, and n is the total number of oc-
currences of T in the data trees. The keys of the algorithm are efficient
enumerating all unordered trees in canonical form and incrementally
computation of the occurrences based on a powerful design technique
known as the reverse search.

Correspondence:
Tatsuya Asai
Department of Informatics, Kyushu University,
6-10-1 Hakozaki Higashi-ku, Fukuoka 812-8581, JAPAN
E-mail: t-asai@i.kyushu-u.ac.jp
phone: +81-92-642-2697, fax: +81-92-642-2698

Arimura Hiroki
 DOI-TR-CS 216, Department of Informatics, Kyushu University, June, 2003 ftp://ftp.i.kyushu-u.ac.jp/pub/tr/trcs216.pdf (Submitting)

1 Introduction

By rapid progress of network and storage technologies, huge amounts of elec-
tronic data has been available in various enterprises and organizations. These
weakly-structured data are well modeled by graph or trees, where a data ob-
ject is represented by a nodes and a connection or relationships between objects
are encoded by an edge between them. There have been increasing demands for
efficient methods for discovering patterns in large collections of graph and tree
structures[1, 4, 5, 7–10,15–18].

In this paper, we present an efficient algorithm for discovering frequent sub-
structures in a large graph structured data, where both of the patterns and
the data are modeled by labeled unordered trees. A labeled unordered tree is
a rooted directed acyclic graph, where all but the root node have exactly one
parent and each node is labeled by a symbol drawn from an alphabet (Fig. 1).
Such unordered trees can be seen as either a generalization of labeled ordered
trees extensively studied in semi-structured data mining[1, 4, 5, 10, 13, 16, 18], or
as an efficient specialization of attributed graphs in graph mining researches[7–9,
15, 17]. They are also useful in modeling various types of unstructured or semi-
structured data such as chemical compounds, dependency structure in discourse
analysis and the hyperlink structure of Web sites.

On the other hand, difficulties arise in discovery of trees and graphs such
as the combinatorial explosion of the number of possible patterns, the isomor-
phism problem for many semantically equivalent patterns. Also, there are other
difficulties such as the computational complexity of detecting the embeddings or
occurrences in trees. We tackle these problems by introduce a novel definitions of
the support and the canonical form for unordered trees, and by developing tech-
niques for efficiently enumerating all unordered trees in canonical form without
duplicates and for incrementally computing the embeddings of each patterns in
data trees. Interestingly, these techniques can be seen as instances of the reverse
search technique, known as a powerful design tool for combinatorial enumeration
problems [6, 14].

Combining these techniques, we present an efficient algorithm Unot (Unot is
Not for Ordered Trees) that computes all labeled unordered trees appearing in
a collection of data trees with frequency above a user-specified threshold. The
algorithm Unot has a provable performance in terms of the output size unlike
other graph mining algorithm presented so far. It enumerates each frequent pat-
tern T in O(kb2n) per pattern, where k is the size of T , b is the branching factor
of the data tree, and n is the total number of occurrences of T in the data
trees. Although we present only theoretical results in this manuscript, we are
implementing a prototype of the algorithm and will run computer experiments
on synthesized and real-world data to give empirical evaluation of the algorithm
in the revised version.

This paper is organized as follows. In Section 2, we prepare basic definitions
and results on unordered trees and introduce our data mining problem. In Sec-
tion 3, we define the canonical form for the unordered trees. In Section 4, we
show an efficient algorithm for enumerating unordered trees in canonical form
in O(1) time per tree. In Section 5, we develop an incremental algorithm for
updating an embedding occurrence list. Combining these techniques, we present
an efficient algorithm Unot for discovering frequent unordered trees in a given
database of unordered trees. In Section 6, we conclude the results.

I

A

B B

C C C

A

B B

C C B

A

B

A B C A C

C C

T D1 1

2 2

3 34 4

5

5

6 6

7

8 9

10

11 12 13

14 15

Fig. 1. A data tree D and a pattern tree T

2 Preliminaries

In this section, we give basic definitions on unordered trees according to [2] and
then introduce our data mining problems. For a set A, |A| denotes the size of A.
For a binary relation R ⊆ A2 on A, R∗ denotes the reflexive transitive closure
of R.

2.1 The Model of Semi-structured data
We introduce the class of labeled unordered trees as a model of semi-structured
data and patterns according to [2–4,12]. Let L = {�, �1, �2, . . .} be a countable
set of labels with a total order ≤L on L.

A labeled unordered tree (an unordered tree, for short) is a directed acyclic
graph T = (V, E, r, label), with a distinguished node r called the root , satisfying
the followings. V is a set of nodes, called the domain, and E ⊆ V ×V is a set of
edges. The mapping label : V → L is called a labeling function. For every node
v ∈ V , there is a unique path UP (v) = (v0 = r, v1, . . . , vd) (d ≥ 0) from the root
r to v. Then, the depth of v is dep(v) = d.

Let u and v be nodes. If (u, v) ∈ E then we say that u is a parent of v, or v
is a child of u. If there is a path from u to v, then we say that u is an ancestor
of v, or v is a descendant of u. A leaf is a node having no child. For a node v, we
denote by T (v) the subtree of T rooted at v, the subgraph of T induced in the
set of all descendants of v. The size of T is defined as the number of its nodes
|T | = |V |. We define the empty tree as a special tree ⊥ of size 0.

Example 1. In Fig. 1, we show examples of labeled unordered trees T and D on
alphabet L = {A,B, C} with the total ordering A > B > C. In the tree T , the
root is 1 labeled with A and the leaves are 3, 4, and 6. The subtree T (2) at node
2 consists of nodes 2, 3, 4. The size of T is |T | = 6.

