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Abstract. A geometric graphis a labeled graph whose vertices are points
in the 2D plane with an isomorphism invariant under geometric transfor-
mations such as translation, rotation, and scaling. While Kuramochi and
Karypis (ICDM2002) extensively studied the frequent pattern mining prob-
lem for geometric subgraphs, the maximal graph mining has not been con-
sidered so far. In this paper, we study the maximal (or closed) graph mining
problem for the general class of geometric graphs in the 2D plane by ex-
tending the framework of Kuramochi and Karypis. Combining techniques
of canonical encoding and a depth-first search tree for the class of maximal
patterns, we preseiat polynomial delay and polynomial space algorithm
MaxGeo,that enumerates all maximal subgraphsa given input geomet-

ric graph without duplicates. This is the first result establishing the output-
sensitive complexity of closed graph mining for geometric graphs. We also
show that the frequent graph mining problem is also solvable in polynomial
delay and polynomial time.

Keywords: geometric graphs, closed graph mining, depth-first search, rightmost expan-
sion, polynomial delay polynomial space enumeration algorithms.

1 Introduction

Background. There has been increasing demands for efficient methods of extracting
useful patterns and rules from weakly structured datasets due to rapid growth of both
the amount and the varieties of nonstandard datasets in scientific, spatial, and relational
domains.Graph miningis one of the most promising approaches to knowledge discovery
from such weakly structured datasets. The following topics have been extensively studied
for the last few years: frequent subgraph mining [6, 12, 17, 27], maximal (closed) subgraph
mining [3, 9, 20, 25] and combination with machine learning [21, 28]. See surveys, e.g. [8,
24], for the overviews.

The class of geometric graphs.In this paper, we address a graph mining problem
for the classg of geometric graphsGeometric graphggeographsfor short) [15] are a
special kind of vertex- and edge-labeled graphs whose vertices have coordinates in the 2D
planeR?, while labels represent geometric features and their relationships. The matching
relation for geographs is defined through the invariance under a class of geometric trans-
formations, such as translation, rotation, and scaling in the plane, in addition to the usual



constraint for graph isomorphism. We do not consider the mirror projection, but the ex-
tension is simple (consider the mirror projection when we compute the canonical form).
Geographs are useful in applications concerned with geometric configurations, e.g., the
analysis of chemical compounds, geographic information systems, and knowledge discov-
ery from vision and image data.

Maximal pattern discovery problem. For the class of geometric graphs, Kuramochi
and Karypis presented an efficient mining algoritgfeSG for the frequent geometric
subgraph mining, based on Apriori-like breadth-first search [15]. However, the frequent
pattern mining poses a problem in that it can easily produce an extremely large number
of solutions, which degrades the performance and the comprehensivity of data mining to
a large extent. Thenaximal subgraph mining problefip on the other hand, asks to find
only all maximal patterngclosed patterns) appearing in a given input geometric gfaph
where amaximal patterris a geometric graph which is not included in any properly larger
subgraph having the same set of occurrencds.iSince the seM of all maximal patterns
is expected to be much smaller than theXef all frequent patterns and still contains the
complete information o), maximal subgraph mining has some advantages as a compact
representation to frequent subgraph mining.

Difficulties of maximal pattern mining. However, there are a number of difficulties
in maximal subgraph mining for geometric graphs. In general, maximal pattern mining has
a large computational complexity [4, 26]. So far, a number of efficient maximal pattern
algorithms have been proposed fets, sequenceandgraphs(3,9, 20, 22, 25]. Some
algorithms use explicit duplicate detection and maximality test by maintaining a collection
of already discovered patterns. This requires a large amount of memory and delay time,
and introduces difficulties in the use of efficient search techniques, e.g., depth-first search.
For these reasons, output-polynomial time computation for the maximal pattern problem is
still a challenge in maximal geometric graphs. Moreover, the invariance under geometric
transformation for geometric graphs adds another difficulty to geometric graph mining. In
fact, no depth-first algorithm has been known to date even for frequent pattern mining.

