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Abstract. For a bipartite graph G = (V, E), an edge coloring of G is a col-
oring of the edges of GG such that any two adjacent edges are colored in dif-
ferent colors. In this paper, we consider the problem of enumerating all edge
colorings with the fewest number of colors. We propose a simple polyno-
mial delay algorithm whose amortized time complexity is O(|V]) per output,
whereas the previous fastest algorithm took O(|E|log|V]) time per output.
Although the delay of the algorithm is O(| E||V|), the delay of our algorithm
can be reduced to O(|V|) by using a simple modification with a queue of
polynomial size. We show an improvement to reduce the space complex-
ity from O(|V||E|) to O(|E| + |V]). Furthermore, we obtain a lower bound
(|E| = |V|+1) max{2273,2(]V|/2+1)273 /(A —1)}/A of the number of edge
colorings included in G, where A is the maximum degree and V is the set of
vertices of the maximum degree.

Keywords : enumeration, generation, listing, edge coloring, bipartite graph, algo-
rithm, complexity, output polynomial.

1. Introduction

Enumeration problems and enumeration algorithms are quite fundamental in com-
puter science. The subject has a long history, and many studies have been done
[5, 7, 9, 14, 16, 18]. Enumeration has many applications in the other area of com-
puter science, such as optimization, sampling, data mining, bioinformatics, and so
on. For example, the basis of branch and bound algorithms is the enumeration,
and many exact algorithms for NP-hard problems, which are actively studied in
these 10 years, use enumeration algorithms. In data mining, the pattern mining al-
gorithms, which finds all the patterns satisfying given constraints from a database,
utilize the enumeration of candidate patterns[l]. Particularly, the recent increase
of the power of computers supports the efficiency of enumeration approaches in
practice.
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A weak point of enumeration approach is that there are quite few generalized
problems which contain many other enumeration problems as their special cases.
For example, in optimization, linear programming is a generalized problem, and
it includes many other problems as its special cases, such as maximum matchings,
network flow problems, assignment problems. In contrast, only few enumeration
problems can be efficiently solved by other enumeration algorithms. For example,
if we enumerate all spanning trees in a given graph G by enumerating all subtrees
of GG, it possibly takes exponential time for each spanning tree, since the number
of subtrees is often exponentially larger than the number of spanning trees. If we
want to reduce an enumeration problem A to an enumeration problem B, we have
to preserve the structures with respect to all the solutions. In contrast to it, in
optimization problems, we have to preserve only structures with respect to optimal
solutions. Intuitively, this is one of difficulties of the reduction on enumeration
problems.

One approach to handle enumeration problems efficiently is to develop fun-
damental techniques commonly applicable to many enumeration problems. For
achieving polynomial algorithms, there are several techniques, such as divide and
conquer (binary partition), backtracking, and reverse search. Here an enumera-
tion algorithm is polynomial time if the computation time is polynomial in the
input size and the output size of the input problem. For reducing the order of
the time complexity of polynomial time algorithms, such as using the sparsity,
data structures, and amortized analysis of the time complexity. There are quite
many kinds of enumeration problems, thus it is important to develop and sum-
marize efficient techniques. One of the big tasks in the research of enumeration
algorithms is to clarify what kind of structures of the problems help to reduce the
time complexity, and what kind of techniques can be applicable to the structures.
In the literatures, we can see many efficient but simple enumeration algorithms
for fundamental graph objects such as paths and cycles[11], spanning trees|[7, 16],
independent sets and cliques[6], and matchings[4], and fundamental geometical
objects such as vertices of polytopes[2], non-crossing spanning trees in plane[2],
and floorplans[14].

In this paper, we consider the problem of enumerating all the minimum edge
colorings of a given bipartite graph with multiple edges. Let G = (V(= V1 UW;), E)
be a bipartite graph with vertex set V and edge set E. An edge coloring of G is
a coloring of all the edges of G such that no pair of adjacent edges is colored the
same. An edge coloring with the minimum number of colors is called a minimum
edge coloring. We simply denote a minimum edge coloring by an edge coloring if
there is no confusion. We denote the maximum degree of G by A(G), and the set
of vertices of maximum degree by V(G). If there is no confusion, we simply write
them A and V.

In 1916, Konig [8] proved that any minimum edge coloring of a bipartite
graph G uses exactly A colors. Since no edges with the same color are adjacent,
the set of edges with the same color forms a matching. Hence we can consider
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an edge coloring as a partition of E into A disjoint matchings. The enumeration
problem of edge coloring considered here is to output all the ways of partitioning
of F into disjoint A matchings.