We use a labeled ordered tree as a representation of a labeled unordered
tree. A labeled ordered tree (an ordered tree, for short) is an unordered tree
with the left-to-right ordering among the children of each nodes. Formally, a
labeled ordered tree is a 5-tuple T = (V, E, B, r, label), where V , E, label, and
r are the node sets, the edge sets, the labeling function of V , and the root
of T . The binary relation B ⊆ V × V is the left-to-right ordering among the
children. If (v1, v2) ∈ B then we say that v1 precedes v2, or v2 follows v1. Let
RMB(T) = (r0, . . . , rc) (c ≥ 0) be the path from the root r to the rightmost
leaf of T . The path RMB(T) is called the rightmost branch of T . We denote

II

by rml(T) = k the rightmost leaf of T . See [4] for more definitions on labeled
ordered trees.

We denote by U and T the class of unordered trees and the class of ordered
trees over L, respectively. For a labeled unordered tree T = (V, E, r, label), we
write VT , VE , rT and labelT for V, E, r and label if it is clear from the context.

2.2 Tree Matching
In this paper, we give the semantics of a labeled unordered trees by the tree
matching, which is popular in computational learning theory, semi-structured
data mining, and pattern matching [3, 4].

Let T = (VT , ET , rT , labelT) ∈ U and D = (VD, ED, rD, labelD) ∈ U be
unordered trees. We call T and D the pattern tree and the data tree, respectively.
Then, we say that the pattern tree T occurs in the data tree D as an unordered
tree if there is a mapping ϕ : VT → VD satisfying the following (1)–(3) for every
x, y ∈ VT :

(1) ϕ is one-to-one, i.e., x �= y implies ϕ(x) �= ϕ(y).
(2) ϕ preserves the parent relation, i.e., (x, y) ∈ ET iff (ϕ(x), ϕ(y)) ∈ ED.
(3) ϕ preserves the labels, i.e., labelT (x) = labelD(ϕ(x)).

Then, the mapping ϕ is called a matching from T into D.

2.3 Patterns and their Occurrences
For a nonnegative integer k, a k-unordered pattern (k-pattern, for short) is a
labeled unordered tree having exactly k nodes, that is, VT = {1, . . . , k}. Assume
that the root r of a k-pattern is always node 1.

A database on L is a finite collection D = {D1, . . . , Dn} ⊆ U , where each
Di ∈ D is an unordered tree on L called a data tree, and VDi ∩VDj = ∅ for every
1 ≤ i, j ≤ n (i �= j). Then, we denote by VD the set of all nodes in the data trees
in D, and then we extend the notion of the matching by a pattern T ∈ U occurs
in D with a mapping ϕ : VT → VD if ϕ is a matching from T to some D ∈ D.
Let MD(T) the set of all matchings from T into D.

Definition 1. Let k ≥ 1 be any positive integer and T = (V, E, r, label) be a
k-unordered pattern. Assume that we have a matching ϕ : VT → VD ∈ MD(T)
from T into D = {Di}i. Then, we define four types of occurrences of U as follows:

1. The total occurrence of T is the k-tuple Toc(ϕ) = 〈ϕ(1), . . . , ϕ(k)〉 ∈ (VD)k.
2. The embedding occurrence of T is the set Eoc(ϕ) = {ϕ(1), . . . , ϕ(k)} ⊆ VD.
3. The root occurrence of T : Roc(ϕ) = ϕ(1) ∈ VD

4. The document occurrence of T is the index Doc(ϕ) = i such that Eoc(ϕ) ⊆
VDi for some 1 ≤ i ≤ |D|.

Example 2. In Fig. 1, we see that the pattern tree S has eight total occur-
rences ϕ1 = 〈1, 2, 3, 4, 10, 11〉, ϕ2 = 〈1, 2, 4, 3, 10, 11〉, ϕ3 = 〈1, 2, 3, 4, 10, 13〉,
ϕ4 = 〈1, 2, 4, 3, 10, 13〉, ϕ5 = 〈1, 10, 11, 13, 2, 3〉, ϕ6 = 〈1, 10, 13, 11, 2, 3〉, ϕ7 =
〈1, 10, 11, 13, 2, 4〉, and ϕ8 = 〈1, 10, 13, 11, 2, 4〉 in the data tree D, where we
identify the matching ϕi and Toc(ϕi). On the other hand, there are four embed-
ding occurrences Eoc(ϕ1) = Eoc(ϕ2) = {1, 2, 3, 4, 10, 11},Eoc(ϕ3) = Eoc(ϕ4) =
{1, 2, 3, 4, 10, 13}, Eoc(ϕ5) = Eoc(ϕ6) = {1, 2, 3, 10, 11, 13}, and Eoc(ϕ7) =
Eoc(ϕ8) = {1, 2, 4, 10, 11, 13}, and there is one root occurrence ϕ1(1) = ϕ2(1) =
· · · = ϕ8(1) = 1 of T in D.

III

Now, we analyze the relationship among the above definitions of the occur-
rences by introducing an ordering ≥occ on the definitions. For a type of oc-
currences τ, π ∈ {Toc, Eoc, Roc,Doc}, we say π is stronger than or equal to
τ , denoted by π ≥occ τ , iff for every matchings ϕ1, ϕ2 ∈ MD(T) from T to
D, π(ϕ1) = π(ϕ2) implies τ (ϕ1) = τ (ϕ2). Then, we have the following linear
ordering on classes of occurrences.

Lemma 1. Toc ≥occ Eoc ≥occ Roc ≥occ Doc.

