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Abstract. A geometric graphis a labeled graph whose vertices are points
in the 2D plane with an isomorphism invariant under geometric transfor-
mations such as translation, rotation, and scaling. While Kuramochi and
Karypis (ICDM2002) extensively studied the frequent pattern mining prob-
lem for geometric subgraphs, the maximal graph mining has not been con-
sidered so far. In this paper, we study the maximal (or closed) graph mining
problem for the general class of geometric graphs in the 2D plane by ex-
tending the framework of Kuramochi and Karypis. Combining techniques
of canonical encoding and a depth-first search tree for the class of maximal
patterns, we presenta polynomial delay and polynomial space algorithm,
MaxGeo,that enumerates all maximal subgraphsin a given input geomet-
ric graph without duplicates. This is the first result establishing the output-
sensitive complexity of closed graph mining for geometric graphs. We also
show that the frequent graph mining problem is also solvable in polynomial
delay and polynomial time.

Keywords: geometric graphs, closed graph mining, depth-first search, rightmost expan-
sion, polynomial delay polynomial space enumeration algorithms.

1 Introduction

Background. There has been increasing demands for efficient methods of extracting
useful patterns and rules from weakly structured datasets due to rapid growth of both
the amount and the varieties of nonstandard datasets in scientific, spatial, and relational
domains.Graph miningis one of the most promising approaches to knowledge discovery
from such weakly structured datasets. The following topics have been extensively studied
for the last few years: frequent subgraph mining [6, 12, 17, 27], maximal (closed) subgraph
mining [3, 9, 20, 25] and combination with machine learning [21, 28]. See surveys, e.g. [8,
24], for the overviews.

The class of geometric graphs.In this paper, we address a graph mining problem
for the classG of geometric graphs.Geometric graphs(geographs, for short) [15] are a
special kind of vertex- and edge-labeled graphs whose vertices have coordinates in the 2D
planeR2, while labels represent geometric features and their relationships. The matching
relation for geographs is defined through the invariance under a class of geometric trans-
formations, such as translation, rotation, and scaling in the plane, in addition to the usual



constraint for graph isomorphism. We do not consider the mirror projection, but the ex-
tension is simple (consider the mirror projection when we compute the canonical form).
Geographs are useful in applications concerned with geometric configurations, e.g., the
analysis of chemical compounds, geographic information systems, and knowledge discov-
ery from vision and image data.

Maximal pattern discovery problem. For the class of geometric graphs, Kuramochi
and Karypis presented an efficient mining algorithmgFSG for the frequent geometric
subgraph mining, based on Apriori-like breadth-first search [15]. However, the frequent
pattern mining poses a problem in that it can easily produce an extremely large number
of solutions, which degrades the performance and the comprehensivity of data mining to
a large extent. Themaximal subgraph mining problem4, on the other hand, asks to find
only all maximal patterns(closed patterns) appearing in a given input geometric graphD,
where amaximal patternis a geometric graph which is not included in any properly larger
subgraph having the same set of occurrences inD. Since the setM of all maximal patterns
is expected to be much smaller than the setF of all frequent patterns and still contains the
complete information ofD, maximal subgraph mining has some advantages as a compact
representation to frequent subgraph mining.

Difficulties of maximal pattern mining. However, there are a number of difficulties
in maximal subgraph mining for geometric graphs. In general, maximal pattern mining has
a large computational complexity [4, 26]. So far, a number of efficient maximal pattern
algorithms have been proposed forsets, sequences, andgraphs [3, 9, 20, 22, 25]. Some
algorithms use explicit duplicate detection and maximality test by maintaining a collection
of already discovered patterns. This requires a large amount of memory and delay time,
and introduces difficulties in the use of efficient search techniques, e.g., depth-first search.
For these reasons, output-polynomial time computation for the maximal pattern problem is
still a challenge in maximal geometric graphs. Moreover, the invariance under geometric
transformation for geometric graphs adds another difficulty to geometric graph mining. In
fact, no depth-first algorithm has been known to date even for frequent pattern mining.