Main result. The goal of this paper is to develop a time and space efficient algorithm
that can work well in theory and practice for maximal geometric graphs. As our main
result, we present an efficient depth-first search algorithemxGeo that, given an input
geometric graph, enumerates all frequent maximal pattem M without duplicates in
O(m(m + n)||D||*log||D||) = O(n®logn) time per pattern and i®(m) = O(n?)
space, with the maximum number of occurrences of a pattern other than trivial patterns,
the number of vertices in the input graph, and the numHé?|| of vertices and edges in
the input graph. This is a polynomial delay and polynomial time algorithm for the maximal
pattern discovery problem for geometric graphs. This is the first result establishing the
output-sensitive complexity of maximal graph mining for geometric graphs.

Other contributions of this paper. To cope with the difficulties mentioned above, we
devise some new techniques for geometric graph mining.

(1) We define a polynomial time computaldanonical coddor all geometric graphs in
G, which is invariant under geometric transformations. We give the first polynomial

4 Although the maximal pattern discovery is more often catilesed pattern discoveryve use the
term “maximal’” rather than “closed” in this paper for the consistency with works in computational
complexity and algorithms area [4, 26].



delay and polynomial space algoritifreqGeo for the frequent geometric subgraph
mining problem as a bi-product.

(2) We introduce théntersectionand theclosure operatiorfor G. Using these tools, we
define thdree-shaped search roufefor all maximal patternsn G. We propose a new
pattern growth technique arising from reverse searchcéoglre extensiofil8] for
traversing the search roufeby depth-first search.

Related works. There have been closely related researches on 1D and 2D point set
matching algorithms, e.g. [2], where point sets are the simplest kind of geometric graphs.
However, since they have mainly studied exact and approximate matching of point sets,
the purpose is different from this work.

A number of efficient maximal pattern mining algorithms have been presented for
subclasses of graph, trees, and sequences, e.g., general graphs [25], ordered and unordered
trees [9], attribute trees [3, 20], and sequences [4, 5, 23]. Some of them have output-sensitive
time complexity as follows. The first group deal with the mining of “elastic” or “flexible”
patterns, where the closure is not definreMTreeMiner [9], BIDE [23], andMaxFlex [5]
are essentially output-polynomial time algorithms for location-based maximal patterns
though it is implicit. They are originally used as pruning for document-based maximal
patterns [5].

The second group deal with the mining of “rigid” patterns which helesurelike
operationsLCM [22] proposes ppc-extension for maximal sets, and (leATT [3] and
MaxMotif [4] generalize it for trees and sequences. They together with this paper are
polynomial delay and polynomial space algorithms.

Some of the other maximal pattern miners for complex graph classe€lesgGraph [25],
adopt frequent pattern discovery augmented with,e.g., maximality test and duplicate de-
tection although output-polynomial time computability seems difficult to achieve with this
approach.

Organization of this paper. Section 2 introduces the maximal pattern mining for
geometric graphs. Section 3 gives the canonical code and the frequent pattern mining.
In Section 4, we present polynomial delay and polynomial space algohitarGeo for
maximal pattern mining, and in Section 5, we conclude.

2 Preliminaries

We prepare basic definitions and notations for maximal geometric graph mining. We de-
note byN andR the set of all natural numbers and the set of all real numbers, resp.

2.1 Geometric transformation and congruence.

We briefly prepare basic of plane geometry [11, 13]. In this paper, we consider geometric
objects, such as points, lines, point sets, and polygons, awtitdimensional Euclidean
spaceE = R?, also called th@D plane A geometric transformatioff” is any mapping

T : R? — R2, which transforms geometric objects into other geometric objects in the
2D planeR2. In this paper, we consider the cla®s,., calledrigid transformationsof
geometric transformations consisting of three basic types of geometric transformations:
rotation, scaling and their combinations. In general, any geometric transformdtian

Treeo CaN be represented ag@ affine transformatiod” :  — Ax+t, whereA is a2 x 2
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nonsingular matrix withlet(A) # 0, andt is a 2-vector. Sucll’ is one-to-one and onto.