For an unordered pattern T ∈ U , we denote by TOD(T), EOD(T), ROD(T),
and DOD(T) the set of the total occurrences, the embedding occurrences, the
root occurrences, and the document occurrences of T in D, respectively. Fur-
thermore, we show the upper and the lower bounds of the relative size of the
occurrences among TOD(T), EOD(T), and ROD(T) as follows.

Lemma 2. Let D be a database and T be a pattern. Then,

|TOD(T)|
|EOD(T)| = kΘ(k) and

|EOD(T)|
|ROD(T)| = Θ(nk)

over all pattern T ∈ U and all databases D ∈ 2U satisfying k ≤ cn for some
0 < c < 1, where k is the size of T and n is the size of a database.

Proof. The upperbounds are easy. Therefore, we show the lowerbound of γ =
|TOD(T)|/|EOD(T)| as follows. Consider a labeled unordered tree T with the
domain VT = {0, 1, . . . , k} such that the root is 0 and the leaves are {1, . . . , k}.
All nodes have the same label a. For the database D = {T}, T has k! =
kΘ(k) distinct total occurrences 〈0, v1, . . . , vk〉, where 〈v1, . . . , vk〉 is any per-
mutation of 〈1, . . . , k〉. On the other hand, there exists exactly one embed-
ding occurrence {0, 1, . . . , k}, and this shows γ = kΩ(k). The lowerbound of
δ = |EOD(T)|/|ROD(T)| can be shown by the same pattern T and the data tree
with the root 0 and the leaves {1, . . . , n} (n > k > 0). Then, T has exactly nCk

embeddings in D, where nCk ≥ (n− k)k ≥ (1 − c)knk = nΩ(k). �

By the lemma, the embedding occurrences EOD(T) is exponentially smaller

than TOD(T). For various types of tree mining algorithms, the running time
and the space that the algorithm used heavily depend on the maximum and the
expected sizes of the occurrences of a pattern T . Thus, we have to carefully select
the type of occurrences considering the tradeoff between the expressiveness and
the efficiency.

Obviously, the total occurrence Toc(ϕ) contains the same information to the
matching function ϕ itself, while it is too costly to maintain. In the application
point of view, the document occurrence Doc(ϕ) is most desirable, but contains
too few information to incrementally compute. In the previous work on ordered
tree mining [4], we adopted the root occurrence Roc(ϕ) with the rightmost leaf
occurrences as the standard class of occurrences. In this paper, we use the em-
bedding occurrences Eoc(ϕ) for unordered trees.

Let τ ∈ {Toc, Eoc, Roc,Doc} be types of the occurrences, U be a pattern and
D be a database. Then, the τ -count of U in D is |τD(U)| and the (relative) τ -
frequency is the ratio |τD(T)|/|D|. Let 0 < σ < 1 be any positive number, called
the minimum frequency threshold . A pattern T is τ -frequent with the minimum
frequency σ (or frequent) if T has the relative τ -frequency no smaller than σ.
Then, we state our data mining problems we will consider in this paper as follows.
Recall that τ ∈ {Toc, Eoc, Roc,Doc} is a type of the occurrences.

IV

A

B B

B A A

T3
1

2

3 5

6

7

A 4

A 8

AB

(0,A,1,B,2,B,3,A,2,A,1,B,2,A,1,A,2,B,2,A)

AT1
1

(0,A,1,A,2,A,2,B,1,B,2,A,2,B,3,A,1,B,2,A)

A 2

BA

B

A B

5

6 7

A 8

B

A

9

10

A

B B

A B A

T2
1

2

3 4

9

10

A 5

A 6

AB

(0,A,1,B,2,A,2,B,3,A,1,A,2,B,2,A,1,B,2,A)

3 4 7 8 9 10

Fig. 2. The depth-label sequences of labeled ordered trees

Frequent Unordered Tree Discovery with Occurrence Type τ
Given a database D ⊆ U and a minimum frequency threshold 0 ≤ σ ≤ 1,
find all the τ -frequent patterns satisfying |τD(U)| ≥ |D|σ.

In this paper, we study only the frequent unordered tree discovery problem
with embedding occurrences. However, it is not so difficult to modify the results
of this paper for other types of problems.

In some applications such as the analysis of chemical compounds, it is useful
to enumerate all the embedded substructures in a given data graph. The fol-
lowing problem deals with a special case where the data graph restricted to an
unordered tree.

Substructure Discovery Problem for Unordered Trees
Given a labeled unordered tree D ∈ U , find all the labeled unordered trees T ∈ U
embedded in D, that is, T occurs in D at least once.

Finally, we discuss the representation of a data tree in implementation.
Throughout this paper, we adopt the first-child next-sibling representation [2]
for ordered trees as well as unordered trees. In this representation, each node v
has two pointers firstchild(v) and nextsibling(v) to its first child and the next
sibling, respectively. If there are no such nodes, the pointers are set to be null.

3 Canonical Representation for Unordered Trees

In this section, we give the canonical representation for unordered tree patterns
according to Nakano and Uno [12].

3.1 Depth Sequence of a Labeled Unordered Tree
We use labeled ordered trees as the representation of labeled unordered trees.
First, we introduce some technical definitions on ordered trees. Throughout this
paper, we assume that any labeled ordered tree T = (V, E, B, r, label) of size k
satisfies that the node set is V = {1, . . . , k} and the elements in V are numbered
consecutively in preorder. Obviously, the root of T is r = 1 and the rightmost leaf
is rml(T) = k. We denote by ψ(T) = (V, E, r, label) the unordered tree obtained
from T by ignoring the left-to-right order B over the children. Two ordered trees
T1 and T2 ∈ T are equivalent each other as unordered trees, denoted by T1 ≡ T2,
if ψ(T1) = ψ(T2) holds.