Main result. The goal of this paper is to develop a time and space efficient algorithm
that can work well in theory and practice for maximal geometric graphs. As our main
result, we present an efficient depth-first search algorithmMaxGeo that, given an input
geometric graph, enumerates all frequent maximal patternP in M without duplicates in
O(m(m + n)||D||2 log ||D||) = O(n8 log n) time per pattern and inO(m) = O(n2)
space, with the maximum numberm of occurrences of a pattern other than trivial patterns,
the numbern of vertices in the input graph, and the number||D|| of vertices and edges in
the input graph. This is a polynomial delay and polynomial time algorithm for the maximal
pattern discovery problem for geometric graphs. This is the first result establishing the
output-sensitive complexity of maximal graph mining for geometric graphs.

Other contributions of this paper. To cope with the difficulties mentioned above, we
devise some new techniques for geometric graph mining.

(1) We define a polynomial time computablecanonical codefor all geometric graphs in
G, which is invariant under geometric transformations. We give the first polynomial

4 Although the maximal pattern discovery is more often calledclosed pattern discovery, we use the
term “maximal” rather than “closed” in this paper for the consistency with works in computational
complexity and algorithms area [4, 26].



delay and polynomial space algorithmFreqGeo for the frequent geometric subgraph
mining problem as a bi-product.

(2) We introduce theintersectionand theclosure operationfor G. Using these tools, we
define thetree-shaped search routeT for all maximal patternsin G. We propose a new
pattern growth technique arising from reverse search andclosure extension[18] for
traversing the search routeR by depth-first search.

Related works. There have been closely related researches on 1D and 2D point set
matching algorithms, e.g. [2], where point sets are the simplest kind of geometric graphs.
However, since they have mainly studied exact and approximate matching of point sets,
the purpose is different from this work.

A number of efficient maximal pattern mining algorithms have been presented for
subclasses of graph, trees, and sequences, e.g., general graphs [25], ordered and unordered
trees [9], attribute trees [3, 20], and sequences [4, 5, 23]. Some of them have output-sensitive
time complexity as follows. The first group deal with the mining of “elastic” or “flexible”
patterns, where the closure is not defined.CMTreeMiner [9], BIDE [23], andMaxFlex [5]
are essentially output-polynomial time algorithms for location-based maximal patterns
though it is implicit. They are originally used as pruning for document-based maximal
patterns [5].

The second group deal with the mining of “rigid” patterns which haveclosure-like
operations.LCM [22] proposes ppc-extension for maximal sets, and thenCloATT [3] and
MaxMotif [4] generalize it for trees and sequences. They together with this paper are
polynomial delay and polynomial space algorithms.

Some of the other maximal pattern miners for complex graph classes, e.g.,CloseGraph [25],
adopt frequent pattern discovery augmented with,e.g., maximality test and duplicate de-
tection although output-polynomial time computability seems difficult to achieve with this
approach.

Organization of this paper. Section 2 introduces the maximal pattern mining for
geometric graphs. Section 3 gives the canonical code and the frequent pattern mining.
In Section 4, we present polynomial delay and polynomial space algorithmMaxGeo for
maximal pattern mining, and in Section 5, we conclude.

2 Preliminaries

We prepare basic definitions and notations for maximal geometric graph mining. We de-
note byN andR the set of all natural numbers and the set of all real numbers, resp.

2.1 Geometric transformation and congruence.

We briefly prepare basic of plane geometry [11, 13]. In this paper, we consider geometric
objects, such as points, lines, point sets, and polygons, on thetwo-dimensional Euclidean
spaceE = R2, also called the2D plane. A geometric transformationT is any mapping
T : R2 → R2, which transforms geometric objects into other geometric objects in the
2D planeR2. In this paper, we consider the classTrgeo called rigid transformationsof
geometric transformations consisting of three basic types of geometric transformations:
rotation, scaling, and their combinations. In general, any geometric transformationT ∈
Trgeo can be represented as a2D affine transformationT : x 7→ Ax+t, whereA is a2×2
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Fig. 2. A geometric databaseD with V =
{1, . . . , 8}, ΣV = ∅, andΣE = {B, C}

nonsingular matrix withdet(A) 6= 0, andt is a 2-vector. SuchT is one-to-one and onto.
In addition, ifT ∈ Trgeo thenT preserves the angle between two lines. It is well-known
that any affine transformation can be determined by a set of three non-collinear points and
their images. ForTrgeo, we have the following lemma.