In addition, ifT" € T,4¢, thenT" preserves the angle between two lines. It is well-known
that any affine transformation can be determined by a set of three non-collinear points and
their images. FoT 4., We have the following lemma.

Lemma 1 (determination of unknown transformation). Given two distinct points in
the planez;, 2 and the two corresponding points;, x5, there exists a unique rigid
transformation?” in Tygeo, denoted byl (z1z2; ) x)), such thatl'(z;) = x| for every

i=1,2.

T (x122; x)jxh) is computable irO(1) time. The above lemma is crucial in the fol-
lowing discussion. For any geometric objézndT’ € T.,.,, we denote the image ¢?
viaT by T(O). Theinverse imagef O viaT is T~1(0).

2.2 Geometric graphs

We introduce the class of geometric graphs according to [15] as followsN-@hd X'k be
mutually disjoint sets ofertex labelsandedge labelsassociated with total ordeksy, on
JvUXE. Inwhat follows, a vertex is always an elementbfA graphis a vertex and edge-
labeled grapi; = (V, E, \, 1) with a setV of verticesand a sefz C V2 of edgesEach
x € V has avertex label(x) € Yy, and each = xy € E C V? represents an unordered
edge{z, y} with an edge labeli(e) € Yg. Two graphs; = (V;, E;, A, i) (1 = 1,2)
areisomorphicif they are topologically identical to each other, i.e., there is a bijection
¢ : Vi — Va such that ()1 (z) = Xa(o(z)), (i) for everyzy € (V4)?2, xy € E; iff
$(z)¢(y) € Es, and (i) for anyzy € By, p(zy) = pa(é(x)é(y)). The mappings is
called anisomorphisnof G; andG..

A geometric graph is a representation of some geometric object by a set of features
and their relationships on a collection of 2D points.

Definition 1 (geometric graph). Formally, ageometric graph(or geograph for short)

is a structurez = (V, E, ¢, A\, u), where(V, E, A\, 1) is an underlying labeled graph and
c: V — R?is a one-to-one mapping called the coordinate function. Each vertex
has the associated coordinate) € R? in the 2D plane as well as its vertex label).
We refer to the components E, ¢, A andyu of G asVg, Eg, ca, A\g andug.

We here assume that no two vertices or edges have the same coordinates, i.e., for
any two vertice andu, c¢(v) # ¢(v). We note that even if there are vertices mapped
on the same points, we can shrink them into a vertex. This for all such vertices takes
O(|Vz|log|Ve|) time. We denote by theclass of all geometric graphsver Xy and Y.



Alternative representation for geographs. Alternatively, a geometric graph can be
simply represented as a collection of labeled objétts VUE, whereV. = {(x;, \;) |i =
L...,n} CR2x Xy,andE = {{(e;, ui) |i =1,...,m} C R? x R? x Y. Each(z, \)
is alabeled vertexor a vertexv with ¢(v) = x andA(v) = A, and eacHc(v), c(u), p) is
alabeled edgdor an edge: = vu with labelu(e) = u. A labeled objectefers to either a
labeled vertex or a labeled edge. k&t = (R? x Xy) U (R? x R? x Yg) be a domain of
labeled objects. We assume the lexicographic otder overO L by extending those over
N, R2?, Xy and Xg. Since the correspondence betwgeandG is obvious, we will often
use both representations interchangeably. For instance, we mayGneité(v, x, A)} or
G\ {{e, u)}. Sincec is one-to-one, we may also writec G instead ofx € ¢(V).