Let T = (V, E, B, r, label) be a labeled ordered tree of size k. A depth-label
pair is (d, �), where d ∈ N and � ∈ L. For the list (1, 2, . . . , k) of the nodes of T

V

in preorder, let dep(i) be the depth of the i-th node i for i = 1, . . . , k. Then, the
sequence

C(T) = ((dep(1), label(1)), . . . , (dep(k), label(k)) ∈ (N×L)∗

is called the depth-label sequence of T [5, 11, 18].

Example 3. In Fig. 2, we present examples of the depth-label sequences. These
trees T1, T2, and T3 are equivalent as unordered trees, but not as ordered trees.

Next, we introduce the total ordering ≥ over depth-label sequences as follows.
For depth-label pairs (d1, �1) and (d2, �2), (d1, �1) > (d2, �2) iff either (i) d1 > d2

or (ii) d1 = d2 and �1 > �2. We extend this ordering to the lexicographic ordering
over depth-label sequences. Let T1 and T2 be two labeled ordered trees, and
C(T1) = (x1, . . . , xm) and C(T2) = (y1, . . . , ym) be their depth-label sequences
(m, n ≥ 0). We say C(T1) is heavier than C(T2), denoted by C(T1) ≥lex C(T2),
if there exists some k such that (i) xi = yi for each i = 1, . . . , k−1 and (ii) either
xk > yk or m > k − 1 = n.

Now, we give the canonical representation for labeled unordered trees as
follows.

Definition 2 (Nakano and Uno [12]). Let L be an alphabet and T be a
labeled unordered tree over L. Then, the canonical representation of T , denoted
by CR(T), is the labeled ordered tree S ∈ T over L such that its depth-label
sequence C(S) is the heaviest sequence in the equivalence class { Ĉ(S′) |S′ ∈
T , S′ ≡ S }.

The next lemma gives a characterization of the canonical representations for
unordered trees [12].

Lemma 3 (Left-heavy condition [12]). A labeled ordered tree T is the canon-
ical representation of some unordered tree iff T is left-heavy, that is, for any node
v1, v2 ∈ V , (v1, v2) ∈ B implies C(T (v1)) ≥lex C(T (v2)).

Example 4. Three ordered trees T1, T2, and T3 in Fig. 2 represents the same
unordered tree. Among them, T1 is left-heavy and thus it is the canonical repre-
sentation of a labeled unordered tree under the assumption that A > B > C. On
the other hand, T2 is not canonical since the depth-label sequence C(T2(2)) =
(1B, 2A, 2B, 3A) is lexicographically smaller than C(T2(6)) = (1A, 2B, 2A) and
this violates the left-heavy condition. T3 is not canonical since B < A implies
C(T3(3)) = (2B, 3A) <lex C(T3(5)) = (2A).

By the above construction, we have assigned the unique labeled ordered tree
in T to each labeled unordered tree in U , and they can be used as the canonical
representations for trees in U . A labeled ordered tree S is in the canonical form or
a canonical representation if S = CR(T) for some labeled unordered tree T ∈ U .
We denote by C the class of the canonical representations of labeled unordered
trees over L. In what follows, we identify a labeled ordered tree S ∈ T and its
depth-label sequence if it is clear from context. Thus, we may write S >lex T for
ordered trees S, T ∈ T .

VI

ri

Li Ri

r0

r1

r2

S

ri+1

rg = rml(S)

si+1

s2

s1

RMB(S)

Fig. 3. Notions on a canonical repre-
sentation

code
1 ri

Li Ri

0 i top
left
right

ri

Li Ri

Left [i] Right [i]

Fig. 4. Data structure for a pattern

3.2 The Reverse Search Principle and the Rightmost Expansions
The reverse search is a general scheme for designing efficient algorithm for hard
enumeration problems [6, 14]. In reverse search, we define the parent-child rela-
tion P ⊆ S × S on the solution space S of the problem so that each solution X
has the unique parent P (X). Since this relation forms a search tree over S, we
enumerate the solutions starting from the root solutions and by computing the
children for the solutions. Iterating this process, we can generate all the solutions
without duplicates.

Let T be a labeled ordered tree having at least two nodes. We denote by
P (T) the unique labeled ordered tree derived from T by removing the rightmost
leaf rml(T). We say P (T) is the parent tree of T or T is a child tree of P (T).
The following lemma is crucial to our result.

Lemma 4 (Nakano and Uno [12]). For any labeled ordered tree T ∈ T , if T
is in canonical form then so is its parent P (T), that is, T ∈ C implies P (T) ∈ C.

Proof. For a left-heavy tree T ∈ C, the operation to remove the rightmost leaf
from T does not violate the left-heavy condition of T . It follows from Lemma 3
that the lemma holds.

Definition 3 (Rightmost expansion [4, 11, 18]). Let S ∈ T be a labeled
ordered tree on L. Then a labeled ordered tree T ∈ T is the rightmost expansion
of S if T is obtained from S by attaching the new node v as the rightmost child
of a node on the rightmost branch RMB(S) of S. If (dep(v), label(v)) = (d, �)
then we call T the (d, �)-expansion of S. We define the (0, �)-expansion of ⊥ to
be the single node tree with label �.

Since newly attached node v is the last node in preorder on T , we denote the
(d, �)-expansion of S by S ·(d, �). We sometimes write v = (dep(v), label(v)).

If we can compute the set of the child trees of a given labeled ordered tree
S ∈ T then we can enumerate all the labeled ordered trees in T . The method is
called the rightmost expansion and has been independently studied in [4, 11, 18].