Lemma 1 (determination of unknown transformation). Given two distinct points in
the planex1, x2 and the two corresponding pointsx′1, x

′
2, there exists a unique rigid

transformationT in Trgeo, denoted byT(x1x2; x′1x
′
2), such thatT (xi) = x′i for every

i = 1, 2.

T(x1x2; x′1x
′
2) is computable inO(1) time. The above lemma is crucial in the fol-

lowing discussion. For any geometric objectO andT ∈ Trgeo, we denote the image ofO
via T by T (O). Theinverse imageof O via T is T−1(O).

2.2 Geometric graphs

We introduce the class of geometric graphs according to [15] as follows. LetΣV andΣE be
mutually disjoint sets ofvertex labelsandedge labelsassociated with total orders<Σ on
ΣV∪ΣE. In what follows, a vertex is always an element ofN. A graphis a vertex and edge-
labeled graphG = (V, E, λ, µ) with a setV of verticesand a setE ⊆ V 2 of edges. Each
x ∈ V has a vertex labelλ(x) ∈ ΣV, and eache = xy ∈ E ⊆ V 2 represents an unordered
edge{x, y} with an edge labelµ(e) ∈ ΣE. Two graphsGi = (Vi, Ei, λi, µi) (i = 1, 2)
are isomorphicif they are topologically identical to each other, i.e., there is a bijection
φ : V1 → V2 such that (i)λ1(x) = λ2(φ(x)), (ii) for every xy ∈ (V1)2, xy ∈ E1 iff
φ(x)φ(y) ∈ E2, and (iii) for anyxy ∈ E1, µ1(xy) = µ2(φ(x)φ(y)). The mappingφ is
called anisomorphismof G1 andG2.

A geometric graph is a representation of some geometric object by a set of features
and their relationships on a collection of 2D points.

Definition 1 (geometric graph). Formally, ageometric graph(or geograph, for short)
is a structureG = (V, E, c, λ, µ), where(V, E, λ, µ) is an underlying labeled graph and
c : V → R2 is a one-to-one mapping called the coordinate function. Each vertexv ∈ V
has the associated coordinatec(v) ∈ R2 in the 2D plane as well as its vertex labelλ(v).
We refer to the componentsV,E, c, λ andµ of G asVG, EG, cG, λG andµG.

We here assume that no two vertices or edges have the same coordinates, i.e., for
any two verticesv andu, c(v) 6= c(v). We note that even if there are vertices mapped
on the same points, we can shrink them into a vertex. This for all such vertices takes
O(|VG| log |VG|) time. We denote byG theclass of all geometric graphsoverΣV andΣE.



Alternative representation for geographs. Alternatively, a geometric graph can be
simply represented as a collection of labeled objectsG = V ∪E, whereV = {〈xi, λi〉 | i =
1, . . . , n } ⊆ R2×ΣV, andE = { 〈ei, µi〉 | i = 1, . . . , m } ⊆ R2×R2×ΣE. Each〈x, λ〉
is a labeled vertexfor a vertexv with c(v) = x andλ(v) = λ, and each〈c(v), c(u), µ〉 is
a labeled edgefor an edgee = vu with labelµ(e) = µ. A labeled objectrefers to either a
labeled vertex or a labeled edge. LetOL = (R2×ΣV)∪ (R2×R2×ΣE) be a domain of
labeled objects. We assume the lexicographic order<OL overOL by extending those over
N,R2, ΣV andΣE. Since the correspondence betweenG andG is obvious, we will often
use both representations interchangeably. For instance, we may writeG ∪ {〈v, x, λ〉} or
G \ {〈e, µ〉}. Sincec is one-to-one, we may also writex ∈ G instead ofx ∈ c(VG).

2.3 Geometric isomorphism and matching

Now, let us extend the notions of isomorphisms and matchings for geographs as in [15]. Let
G1, G2 ∈ G be any geographs. Then,G1 andG2 aregeometrically isomorphic, denoted
by G1 ≡ G2, if there are an isomorphismφ of G1 andG2 and a transformationT ∈ Trgeo

such thatT (c(x)) = c(φ(x)) for every vertexx of G1. The pair〈φ, T 〉 is a geometric
isomorphismof G1 andG2.