2.3 Geometric isomorphism and matching

Now, let us extend the notions of isomorphisms and matchings for geographs as in [15]. Let
G1,G2 € G be any geographs. The@,; andG, aregeometrically isomorphjocdenoted
by G1 = G, if there are an isomorphismof G andG, and a transformatio’ € Jygeo
such thatT'(c(z)) = c¢(¢(x)) for every vertexe of G;. The pair{¢,T) is a geometric
isomorphisnof G; andGs.

LetG = (V, E,c, \, u) be a geograph. A geogragh is ageometric subgrapbf G,
denoted byH C G, if H is a substructure of7, that is, ()Vy C V andEy C E hold,
and (ii) mappings\y, 1x, andcy are the restrictions of, 1, ande, respectively, orVy.
Now, we define the matching of geographs in terms of geometric subgraph isomorphism.

Definition 2 (geometric matching).A geographP geometrically matches geograplz
(or, P matched?) if there exists some geometric subgratof G that is geographically
isomorphic toP with a geometric isomorphisrty, T'). Then, we call the rigid transfor-
mation’7” ageometric matching functioinom P to G or anoccurrenceof P in G.

We denote byM (P, G) C Treeo the set of all geometric matching functioinem P to
G. We omit¢ from (¢, T') above because P matched7 then, there is at most one vertex
v = ¢(u) € Vi of G such that(v) = T'(c(u)) for eachu € Vp of P. Clearly, P matches
G iff M(P,G) # 0. If P matcheg5 then we writeP C G and sayP occurs inG or P
appears inG. If P C @ and@ Z P then we defing® C . We can observe that if both
P C Qand@ C P holdthenP = @, thatis,P and() are geometrically isomorphic. If we
take the sef of the equivalence classes of geographs modulo geometric isomorphisms,
thenC is a partial order ove§.

2.4 Patterns, occurrences, and frequencies

Let £ > 0 be a nonnegative integer. #pattern(or k-geograph is any geograptP € §
with & vertices. From the invariance undgr,.,, we assume without any loss of gener-
ality that if P is a k-pattern thenV» = {1,...,k}, and ifk > 2 then P has the fixed
coordinates:(1) = (0,0) andc(2) = (0,1) € R? for its first two vertices in the local
Cartesian coordinate. An inpgeometric databasef sizen > 0 is a single geograph
D = (V,E,c,\, ) € G with |[V| = n. We denotgV| + |E|, which is the total size
of D, by ||D||. D is also called amnput geographFig. 2 shows an example of an input
geometric database with V' = {1,...,8} overXy = (§, andXg = {B, C}.

Let P € G be anyk-pattern. Then, théocation listof patternP in D is defined by
the setL(P) of all rigid transformations that matchd? to the input geograpt, i.e.,



L(P) = M(P, D). Thefrequencyof P is |L(P)| € N. For an integef < ¢ < n, called a
minimum supportor minsup, P is o-frequent inD if its frequency is no less than

Unlike ordinary graphs, the number of distinct matching functions(iR) is bounded
by polynomial in the input size.

Lemma 2. For any geographP, |L(P)| is no greater tham? underT,gco-

Proof. From Lemma 1, the images =/, of just two pointse; - in the plane are sufficient
to determin€l (zx2; x| h) IN Tigeo. Thus, the result follows. O

Lemma 3 (monotonicity). Let P, @ be any geographs. (i) IP = Q thenL(P) = L(Q).
(i) If PC QthenL(P) 2 L(Q). (i) If P C Qthen|L(P)| > |L(Q)].

2.5 Maximal pattern discovery

From the monotonicity of the location list and the frequency in Lemma 3, it is natural to
consider maximal subgraphs in terms-opreserving their location lists as follows.

Definition 3 (maximal geometric patterns). A geometric pattern? € G is said to be
maximalin an input geograpit’ if there is no other geometric patteghe G such that (i)
P C Qand (i) L(P) = L(Q) hold.