4 Mining Frequent Unordered Tree Patterns

In this section, we present an efficient algorithm Unot for solving the frequent
unordered tree pattern discovery problem w.r.t. the embedding occurrences.

VII

Algorithm Unot(D,L, σ)
Input: the database D = {D1, . . . , Dm} (m ≥ 0) of labeled unordered trees, a set L of

labels, and the minimum frequency threshold 0 ≤ σ ≤ 1.
Output: the set F ⊆ C of all frequent unordered trees of size at most Nmax.
Method:
1. F := ∅; α := � |D|σ �; //Initialization
2. For any label � ∈ L, do:

T� := (0, �); /* 1-pattern with copy depth 0 */
Expand(T�,O, 0, α,F);

3. Return F ; //The set of frequent patterns

Fig. 5. An algorithm for discovering all frequent unordered trees

4.1 Overview of the Algorithm
In Fig. 5, we show our algorithm Unot for finding all the canonical representa-
tions for frequent unordered trees in a given database D. A key of the algorithm
Unot is efficient enumeration of all the canonical representations, which is im-
plemented by the subprocedures FindAllChildren in Fig. 5 to run in O(1) time
per pattern. Another key is incremental computation of their occurrences. This
is implemented by the subprocedure UpdateOcc in Fig. 8 to run in O(bk2n) time
per pattern, where b is the maximum branching factor in D, k is the maximum
pattern size, m is the umber of embedding occurrences. We give the detailed
descriptions of these procedures in the following subsections.

4.2 Enumerating Unordered Trees
First, we prepare some notations (Fig. 3). Let T be a labeled ordered tree with
the rightmost branch RMB(T) = (r0, r1, . . . , rg). For every i = 0, 1, . . . , g, if ri

has two or more children then we denote by si+1 the child of ri preceding ri+1,
that is, si+1 is the second rightmost child of ri. Then, we call Li = T (si+1) and
Ri = T (ri+1) the left and the right tree of ri. If ri has exactly one child ri+1

then we define Li = �∞, where �∞ is a special tree such that �∞ >lex S for
any S ∈ T . For a pattern tree T ∈ T , we sometimes write L(T)

i and R(T)
i for Li

and Ri by indicating the pattern tree T .
By Lemma 3, an ordered tree is in canonical form iff it is left-heavy. The

next lemma claims that the algorithm only checks the left trees and right trees
of nodes on the rightmost branch to check if the tree is in canonical form.

Lemma 5 (Nakano and Uno [12]). Let S ∈ C be a canonical representation
and T be a child tree of S with the rightmost branch (r0, . . . , rg), where g ≥ 0.
Then, T is in canonical form iff Li ≥lex Ri holds in T for every i = 0, . . . , g−1.

Let T be a labeled ordered tree with the rightmost branch RMB(T) =
(r0, r1, . . . , rg). We say C(Li) and C(Ri) have a disagreement at the position j
if j ≤ min(|C(Li)|, |C(Ri)|) and the j-th components of C(Li) and C(Ri) are
different pairs.

Suppose that T is in canonical form. During a sequence of rightmost expan-
sions to T , the i-th right tree Ri grows as follows.

1. Firstly, when a new node v is attached to ri as a rightmost child, the sequence
is initialized to C(Ri) = v = (dep(v), label(v)).

VIII

Procedure Expand(S,O, c, α,F)
Input: A canonical representation S ∈ U , the embedding occurrences O = EOD(S),

and the copy-depth c, nonnegative integer α, and the set F of the frequent patterns.
Method:
– If (|O| < α) then return;

Else F := F ∪ {S};
– For each 〈S ·(i, �), cnew〉 ∈ FindAllChildren(S, c), do;

• T := S ·(i, �);
• P := UpdateOcc(T,O, (i, �));
• Expand(T,P , cnew, α,F);

Fig. 6. A depth-first search procedure Expand

2. Whenever a new node v of depth d = dep(v) > i comes to T , the right tree
Ri grows. In this case, v is attached as the rightmost child of rd−1. There
are two cases below:
(i) Suppose that there exists a disagreement in C(Li) and C(Ri). If rdep(v) ≥

v then the rightmost expansion with v does not violate the left-heavy
condition of T , where rdep(v) is the node preceding v in the new tree.

(ii) Otherwise, we know that C(Ri) is a prefix of C(Li). In this case, we
say Ri is copying Li. Let m = |C(Ri)| < |C(Li)| and w be the m-th
component of C(Li). For every new node v, T ·v is a valid expansion if
w ≥ v and rdep(v) ≥ v. Otherwise, it is invalid.

(iii) In cases (i) and (ii) above, if rdep(v)−1 is a leaf of the rightmost branch
of T then rdep(v) is undefined. In this case, we define rdep(v) = �∞.

3. Finally, T reaches C(Li) = C(Ri). Then, the further rightmost expansion to
Ri is not possible.

If we expand a given unordered pattern T so that all the right trees R0, . . . , Rg

satisfy the above conditions, then the resulting tree is in canonical form.
Let RMB(T) = (r0, r1, . . . , rg) be the rightmost branch of T . For every

i = 0, 1, . . . , g− 1, the internal node ri is said to be active at depth i if C(Ri) is
a prefix of C(Li). The copy depth of T is the depth of the highest active node
in T . To deal with special cases, we introduce a trick: We define the leaf rg to
be always active. Thus we have that if all nodes but rg are not active then its
copy-depth is g. This trick greatly simplies the description of the update below.

Now, we explain how to generate all child trees of a given canonical repre-
sentation T ∈ C. In Fig. 7, we show the algorithm FindAllChildren that computes
the set of all canonical child trees of a given canonical representation as well as
their copy depths.