Let G = (V, E, c, λ, µ) be a geograph. A geographH is ageometric subgraphof G,
denoted byH ⊆ G, if H is a substructure ofG, that is, (i)VH ⊆ V andEH ⊆ E hold,
and (ii) mappingsλH , µH , andcH are the restrictions ofλ, µ, andc, respectively, onVH .
Now, we define the matching of geographs in terms of geometric subgraph isomorphism.

Definition 2 (geometric matching).A geographP geometrically matchesa geographG
(or, P matchesG) if there exists some geometric subgraphH of G that is geographically
isomorphic toP with a geometric isomorphism〈φ, T 〉. Then, we call the rigid transfor-
mationT ageometric matching functionfrom P to G or anoccurrenceof P in G.

We denote byM(P, G) ⊆ Trgeo the set of all geometric matching functionsfrom P to
G. We omitφ from 〈φ, T 〉 above because ifP matchesG then, there is at most one vertex
v = φ(u) ∈ VG of G such thatc(v) = T (c(u)) for eachu ∈ VP of P . Clearly,P matches
G iff M(P, G) 6= ∅. If P matchesG then we writeP v G and sayP occurs inG or P
appears inG. If P v Q andQ 6v P then we defineP @ Q. We can observe that if both
P v Q andQ v P hold thenP ≡ Q, that is,P andQ are geometrically isomorphic. If we
take the setG of the equivalence classes of geographs modulo geometric isomorphisms,
thenv is a partial order overG.

2.4 Patterns, occurrences, and frequencies

Let k ≥ 0 be a nonnegative integer. Ak-pattern(or k-geograph) is any geographP ∈ G

with k vertices. From the invariance underTrgeo, we assume without any loss of gener-
ality that if P is a k-pattern thenVP = {1, . . . , k}, and if k ≥ 2 thenP has the fixed
coordinatesc(1) = (0, 0) andc(2) = (0, 1) ∈ R2 for its first two vertices in the local
Cartesian coordinate. An inputgeometric databaseof sizen ≥ 0 is a single geograph
D = (V,E, c, λ, µ) ∈ G with |V | = n. We denote|V | + |E|, which is the total size
of D, by ||D||. D is also called aninput geograph. Fig. 2 shows an example of an input
geometric databaseD with V = {1, . . . , 8} overΣV = ∅, andΣE = {B,C}.

Let P ∈ G be anyk-pattern. Then, thelocation list of patternP in D is defined by
the setL(P ) of all rigid transformations that matchesP to the input geographD, i.e.,



L(P ) = M(P, D). Thefrequencyof P is |L(P )| ∈ N. For an integer0 ≤ σ ≤ n, called a
minimum support(or minsup), P is σ-frequent inD if its frequency is no less thanσ.

Unlike ordinary graphs, the number of distinct matching functions inL(P ) is bounded
by polynomial in the input size.

Lemma 2. For any geographP , |L(P )| is no greater thann2 underTrgeo.

Proof. From Lemma 1, the imagesx′1x
′
2 of just two pointsx1x2 in the plane are sufficient

to determineT(x1x2; x′1x
′
2) in Trgeo. Thus, the result follows. ut

Lemma 3 (monotonicity).LetP,Q be any geographs. (i) IfP ≡ Q thenL(P ) = L(Q).
(ii) If P v Q thenL(P ) ⊇ L(Q). (iii) If P v Q then|L(P )| ≥ |L(Q)|.

2.5 Maximal pattern discovery

From the monotonicity of the location list and the frequency in Lemma 3, it is natural to
consider maximal subgraphs in terms ofv preserving their location lists as follows.

Definition 3 (maximal geometric patterns).A geometric patternP ∈ G is said to be
maximalin an input geographT if there is no other geometric patternQ ∈ G such that (i)
P @ Q and (ii)L(P ) = L(Q) hold.

In other words,P is maximal inD if there is no pattern strictly larger thanP that
has the same location list asP ’s. Equivalently,P is maximal iff any addition of a labeled
object toP makesL(P ) strictly smaller than before. We denote byFσ ⊆ G be the set of
all σ-frequent geometric patterns inD, and byM ⊆ G be the set of all maximal geometric
patterns inD underT. The set of allσ-frequent maximal patterns isMσ = M ∩ Fσ.