In other words,P is maximal inD if there is no pattern strictly larger thaR that
has the same location list @&s. Equivalently,P is maximal iff any addition of a labeled
object toP makesL(P) strictly smaller than before. We denote §§ C G be the set of
all o-frequent geometric patterns in, and byM C § be the set of all maximal geometric
patterns inD underT. The set of alb-frequent maximal patterns ¥° = M N F°.

Now, we state our data mining problem as follows.

Definition 4 (maximal pattern enumeration problem). Themaximal geometric pattern
enumeration probleris, given an input geograph € G of sizen and a minimum support
1 < o < n, to enumerate every frequent maximal geometric patiern M appearing
in D without outputting no isomorphic two.

Our goal is to devise a light-weight and high-throughput mining algorithm for enu-
merating all maximal patterns appearing in a given input geograph. This is paraphrased in
terms of output-sensitive enumeration algorithms in Section 2.6 as a polynomial delay and
polynomial space algorithm for solving this problem. This goal has been an open question
for M and even fotF° so far.

We can define a different notion of location li3{ P), called the document list, defined
as the set of input graphs in which a pattern appears, and maximality baged®rn a
similar way. Actually, location-based maximality is a necessary condition for document-
based maximality. However, we do not go further in this direction.

2.6 Model of computation

We make the following standard assumptions in computational geometry [19]: For every
pointp = (x,y) € E, we assume that its coordinatesand y have infinite precision.

Our model of computation is thendom access machif®AM) model with O(1) unit

time arithmetic operations over real numbers as well as the standard functions of analysis
((-)2,sin, cos, etc) [1,19].



An enumeration algorithrd is an output-polynomial timelgorithm if A finds all
solutionsS € § without duplicates on a given inputin total polynomial time both in
the input size and the output sizA.is polynomial delayif the delay, which is the max-
imum computation time between two consecutive outputs, is bounded by polynomials in
the input size. IfA is polynomial delay, therd is also output-polynomial time4 is a
polynomial spacelgorithm if the maximum spacé uses is bounded by a polynomial in
the input size.

3 Algorithm for Frequent Pattern Discovery

3.1 Canonical encoding for geographs

In this subsection, to properly handle the geometric isomorphism among the isomorphic
patterns, we introduce the canonical code for geometric patterns, which is invariant under
transformations ifV,4eo. Let P be anyk-pattern withVp = {1,...,k}. Recall that the

first two vertices of” have the fixed coordinate$l) = (0,0), ¢(2) = (0,1) € R? in their

local 2D plane.

Defining a code Suppose that the vertex sép of P has at least two vertices. Let
o = (_,ev, c(v))/|Vp| be the centroid (theente) of the vertices inP, which is the
averages of-coordinates ang-coordinates of all vertices iff. We choose a point €
P, x # o having the minimum Euclidean distancedealled thebase pointDenote by
the pattern obtained by transformifin a polar coordinate system such thds mapped
to the origin ande is mapped tq0, 1), where the first element of the coordinates gives
the angle. We define the coordinate of the origin@y0). LetO = V5 U {{c(v), c(u) —

c(v), ), {c(w), e(v) — c(u), puw) | wv € Eg}. Then, the code€Code(P, ) of P is
defined by the elements 6f sorted in lexicographic order.

Clearly, there are at mostdistinct Code(P, =) depending on the choice of the base
pointx. Then, thecanonical codeCode*(P) for patternP is defined by the lexicograph-
ically minimum code among the codes Bf A patternP is said to becanonicalif (i) it
has no vertex, (ii) it has one vertex@ 0), or (iii) its vertices are indexed in the order of
its canonical code.

Theorem 1 (characterization of canonical code)For any P,Q € G of sizek > 0,
Code*(P) = Code*(Q) iff P = Q underT,ge,.

A code can be computed (k% log k) time for anyk-patternP and base point,
then the code for another base point is obtained by shifting it. Hence, we can compute
the canonical code aP in O(k? log k) time. The purpose of the canonical code and the
canonical pattern is to define a representative pattern among the geometric isomorphic
patterns. Thus, our task is to enumerateraiequent canonical patterns.