The algorithm is almost same as the algorithm for unlabeled unordered trees
described in [12]. The update of the copy depth is slightly different from [12] by
the existence of the labels. Let T be a labeled ordered tree with the rightmost
branch RMB(T) = (r0, r1, . . . , rg) and the copy depth k ∈ {−1, 0, 1, . . . , g− 1}.
Note that in the procedure FindAllChildren, the case where all but rg are inactive,
including the case for chain trees, is implicitly treated in Case I.

To implement the algorithm FindAllChildren to enumerate the canonical child
trees in O(1) time per tree, we have to perform the following operation in O(1)
time: updating a tree, access to the sequence of left and right trees, maintenance

IX

Procedure FindAllChildren(T, c) :
Method : Return the set Succ of all pairs 〈S, c〉, where S is the canonical child tree

of T and c is its copy depth generated by the following cases:
Case I : If C(Lk) = C(Rk) for the copy depth k:

– The canonical child trees of T are T ·(1, �1), . . . , T ·(k + 1, �k+1), where
label(ri) ≥ �i for every i = 1, . . . , k + 1. The trees T ·(k + 2, �k+2), . . . , T ·
(g + 1, �g+1) are not canonical.

– The copy depth of T ·(i, �i) is i − 1 if label(ri) = �i and i otherwise for every
i = 1, . . . , k + 1.

Case II : If C(Lk) �= C(Rk) for the copy depth k:
– Let m = |C(Rk)|+1 and � = (d, �) be the m-th component of C(Lk) (the next

position to be copied). The canonical child trees of T are T·(1, �1), . . . , T·(d, �d),
where label(ri) ≥ �i for every i = 1, . . . , d − 1 and � ≥ �d holds.

– The copy depth of T ·(i, �i) is i − 1 if label(ri) = �i and i otherwise for every
i = 1, . . . , d − 1. The copy depth of T ·(d, �d) is k if � = � and d otherwise.

Fig. 7. The procedure FindAllChildren

of the position of the shorter prefix at the copy depth, retrieval of the depth-label
pair at the position, and the decision of the equality C(Li) = C(Ri).

To do this, we represent a pattern T by the structure shown in Fig. 4.

– An array code : [1..size] → (N × L) of depth-label pairs that stores the
depth-label sequence of T with an integer size ≥ 0 having the length of
code.

– A stack RMB : [0..top] → (N×N×{=, �=}) of the triples (left, right, cmp).
For each (left, right, cmp) = RMB[i], left and right are the starting po-
sitions of the subsequences of code that represent the left tree Li and the
right tree Ri, and the flag cmp ∈ {=, �=} indicates whether Li = Ri holds.
The length of the rightmost branch is top ≥ 0.

It is not difficult to see that we can implement all the operation in FindAllChildren
of Fig. 7 to work in O(1) time, where an entire tree is not output but the differ-
ence from the previous tree. The proof of the next lemma is almost same to [12]
except the handling of labels.

Lemma 6 (Nakano and Uno [12]). For every canonical representation T
and its copy depth c ≥ 0, FindAllChildren of Fig. 7 computes the set of all the
canonical child trees of T in O(1) time per tree, when only the differences to T
are output.

The time complexityO(1) time per tree of the above algorithm is significantly
faster than the complexity O(k2) time per tree of the straightforward algorithm
based on Lemma 3, where k is the size of the computed tree.

4.3 Updating the Occurrence List
In this subsection, we give a method for incrementally computing the embedding
occurrences EOD(T) of the child tree T from the occurrences EOD(S) of the
canonical representation S.

In Fig. 8, we show the procedure UpdateOcc that, given a canonical child tree
T and the occurrences EOD(S) of the parent tree S, computes its embedding
occurrences EOD(T).

X

Algorithm UpdateOcc(T,O, d, �)
Input: the rightmost expansion of a pattern S, the total occurrence list O = TOD(S),

the depth d ≥ 1 and a label � ∈ L of the rightmost leaf of T .
Output: the new list P = TOD(T).
Method:
– P := ∅;
– For each ϕ ∈ O, do:

+ x := ϕ(rd−1); /* the image of the parent of the new node rd = (d, �) */
+ For each child y of x do:

− If labelD(y) = � and y �∈ E(ϕ) then
ξ := ϕ·y and flag := true;

− Else, skip the rest and continue the for-loop;
− For each i = 1, . . . , d − 1, do:

If C(Li) = C(Ri) but ξ(lefti) �= ξ(righti) then
flag := false, and then break the inner for-loop;

− If flag = true then P = P ∪ {ξ};
– Return P ;

Fig. 8. An algorithm for updating embedding occurrence lists of a pattern

4.4 Incremental Computation of Embedding Occurrences
Let T be a canonical representation for a labeled unordered tree over L with
domain {1, . . . , k}. Let ϕ ∈ MD(T) be a matching from T into D. Recall that
the total and the embedding occurrences of T associated with ϕ is TO(ϕ) =
〈ϕ(1), . . . , ϕ(k)〉 and EO(ϕ) = {ϕ(1), . . . , ϕ(k)}, respectively. For convenience,
we identify ϕ to TO(ϕ). Thus, we may write ϕ(v) or EO(ϕ) for a tuple ϕ =
〈v1, . . . , vk〉 ∈ V k

D in what follows.
We encode an embedding occurrence EO in one of the total occurrences ϕ

corresponding to EO = EO(ϕ). Since there are many total occurrences cor-
responding to EO, we introduce the canonical representation for embedding
occurrences similarly as in Section 3.