Now, we state our data mining problem as follows.

Definition 4 (maximal pattern enumeration problem). Themaximal geometric pattern
enumeration problemis, given an input geographD ∈ G of sizen and a minimum support
1 ≤ σ ≤ n, to enumerate every frequent maximal geometric patternP ∈ Mσ appearing
in D without outputting no isomorphic two.

Our goal is to devise a light-weight and high-throughput mining algorithm for enu-
merating all maximal patterns appearing in a given input geograph. This is paraphrased in
terms of output-sensitive enumeration algorithms in Section 2.6 as a polynomial delay and
polynomial space algorithm for solving this problem. This goal has been an open question
for M and even forFσ so far.

We can define a different notion of location listD(P ), called the document list, defined
as the set of input graphs in which a pattern appears, and maximality based onD(P ) in a
similar way. Actually, location-based maximality is a necessary condition for document-
based maximality. However, we do not go further in this direction.

2.6 Model of computation

We make the following standard assumptions in computational geometry [19]: For every
point p = (x, y) ∈ E, we assume that its coordinatesx andy have infinite precision.
Our model of computation is therandom access machine(RAM) model withO(1) unit
time arithmetic operations over real numbers as well as the standard functions of analysis
((·) 1

2 , sin, cos, etc) [1, 19].



An enumeration algorithmA is an output-polynomial timealgorithm if A finds all
solutionsS ∈ S without duplicates on a given inputI in total polynomial time both in
the input size and the output size.A is polynomial delayif the delay, which is the max-
imum computation time between two consecutive outputs, is bounded by polynomials in
the input size. IfA is polynomial delay, thenA is also output-polynomial time.A is a
polynomial spacealgorithm if the maximum spaceA uses is bounded by a polynomial in
the input size.

3 Algorithm for Frequent Pattern Discovery

3.1 Canonical encoding for geographs

In this subsection, to properly handle the geometric isomorphism among the isomorphic
patterns, we introduce the canonical code for geometric patterns, which is invariant under
transformations inTrgeo. Let P be anyk-pattern withVP = {1, . . . , k}. Recall that the
first two vertices ofP have the fixed coordinatesc(1) = (0, 0), c(2) = (0, 1) ∈ R2 in their
local 2D plane.

Defining a code Suppose that the vertex setVP of P has at least two vertices. Let
o = (

∑
v∈VP

c(v))/|VP | be the centroid (thecenter) of the vertices inP , which is the
averages ofx-coordinates andy-coordinates of all vertices inP . We choose a pointx ∈
P, x 6= o having the minimum Euclidean distance too called thebase point. Denote byQ
the pattern obtained by transformingP in a polar coordinate system such thato is mapped
to the origin andx is mapped to(0, 1), where the first element of the coordinates gives
the angle. We define the coordinate of the origin by(0, 0). Let O = V Q ∪ {〈c(v), c(u)−
c(v), µuv〉, 〈c(u), c(v) − c(u), µuv〉 | uv ∈ EQ}. Then, the codeCode(P, x) of P is
defined by the elements ofO sorted in lexicographic order.

Clearly, there are at mostk distinctCode(P, x) depending on the choice of the base
pointx. Then, thecanonical codeCode∗(P ) for patternP is defined by the lexicograph-
ically minimum code among the codes ofP . A patternP is said to becanonicalif (i) it
has no vertex, (ii) it has one vertex at(0, 0), or (iii) its vertices are indexed in the order of
its canonical code.

Theorem 1 (characterization of canonical code).For any P, Q ∈ G of sizek ≥ 0,
Code∗(P ) = Code∗(Q) iff P ≡ Q underTrgeo.

A code can be computed inO(k2 log k) time for anyk-patternP and base pointx,
then the code for another base point is obtained by shifting it. Hence, we can compute
the canonical code ofP in O(k2 log k) time. The purpose of the canonical code and the
canonical pattern is to define a representative pattern among the geometric isomorphic
patterns. Thus, our task is to enumerate allσ-frequent canonical patterns.