3.2 Perfect elimination sequences

Before studying enumeration or generation of each pattern, we consider the reverse process
of enumeration, the decomposition of a given geograph.R.et G be anyk-geograph.

We defineperfect elimination sequendsy the sequencelimseq (P) = (&,...,&1) €

OL* obtained by the procedutgimination Orderingin Fig. 3. Note that the elimination
sequenceély, . . ., &) for Pis notidentical to the reverse of the canonical cGdele* (P)

since thei-th element; is selected based on the canonical code of the current geograph
P; not with the order defined on the initial graph= P;.



Elimination Ordering (P)

Li=1j=1LhP=P

2: while P; # () do

3:  (o,l) =tail (P;) based on the canonical coGede*(F;);
4: P11 =P —{{o,1)}; & = (o, l)andj = j + 1;
5: end while
6: return elimseq (P) = (&,...,&1);

Fig. 3. Procedure for computing perfect eliminatieimseq (P) for geometric graptP

FreqGeo(c : minsup D : input database
1: call Expand_FG(0, o, D);

Expand_FG(P, o, D)
1: if |L(P)| < o then return else output P as a frequent subgraph;
2: for each missing objectdo

3 Q=PU{h
4: if £isthe last ofCode* (@) then call Expand_FG(Q, o, D);
5: end for

Fig. 4. Polynomial delay and polynomial space algorithm for the frequent geo-
metric subgraph enumeration problem

3.3 Algorithm for Frequent Pattern Discovery

Fig. 4 shows the algorithiiAfreqGeo for the frequent geometric subgraph discovery. Start-
ing from the empty graphi, FreqGeo searche§™ from smaller to larger by growing®
with adding new labeled objects one by one. To avoid duplicd#exjGeo adds a la-
beled object to the current patter® only when¢ is the last object in the canonical code
Code*(P U &) of P U &. It corresponds to that any pattefhis generated in the reverse
order of the elimination sequence. Thereby any patfgra P U ¢ is generated exactly
once only from the patter@ \ ¢ where¢ is the last object it€ode* (Q). This ensures that
eacho frequent pattern is output exactly once.

There are infinitely many candidates for the possible labeled object in Line 2 of Fig. 4.
From the next lemma, we can avoid such a blind search by only focusingissing
objects forP, which is either labeled vertex or edgesuch thatL(P) 2 L(PU{{}) # 0
holds. From Lemmas 1 and 3, we have the next lemma.

Lemma 4 (missing labeled objects)Let P be a pattern with nonempty(P) in D. Any
missing object = (o, 1) for P is the inverse image of some labeled vertex or labeled edge
7 viaT for some matching” € L(P), i.e.,£¢ = T~ 1(r) for somer € D.

From Lemma 4 above, we know that there are at rodst.(P)|-||D||) = O(|V |*(|V |+
|E|)) missing objects. Thus, Line 2 can be done in polynomial time. By using the tech-
nique called occurrence deliver described in [3-5, 22], we can compute the frequencies of
P U {¢} for all missing objects fo? in O(|V|?(|V| + | E|) log |V|) time. Therefore, the
average computation time for each output patte@(s/ |>(|V| + |E|)k? log |[V|), where
k is the maximum size aof-frequent pattern. Combining the above, we have the following
theorem.



Algorithm MaxGeo: (D : input geography : minsup)

1: 1 = Clo(0); /[The bottom maximal geograph
2: call Expand_MaxGeo(_L, o, D);

Algorithm Expand_MaxGeo(P, o, D)

1: if P is noto-frequentthen return; /[Frequency test
2: else output P as aos-frequent maximal geograph;

3: for each missing labeled objegt= (o, ¢) do /lLemma 4
4: Q=Clo(PU{¢});

5 if (P(Q)=P)then

6: call Expand_MaxGeo(Q, o, D); //Recursive call for children
7: endfor

Fig. 5. A polynomial delay and polynomial space algoritivtaxGeo for the
maximal geometric subgraph enumeration problem

Theorem 2 (frequent geograph enumeration)The algorithmFreqGeo in Fig. 4 enu-
merates allo-frequent geometric graphs in a given input databéase G in polynomial
delay and polynomial space in the total input size.