Two total occurrences ϕ1 and ϕ2 are equivalent each other if EO(ϕ1) =
EO(ϕ2). The occurrences ϕ1 is heavier than ϕ2, denote by ϕ1 ≥lex ϕ2, if ϕ1 is
lexicographically larger than ϕ2 as the sequences in N∗. We give the canonical
representation for the embedding occurrences.

Definition 4. Let T be a canonical form of a labeled unordered tree and EO ⊆
VD be its embedding occurrence in D The canonical representation of T , denoted
by CR(EO), is the total occurrence ϕ ∈ MD(T) that is the heaviest tuple in
the equivalence class { ϕ′ ∈ MD(T) |ϕ′ ≡ ϕ }.

By Lemma 2, we can see that a straightforward generate-and-test algorithm
requires kO(k) time to decide if a given total occurrence is the canonical repre-
sentation for an embedding occurrence.

Let ϕ = 〈ϕ(1), . . . , ϕ(k)〉 be an total occurrence of T over D. We denote by
P (ϕ) the unique total occurrence of length k − 1 derived from ϕ by removing
the last component ϕ(k). We say P (ϕ) is a parent occurrence of ϕ and ϕ is a
child occurrence of P (ϕ).

Lemma 7. For any total occurrence ϕ ∈ MD(T), if ϕ is in canonical form then
so is its parent P (ϕ).

XI

A
⊥

A

A

A

B

B

A

A

A

A

A

B

A

B

A

A

B

B

A

A B

A

A A A

B A

A

B B

[omit][omit]

A

A B

A

A B

A B

A

A AB

A

A BB

[omit]

A

B B

A

B B

A

B

A

B AB

A

B BB

A

B

B

B

A

B

B

A

[omit]

A

B

B A

A

B

B B

A

B

B

B

A

B

B

A

[omit]

Fig. 9. A search tree for labeled unordered trees

The converse of Lemma 7 does not hold in general. Let T be a labeled un-
ordered tree, ϕ ∈ MD(T) be a total occurrence, and v ∈ VT be a node. Then,
we denote by ϕ(T (v)) = 〈ϕ(i), ϕ(i+ 1), . . . , ϕ(i+ |T (v)| − 1)〉 the restriction of
ϕ to the subtree T (v), where 〈i, i+ 1, . . . , i+ |T (v)| − 1〉 is the nodes of T (v) in
preorder.

Lemma 8. Let T be a labeled ordered tree and ϕ ∈ MD(T) be a total occurrence
of T in D. Then, ϕ is the canonical representation for an embedding occurrence
iff ϕ is partially left-heavy, that is, for any nodes v1, v2 ∈ VT , both of (v1, v2) ∈ B
and T (v1) = T (v2) imply ϕ(T (v1)) ≥lex ϕ(T (v2)).

First, we consider the incremental computation of the child total occurrences.

Lemma 9. Let k ≥ 1 be any positive integer, S be a canonical representation
and φ be its canonical occurrence of S in D. For a node w ∈ VD, let T = S ·v
be a child tree of S with the rightmost branch (r0, . . . , rg). Then, the mapping
φ = ϕ·w is a canonical total occurrence of T in D iff the following conditions
(1)–(4) hold.

(1) labelD(w) = labelT (v).
(2) For every i = 1, . . . , k − 1, w �= ϕ(i).
(3) w is a child of ϕ(rd−1), where rd−1 ∈ RMB(S) is the node of depth d − 1

on the rightmost branch RMB(S) of S.
(4) C(Li) = C(Ri) implies φ(root(Li)) = φ(root(Ri)) for every i = 0, . . . , g− 1.

From Lemma 9, we present the procedure UpdateOcc of Fig. 8. The correct-
ness of the procedure is obvious from Lemma 9. To show the running time, we
can see that the decision C(Li) = C(Ri) can be decidable in O(1) time using a
flag cmp on the state and that the nodes rd−1, lefti and righti can be retrieved
by the stack and the code array. Note that there is at least one canonical child
tree among all the possibly non-canonical child trees obtained by the rightmost
expansion of a canonical parent tree. Therefore, we have the following lemma.

Lemma 10. Let S be a canonical representation of a unordered tree, O be its
canonical total occurrences, and T be a child tree of S with the depth-label pair
(d, �) ∈ N × L. Then, the algorithm UpdateOcc of Fig. 8 computes the list of
all the canonical total occurrences of T in O(kbm) time on the input 〈T,O, d, �〉,
where k = |T |, b is the maximum branching factor in the database D, and m =
|O| be the number of occurrences in O.

XII

We show the main theorem of this paper.

Theorem 1. Let D be any unordered tree database and α ≥ 0 be any nonneg-
ative integer. Then, the algorithm Unot of Fig. 5 enumerates all the canoni-
cal representations for the frequent unordered trees w.r.t. embedding occurrences
without duplicates in O(kb2m) time per frequent patterns, where b is the maxi-
mum branching factor in D, k is the maximum size of patterns enumerated, and
m is the number of embeddings of the enumerated pattern.

Proof. Combining Lemma 6 and Lemma 10, we see that the algorithm Unot
computes frequent patterns in O(kbm′) time per tree T ∈ C, where S = P (T) is
a parent tree of T and m′ = |EO(S)| of the embedding occurrences of S. Since
|EO(T)| = O(b|EO(S)|), we have the result. �

Fig. 9 illustrates the computation of the algorithm Unot that is enumerating
a subset of labeled unordered trees of size at most 4 over L = {A,B}. The arrows
indicates the parent-child relation and the crossed trees are non-canonical ones.