3.2 Perfect elimination sequences

Before studying enumeration or generation of each pattern, we consider the reverse process
of enumeration, the decomposition of a given geograph. LetP ∈ G be anyk-geograph.
We defineperfect elimination sequenceby the sequenceelimseq (P ) = (ξk, . . . , ξ1) ∈
OL∗ obtained by the procedureElimination Orderingin Fig. 3. Note that the elimination
sequence(ξk, . . . , ξ1) for P is not identical to the reverse of the canonical codeCode∗(P )
since thei-th elementξi is selected based on the canonical code of the current geograph
Pi not with the order defined on the initial graphP = Pk.



Elimination Ordering (P )

1: i = 1; j = 1; P1 = P ;
2: while Pi 6= ∅ do
3: 〈o, l〉 = tail (Pi) based on the canonical codeCode∗(Pi);
4: Pi+1 = Pi − {〈o, l〉}; ξj = 〈o, l〉 andj = j + 1;
5: end while
6: return elimseq (P ) = (ξk, . . . , ξ1);

Fig. 3.Procedure for computing perfect eliminationelimseq (P ) for geometric graphP

FreqGeo(σ : minsup, D : input database)
1: call Expand FG(∅, σ,D);

Expand FG(P, σ,D)
1: if |L(P )| < σ then return else outputP as a frequent subgraph;
2: for each missing objectξ do
3: Q = P ∪ {ξ};
4: if ξ is the last ofCode∗(Q) then call Expand FG(Q, σ,D);
5: end for

Fig. 4. Polynomial delay and polynomial space algorithm for the frequent geo-
metric subgraph enumeration problem

3.3 Algorithm for Frequent Pattern Discovery

Fig. 4 shows the algorithmFreqGeo for the frequent geometric subgraph discovery. Start-
ing from the empty graph∅, FreqGeo searchesFσ from smaller to larger by growingP
with adding new labeled objects one by one. To avoid duplicates,FreqGeo adds a la-
beled objectξ to the current patternP only whenξ is the last object in the canonical code
Code∗(P ∪ ξ) of P ∪ ξ. It corresponds to that any patternP is generated in the reverse
order of the elimination sequence. Thereby any patternQ = P ∪ ξ is generated exactly
once only from the patternQ \ ξ whereξ is the last object inCode∗(Q). This ensures that
eachσ frequent pattern is output exactly once.

There are infinitely many candidates for the possible labeled object in Line 2 of Fig. 4.
From the next lemma, we can avoid such a blind search by only focusing onmissing
objects forP , which is either labeled vertex or edgeξ such thatL(P ) ⊇ L(P ∪ {ξ}) 6= ∅
holds. From Lemmas 1 and 3, we have the next lemma.

Lemma 4 (missing labeled objects).Let P be a pattern with nonemptyL(P ) in D. Any
missing objectξ = 〈o, l〉 for P is the inverse image of some labeled vertex or labeled edge
π via T for some matchingT ∈ L(P ), i.e.,ξ = T−1(π) for someπ ∈ D.

From Lemma 4 above, we know that there are at mostO(|L(P )|·||D||) = O(|V |2(|V |+
|E|)) missing objects. Thus, Line 2 can be done in polynomial time. By using the tech-
nique called occurrence deliver described in [3–5, 22], we can compute the frequencies of
P ∪ {ξ} for all missing objects forP in O(|V |2(|V | + |E|) log |V |) time. Therefore, the
average computation time for each output pattern isO(|V |2(|V |+ |E|)k2 log |V |), where
k is the maximum size ofσ-frequent pattern. Combining the above, we have the following
theorem.



Algorithm MaxGeo: (D : input geograph, σ : minsup)

1: ⊥ = Clo(∅); //The bottom maximal geograph
2: call Expand MaxGeo(⊥, σ,D);

Algorithm Expand MaxGeo(P, σ,D)
1: if P is notσ-frequentthen return ; //Frequency test
2: else outputP as aσ-frequent maximal geograph;
3: for each missing labeled objectξ = 〈o, `〉 do //Lemma 4
4: Q = Clo(P ∪ { ξ });
5: if ( P(Q) ≡ P ) then
6: call Expand MaxGeo(Q, σ,D); //Recursive call for children
7: endfor

Fig. 5. A polynomial delay and polynomial space algorithmMaxGeo for the
maximal geometric subgraph enumeration problem

Theorem 2 (frequent geograph enumeration).The algorithmFreqGeo in Fig. 4 enu-
merates allσ-frequent geometric graphs in a given input databaseD ∈ G in polynomial
delay and polynomial space in the total input size.