4  Algorithm for Maximal Pattern Discovery

In this section, we present an efficient algoritivlaxGeo for the maximal pattern enu-
meration problem for the class of geographs that runs in polynomial delay and polynomial
space in the input size.

4.1 Outline of the algorithm

Fig. 5 shows our algorithriviaxGeo for enumerating alb-frequent maximal geometric
patterns inM? using backtracking. The key to the algorithm is a tree-like search route
R = R(M?) implicitly defined overM?. Then, starting at the root of the search route
R, MaxGeo searchef by jumping from a smaller maximal pattern to a larger one in a
depth-first manner. Each jump is done by expanding each maximal pattern in polynomial
time, thus the algorithm is polynomial delay.

4.2 Intersection and closure operations for geographs

Let G; andG;, be two geographs with, N Vg, # 0. Themaximally common geometric
subgraph(MCGS) of G; and G is a geograph which is represented by labeled objects
common to both7; andG,. MCGS is unique for geographs, while they are not unique
for ordinary graphs.

The intersection operatignis reflexive, commutative, and associative oyefFor a set
G ={Gy,...,G,} of geographs, we defimreG = G; NG2N---NG,,. We can see that
the computation time fonG are bounded by)(||G||log||G||). Some literatures [14]
give an intersection of labeled graphs or first-order models in a different way which is
based on theross producbf two structures. However, their iterative applications causes



exponentially large intersections unlikeG above. Gariigeet al[10] discussed related
issues.
Now, let us define the closure operation for

Definition 5 (closure operator for geographs)Let P € G be a geograph of size 2.
Then, theclosureof P in D is defined by the geograph QIB):

Clo(P) = { T '(D)|T € L(P) }.

Theorem 3 (correctness of closure operation).et P be a geograph of size 2 and D
be an input database. The@Jo(P) is the unique, maximal geograph w.EL. satisfying
L(Clo(P)) = L(P).

Proof. We give a sketch of the proof. L&t € T4, be any rigid transformation. Then, we
can see thaP matchesD via T iff P is a geometric subgraph of the inverse imagéof
viaT,i.e.,P C T~Y(D). Thus, taking the intersection of the inverse imdge (D) for
all matchingT of P, we obtain the unique maximal subgraph haviid). O

Lemma 5. For any geographd, @ € G, the following properties hold:
(i) P C Clo(P). (ii) L(Clo(P)) = L(P). (iii) Clo(P) = Clo(Clo(P)).

(iv) PCQiff L(P) 2 L(Q) for any maximalP, Q € M.

(v) Clo(P) is the unique, smallest maximal geograph containthg

(vi) For the empty grapii, 1 = Clo(() is the smallest element df.

Theorem 4 (characterization of maximal geographs)Let D be an input geograph and
P € G be any geograph. The®, is maximal inD iff Clo(P) = P.

4.3 Defining the tree-shaped search route

In this subsection, we define a tree-like search rdute (M7, P, 1) for the depth-first
search of all maximal geographs based on a so-called parent function.

Let @ € M be a maximal pattern of vertices at least two such ¢hat L. For any
labeled object € @, define thes-prefix of @ as the patteri®[¢] which is the collection
of the labeled objects prior in Code*(Q). Then, thecore indexcore _i (Q) of Q is
the labeled object such thatZL(Q[¢']) # L(Q) holds for any¢’ prior to £ in Code* (Q).
We can show that if) # L thencore _i (Q) is always defined.