An algorithm for solving the problem has been proposed by Matsui and
Matsui [12, 13]. The amortized time complexity of the algorithm is O(|E|log|V])
per edge coloring, and the space complexity is O(A|E|). The current best time
complexity algorithm for finding a minimum edge coloring in a given bipartite
graph, which is proposed by Cole, et al., and Schrijver [3, 15], takes O(|E|log |V])
time, hence naturally we may think that ©(]E|log |V|) is a kind of lower bound for
the time complexity. However, the structure of the set of edge coloring seems to
have an advantage. For any edge coloring, we can generate another edge coloring
by exchanging several edges of two matchings in it, along an alternating cycle. This
implies that when we traverse the set of edge colorings, we basically need the time
to exchange the edges along a cycle, which seems to be very short in average. Thus,
naturally there is a question “Is there an algorithm for enumerating all minimum
edge colorings in short time for each”.

In this paper, we give a positive answer to the question. We propose a simple
algorithm running in O(|V]) time for each edge coloring. The space complex-
ity is also reduced to O(|E| + |V|). In detail, the delay[6] of the algorithm is
O(A|E|log|V|). The delay is the maximum computation time between two con-
secutive output. Actually, by the technique described in [17], we can reduce the
delay to O(|V]) by using O(A|E|) extra memory. We note that to output an edge
coloring, our algorithm outputs the symmetric difference between an edge coloring
and the next one instead of exact output. It reduces the computation time for
output one edge coloring to O(|V|) on average.

The main technique to reduce the time complexity is on the analysis of
the time complexity. Actually, our algorithm is obtained by adding slight and
simple modifications to the previous algorithm. It uses neither complicated data
structures nor sophisticated algorithms. The modifications of the algorithm avoid
the worst cases which make the time complexity of the previous algorithm tight.
It is interesting that such kind of simple modifications reduces the time com-
plexity so much. This is also an advantage from both theoretical and applica-
tion viewpoints. Furthermore, as a corollary of the amortized analysis, we give
(|E| = [V] + 1) max{22-3,2(|]V|/2 + 1)2~3/(A — 1)}/A as a lower bound of the
number of edge colorings included in G.

The organization of this paper is as follows. We explain the framework of our
enumeration algorithm in Section 2. In Section 3, we analyze the time complexity,
and show a lower bound of the number of edge colorings included in a graph.
Finally, we explain a way to reduce the space complexity in Section 4.
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FIGURE 1. An example of enumeration of edge colorings. Each
circle denotes a problem/subproblem, and arrows connect prob-
lems and their subproblems. Each arrow corresponds to a covering
matching which is obtained from each subproblem.

/

2. Framework of Algorithm for Enumerating Edge Coloring

The basis of our enumeration algorithm is the same as that described in [12, 13].
We start the explanations with the definitions and properties. For a vertex set W,
a matching covering all the vertices of W is called a covering matching for W. If
no confusion can arise we will omit W. From Ko6nig’s theorem, any minimum edge
coloring uses exactly A colors. This means that any vertex of V is incident to
edges with all colors, and any matching which forms a minimum edge coloring is a
covering matching for V. Conversely, any covering matching M for V is included
in at least one minimum edge coloring, since the removal of M from G is a graph
with maximum degree A — 1.

For an edge e, any edge coloring includes just one covering matching including
e. Thus, edge colorings of G is partitioned into groups by the covering matchings
including e. This observation immediately leads to the following algorithm.
ALGORITHM: Basic_ALGORITHM (G = (V, E),C)
(BA1) If G is a matching then output C'
(BA2) e := an edge of G
(BA3) For each covering matching M for V including e

Call BASIC_ALGORITHM((V, E\ M),C U{M})
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FIGURE 2. An instance of D1 (G, M, W) : Gray vertices are in W,
and bold edges are in matching M.

Figure 1 shows an example of the execution of the algorithm. The enumera-
tion of covering matchings in (BA3) can be done by using an algorithm proposed
in [12, 13]. We explain their algorithm next. For conciseness, we modify their
algorithm slightly.

For an edge e = (u,v), let G\e = (V, E\{e}), and G—{u,v} be the subgraph
of G obtained by removing u, v, and all edges incident to either u or v. Here we
consider the set of covering matchings for a vertex set W. Then, we can see that
the set of the covering matchings not including e is equal to the set of covering
matchings in G \ e. Similarly, we can see that the set of the covering matchings
for W\ {u,v} including e is equal to the set of matchings obtained by adding e
to each covering matchings in G — {u,v}. Thus, this enumeration problem can be
partitioned into two subproblems.

To partition the problem, we choose an edge e from the symmetric difference
between two covering matchings M and M’. This ensures that both subproblems
are non-empty, since either M or M’ includes e. By augmenting the matching, we
can find a covering matching which covers vertices in V We thus explain how to
find a covering matching different from the given covering matching.

For the explanation, we define the following notation. Let Z be the set of
isolated vertices in GG. We recall that V; and V5 are the partition of V' so that G
is a bipartite graph.

U is the set of vertices in Vi \ (Z U W) incident to an edge of M.
U, is the set of vertices in Va \ (Z U W) incident to an edge of M.
U, is the set of vertices in V4 \ (Z U W) incident to no edge of M.
Us is the set of vertices in V5 \ (Z U W) incident to no edge of M.