4 Algorithm for Maximal Pattern Discovery

In this section, we present an efficient algorithmMaxGeo for the maximal pattern enu-
meration problem for the class of geographs that runs in polynomial delay and polynomial
space in the input size.

4.1 Outline of the algorithm

Fig. 5 shows our algorithmMaxGeo for enumerating allσ-frequent maximal geometric
patterns inMσ using backtracking. The key to the algorithm is a tree-like search route
R = R(Mσ) implicitly defined overMσ. Then, starting at the root of the search route
R, MaxGeo searchesR by jumping from a smaller maximal pattern to a larger one in a
depth-first manner. Each jump is done by expanding each maximal pattern in polynomial
time, thus the algorithm is polynomial delay.

4.2 Intersection and closure operations for geographs

Let G1 andG2 be two geographs withVG1 ∩VG2 6= ∅. Themaximally common geometric
subgraph(MCGS) of G1 andG2 is a geograph which is represented by labeled objects
common to bothG1 andG2. MCGS is unique for geographs, while they are not unique
for ordinary graphs.

The intersection operation∩ is reflexive, commutative, and associative overG. For a set
G = {G1, . . . , Gm} of geographs, we define∩G = G1 ∩G2 ∩ · · · ∩Gm. We can see that
the computation time for∩G are bounded byO(||G|| log ||G||). Some literatures [14]
give an intersection of labeled graphs or first-order models in a different way which is
based on thecross productof two structures. However, their iterative applications causes



exponentially large intersections unlike∩G above. Gariigaet al.[10] discussed related
issues.

Now, let us define the closure operation forG.

Definition 5 (closure operator for geographs).Let P ∈ G be a geograph of size≥ 2.
Then, theclosureof P in D is defined by the geograph Clo(P ):

Clo(P ) =
⋂
{ T−1(D) |T ∈ L(P ) }.

Theorem 3 (correctness of closure operation).Let P be a geograph of size≥ 2 andD
be an input database. Then,Clo(P ) is the unique, maximal geograph w.r.t.v satisfying
L(Clo(P )) = L(P ).

Proof. We give a sketch of the proof. LetT ∈ Trgeo be any rigid transformation. Then, we
can see thatP matchesD via T iff P is a geometric subgraph of the inverse image ofD
via T , i.e.,P ⊆ T−1(D). Thus, taking the intersection of the inverse imageT−1(D) for
all matchingT of P , we obtain the unique maximal subgraph havingL(P ). ut
Lemma 5. For any geographsP,Q ∈ G, the following properties hold:
(i) P v Clo(P ). (ii) L(Clo(P )) ≡ L(P ). (iii) Clo(P ) ≡ Clo(Clo(P )).

(iv) P v Q iff L(P ) ⊇ L(Q) for any maximalP, Q ∈ M.
(v) Clo(P ) is the unique, smallest maximal geograph containingP .

(vi) For the empty graph∅,⊥ = Clo(∅) is the smallest element ofM.

Theorem 4 (characterization of maximal geographs).LetD be an input geograph and
P ∈ G be any geograph. Then,P is maximal inD iff Clo(P ) ≡ P .

4.3 Defining the tree-shaped search route

In this subsection, we define a tree-like search routeR = (Mσ,P,⊥) for the depth-first
search of all maximal geographs based on a so-called parent function.

Let Q ∈ M be a maximal pattern of vertices at least two such thatQ 6= ⊥. For any
labeled objectξ ∈ Q, define theξ-prefix of Q as the patternQ[ξ] which is the collection
of the labeled objects prior toξ in Code∗(Q). Then, thecore indexcore i (Q) of Q is
the labeled objectξ such thatL(Q[ξ′]) 6= L(Q) holds for anyξ′ prior to ξ in Code∗(Q).
We can show that ifQ 6= ⊥ thencore i (Q) is always defined.