Q[core _i (Q)] C Q is the shortest prefix df satisfyingL(Q[¢]) = L(Q). Moreover,
if we removecore _i (Q) from the prefix@[core _i (Q))], then we have a properly shorter
prefix, and then the location list changes. Now, we define the parent furittioat gives
the predecessor @}.

Definition 6 (parent function P). The parentof any maximal patter® € M (Q # 1)
is defined byP(Q) = Clo(Q[¢] \ {£}), where = core _i (Q) is the core index of).

Lemma 6. P(Q) is (i) always defined, (ii) unique, and (iii) a maximal patterriit More-
over,? satisfies that (ivP(Q) C @, (V) |P(Q) | < |Q |, and (Vi) L(P(Q)) D L(Q).

Now, we define theearch routdor M as a rooted directed graptiM?) = (M7, P, 1),
whereM? is the vertex setp is the set of reverse edges, ands the root. For the search
route, we have the following theorem.

Theorem 5 (reverse search property)For everyo, the search rout®(M?) is a span-
ning tree with the rootL over all the maximal patterns iv(°.



4.4 A polynomial space polynomial delay algorithm

The remaining thing is to show how we can efficiently traverse the search R¢M€ )
starting from_L. However, this is not a straightforward task sirfREM?) only has the
reverse edges. To cope with this difficulty, we introduce the technique so called reverse
search [7] and the closure extension [18].

Lemma 7. For maximal patterns) and P, P is the parent of) only if Q@ = clo(P U &)
holds for a missing object for P.

Proof. Suppose thaP is the parent of), and¢’ is the labeled object preceding and next
to core _i (@) in the canonical code af. ¢’ is included inP, sinceP = Clo(Q[¢']).
SinceL(Q) is a collection ofl" € L(Q[¢']) satisfying that’~! (D) includescore i (Q),
together withL(Q[¢']) = L(P), L(P U {&}) = L(Q[¢'] U {{}) = L(Q). Thus the
statement holds. O

The operation of adding a labeled object and taking its closure is adtiedre exten-
sion Lemma 7 states that any maximal geometric pattern can be obtained by applying to
L closure extensions repeatedly.

From Lemma 7, we can see that to find all children of a patférmve have to ex-
amine the closure extension for all missing objects ForClearly, a closure extension
Q = Clo(P U ¢) of P is a child of P if its parent isP. Since the parent af) can be
obtained by computing its canonical code, we can check whether a closure extension is a
child or not inO(k2logk) time wherek is the number of labeled objects @ Since the
computation ofclo(Q) takesO(|L(Q)| x ||D||1log||D||) time, we obtain the following
theorem.

Theorem 6 (correctness and complexity oMaxGeo). Given an input geograp® with
vertex sef” and a minimum support threshodd > 0, the algorithmMAx GEo in Fig. 5
enumerates alr-frequent maximal geographs@((m||D||) x ((m+n)||D||1log || D|])) =
O(m(m + n)||D||?1log |D|) per maximal geograph witid(||D||) space, wheren =
O(n?) is the maximum size of the location lists.

If o is not too small, then the number of missing objects to examine will consequently
be small, such a®(n), decreasing the computation time will be short. This is expected
in practical computation. Moreover, in practice, usually almost all (maximal) patterns to
be output have small frequencies closestathus the computation time for the closure
operation is rather short. According to the computational experiments in [4, 22], practical
computation time is very short in such cases.

Corollary 1. The maximal geograph enumeration problem is solvable in polynomial de-
lay and polynomial space.

5 Conclusion

We presented a polynomial delay and polynomial space algorithm that discovers all maxi-
mal geographs in a given geometric configuration without duplicates. As future works, we
intend to implement and evaluate the experimental performance of the algorithm. Dealing
with the input of many geographs and document occurrence is a straightforward work.



Dealing with polygons is also straightforward, by using sophisticated labels to identify
edges of polygons as a group. Extensions with approximation and constraints, with appli-
cations to image processing and geographic information systems, are other future prob-
lems.
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