4.5 Comparison to a Straightforward Algorithm
We compare our algorithm Unot to a straightforward algorithm Naive that uses
a generate and test approach based on Lemma 3 of Section 3. Given a database
D and a threshold σ, Naive runs as follows: Naive enumerates all the labeled
ordered trees over L in O(1) time using the rightmost expansion, and then for
each tree it checks if it is in canonical form simply applying Lemma 3. Since
there are O(k|L|) child patterns and the check takes O(k2) per tree, this stage
takes O(|L|k3) time per tree. It takes O(nk) time to compute all the embedding
occurrences of T in D by simply enumerating all k combinations of the nodes in
D. Thus, the overall time is O(|L|k3 + nk).

On the other hand, our algorithm computes the canonical representations
in O(kb2m), where the total number m of the embedding occurrences of T is
m = O(nk) in the worst case. However, m will be much smaller than nk as the
pattern size of T grows. Thus, if it is the case that b is a small constant and
the occurrences size m = |EO(T)| is much smaller than the total database size
n = |VD| then our algorithm will be faster than the straightforward algorithm.

5 Conclusions

In this paper, we presented an efficient algorithm Unot that computes all frequent
labeled unordered trees appearing in a collection of data trees. This algorithm has
a provable performance in terms of the output size unlike previous graph mining
algorithms. It enumerates each frequent pattern T in O(kb2n) per pattern, where
k is the size of T , b is the branching factor of the data tree, and n is the total
number of occurrences of T in the data trees.

We are implementing a prototype system of the algorithm and planning the
computer experiments on synthesized and real-world data to give empirical eval-
uation of the algorithm in the revised version. The results will be included in
the revised paper.

Some graph mining algorithms such as AGM [8], FSG [9], and gSpan [17] use
various types of the canonical representation for general graphs similar to our
canonical representation for unordered trees in Section 3. AGM [8] and FSG [9]
employ the adjacent matrix with the lexicographically smallest row vectors under

XIII

the permutation of rows and columns. gSpan [17] uses as the canonical form the
DFS code generated with the depth-first search over a graph. It is a future
problem to study the relationship among these techniques based on canonical
coding and to develop efficient coding scheme for restricted subclasses of graph
patterns.

Acknowledgement

Tatsuya Asai and Hiroki Arimura would like to thank Ken Satoh, Hideaki
Takeda, Tsuyoshi Murata, and Ryutaro Ichise for the fruitful discussions on
Semantic Web mining, and to thank Takashi Washio, Akihiro Inokuchi, Michi-
hiro Kuramochi, and Ehud Gudes for the valuable discussions and comments on
graph mining. Tatsuya Asai is grateful to Setsuo Arikawa for his encouragement
and support for this work.

References

1. K. Abe, S. Kawasoe, T. Asai, H. Arimura, and S. Arikawa. Optimized Substructure
Discovery for Semi-structured Data, In Proc. PKDD’02, 1–14, LNAI 2431, 2002.

2. Aho, A. V., Hopcroft, J. E., Ullman, J. D., Data Structures and Algorithms,
Addison-Wesley, 1983.

3. T. R. Amoth, P. Cull, and P. Tadepalli, Exact learning of unordered tree patterns
from queries, In Proc. COLT’99, ACM Press, 323–332, 1999.

4. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, S. Arikawa, Efficient
Substructure Discovery from Large Semi-structured Data, In Proc. the 2nd SIAM
Int’l Conf. on Data Mining (SDM2002), 158–174, 2002.

5. T. Asai, H. Arimura, K. Abe, S. Kawasoe, S. Arikawa, Online Algorithms for
Mining Semi-structured Data Stream, In Proc. the 2002 IEEE Int’l Conf. on Data
Mining (ICDM’02), 27–34, 2002.

6. David Avis, Komei Fukuda, Reverse Search for Enumeration, Discrete Applied
Mathematics, 65(1–3), 21–46, 1996.

7. L. B. Holder, D. J. Cook, S. Djoko, Substructure Discovery in the SUBDUE
System, In Proc. KDD’94, 169–180, 1994.

8. A. Inokuchi, T. Washio, H. Motoda, An Apriori-Based Algorithm for Mining
Frequent Substructures from Graph Data, In Proc. PKDD 2000, 13–23, LNAI,
Springer, 2000.

9. M. Kuramochi, G. Karypis, Frequent Subgraph Discovery, In Proc. IEEE
ICDM’01, 2001.

10. T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida, K. Takahashi, H. Ueda,
Discovery of Frequent Tag Tree Patterns in Semistructured Web Documents,
In Proc. PAKDD-2002, 341–355, 2002.

11. S. Nakano, Efficient generation of plane trees, Information Processing Letters, 84,
167–172, 2002.

12. S. Nakano, T. Uno, Another Simple Algorithm to Generate All Rooted Trees,
2003. (Submitting)

13. S. Nestrov, S. Abiteboul, R. Motwani, Extracting Schema from Semistructured
Data, In Proc. SIGKDD’98 , 295–306, 1998.

14. T. Uno, A Fast Algorithm for Enumerating Bipartite Perfect Matchings, In
Proc. ISAAC 2001, LNCS, Springer-Verlag, 367–379, 2001.

15. N. Vanetik, E. Gudes, E. Shimony, Computing Frequent Graph Patterns from
Semistructured Data, In Proc. IEEE ICDM’02, 458–465, 2002.

16. K. Wang, H. Liu, Schema Discovery from Semistructured Data, In Proc. KDD’97,
271–274, 1997.

17. X. Yan, J. Han, gSpan: Graph-Based Substructure Pattern Mining, In Proc. IEEE
ICDM’02, 721–724, 2002.

18. M. J. Zaki. Efficiently Mining Frequent Trees in a Forest, In Proc. SIGKDD 2002,
ACM, 2002.

XIV