Q[core i (Q)] ⊆ Q is the shortest prefix ofQ satisfyingL(Q[ξ]) = L(Q). Moreover,
if we removecore i (Q) from the prefixQ[core i (Q)], then we have a properly shorter
prefix, and then the location list changes. Now, we define the parent functionP that gives
the predecessor ofQ.

Definition 6 (parent function P). Theparentof any maximal patternQ ∈ M (Q 6= ⊥)
is defined byP(Q) = Clo(Q[ξ] \ {ξ}), whereξ = core i (Q) is the core index ofQ.

Lemma 6. P(Q) is (i) always defined, (ii) unique, and (iii) a maximal pattern inM. More-
over,P satisfies that (iv)P(Q) ⊂ Q, (v) |P(Q) | < |Q |, and (vi)L(P(Q)) ⊃ L(Q).

Now, we define thesearch routefor Mσ as a rooted directed graphR(Mσ) = (Mσ, P,⊥),
whereMσ is the vertex set,P is the set of reverse edges, and⊥ is the root. For the search
route, we have the following theorem.

Theorem 5 (reverse search property).For everyσ, the search routeR(Mσ) is a span-
ning tree with the root⊥ over all the maximal patterns inMσ.



4.4 A polynomial space polynomial delay algorithm

The remaining thing is to show how we can efficiently traverse the search routeR(Mσ)
starting from⊥. However, this is not a straightforward task sinceR(Mσ) only has the
reverse edges. To cope with this difficulty, we introduce the technique so called reverse
search [7] and the closure extension [18].

Lemma 7. For maximal patternsQ andP , P is the parent ofQ only if Q ≡ clo(P ∪ ξ)
holds for a missing objectξ for P .

Proof. Suppose thatP is the parent ofQ, andξ′ is the labeled object preceding and next
to core i (Q) in the canonical code ofQ. ξ′ is included inP , sinceP = Clo(Q[ξ′]).
SinceL(Q) is a collection ofT ∈ L(Q[ξ′]) satisfying thatT−1(D) includescore i (Q),
together withL(Q[ξ′]) = L(P ), L(P ∪ {ξ}) = L(Q[ξ′] ∪ {ξ}) = L(Q). Thus the
statement holds. ut

The operation of adding a labeled object and taking its closure is calledclosure exten-
sion. Lemma 7 states that any maximal geometric pattern can be obtained by applying to
⊥ closure extensions repeatedly.

From Lemma 7, we can see that to find all children of a patternP , we have to ex-
amine the closure extension for all missing objects forP . Clearly, a closure extension
Q = Clo(P ∪ ξ) of P is a child ofP if its parent isP . Since the parent ofQ can be
obtained by computing its canonical code, we can check whether a closure extension is a
child or not inO(k2logk) time wherek is the number of labeled objects inQ. Since the
computation ofclo(Q) takesO(|L(Q)| × ||D|| log ||D||) time, we obtain the following
theorem.

Theorem 6 (correctness and complexity ofMaxGeo). Given an input geographD with
vertex setV and a minimum support thresholdσ > 0, the algorithmMAX GEO in Fig. 5
enumerates allσ-frequent maximal geographs inO((m||D||)×((m+n)||D|| log ||D||)) =
O(m(m + n)||D||2 log |D|) per maximal geograph withO(||D||) space, wherem =
O(n2) is the maximum size of the location lists.

If σ is not too small, then the number of missing objects to examine will consequently
be small, such asO(n), decreasing the computation time will be short. This is expected
in practical computation. Moreover, in practice, usually almost all (maximal) patterns to
be output have small frequencies close toσ, thus the computation time for the closure
operation is rather short. According to the computational experiments in [4, 22], practical
computation time is very short in such cases.

Corollary 1. The maximal geograph enumeration problem is solvable in polynomial de-
lay and polynomial space.

5 Conclusion

We presented a polynomial delay and polynomial space algorithm that discovers all maxi-
mal geographs in a given geometric configuration without duplicates. As future works, we
intend to implement and evaluate the experimental performance of the algorithm. Dealing
with the input of many geographs and document occurrence is a straightforward work.



Dealing with polygons is also straightforward, by using sophisticated labels to identify
edges of polygons as a group. Extensions with approximation and constraints, with appli-
cations to image processing and geographic information systems, are other future prob-
lems.
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