Let D; = (G, M, W) be the directed graph obtained from G as follows:
1. remove all isolated vertices from G
2. orient the edges of M from V; to V5, and the edges of E\ M from V5 to V}
3. add a vertex s to V'
4. add the arcs from s to each vertex of U; U Us, and
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5. add the arcs from each vertex of Uy U U to s.

For an example of D1 (G, M, W), see Figure 2. For a directed cycle C of D1 (G, M, W),
we define E(C) by the set of all edges corresponding to the arcs of C. From the rule
of orienting edges, edges of M and edges not in M appear in E(C) alternatively
in any directed cycle. This is a common technique to find alternating paths and
alternating cycles.

Dy (G, M, W) is equivalent to the graph obtained by contracting the source
and sink of the graph G'(G, M) used in the find-matching algorithm of [13]. In
[13], the following lemma is proved.

Lemma 1. [13] The following two conditions hold.
(1) For any directed cycle C of Di(G, M, W), MAE(C) is a covering matching

for V.
(2) If D1(G, M, W) has no directed cycle, then M is the unique covering matching
of G. O

Since [13] is not a journal paper, we include a proof here.

Proof. For any two covering matchings M and M’, the symmetric difference be-
tween them is composed of paths and cycles. Any cycle of those cycles forms a
directed cycle in Dy (G, M, W). Any path P of those paths forms a directed path
P’ of D1(G, M, W) whose end vertices are not in W. Moreover, since the end edges
of P are not adjacent to the edges of M, one end vertex of P is in U; UU; and the
other is in Uy U U;. Hence, by connecting s and the end vertices of P’, we obtain
a directed cycle.

Let C be a directed cycle of D1(G, M, W). If C' does not include s, then
MAE(C) is a covering matching, since the sets of vertices incident to the edges
of matchings are the same for M and MAE(C). If C includes s, then E(C) is a
path connecting a vertex of U; U Us and a vertex of Us U U;. Hence, MAE(C) is
a matching. Since the end vertices of F(C) are not in W, MAE(C) is a covering
matching. U

A covering matching for V can be found in O(|E|log|V|) time by the algo-
rithms of Cole et al., and Schrijver [3, 15]. Actually, the computation time can be
also bounded by O(|V|?A), by removing all the edges incident to no vertex of V in
O(|E]) time. Thus, the enumeration of covering matchings takes O(|E| + |V [2A)
time for the first covering matching, and O(|E|) for each following covering match-
ing.

Our algorithm is obtained by introducing three additional modifications to
the basic algorithm. These modifications are the following. We note that a star is
a graph such that all the edges are incident to a vertex.

(1) if the input graph is a star, then output the unique edge coloring directly
(2) choose an edge incident to not all the edges in (BA2)
(3) output by the difference from the previous output
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The modified algorithm is described below. Note that the algorithm is com-
posed of two procedures, the main part and the enumeration of covering matchings.
The procedures are nested so that they call recursively each other. The algorithm
memorize a graph with multiple edges by its underline graph with the multiplicity
for each edge. Hence, the memory space never exceed O(|V|?). For outputting an
edge coloring of a star, we output its underline graph and the multiplicities, and a
message ”each edge is a matching”, instead of exact output. By this modification,
the execution of (1) never take more than O(]V|) time. In the next section we
analyze the time complexity of the algorithm to bound it by O(|V|) for each.

ALGORITHM: ENuM_EDGE_COLORING(G = (V, E):graph,
Col:set of matchings to be edge colorings)
(1) If A(G) =1, output edge coloring Col U {E}
(2) If (G is a star) or (E is a matching) then output C'ol and the unique edge
coloring of G // improvement (1)
(3) (u,v) := an edge not adjacent to all edges // improvement (2)
(4) M := a covering matching for V(@) of G including e
// computed in O(|V|2A) time
(5) Call ENUM_COVERING_MATCHING (G — {u,v}, V(G) \ {u,v}, M\ {(u,v)}, G, Col)
// enumerate covering matchings

ALGORITHM: ENUM_COVERING_MATCHING (H:graph, W:vertices to be covered,
M::edge set to be a matching, G:original graph,
Col:set of matching to be an edge coloring)
(6) If no directed cycle is in Dy (H, M, W) then
Call ENUM_EDGE_COLORING ((V,E\ M, Col U{M} )
// generate recursive call when a new covering matching is found
(7) C := a directed cycle of Dy(H,M,W) ; M’ := MAE(C) ;
(u,v) := an edge in MAM'
(8) If (u,v) € M’ then swap M and M’
// now (u,v) is an edge in M \ M’
(9) Call ENUM_COVERING_MATCHING (H — {u,v}), W\ {u,v}, M\ {(u,v)}, G, Col)
// enumerate covering matchings including (u,v)
(10) Call ENUM_COVERING_MATCHING (H \ (u,v), W, M’ , G, Col)
// enumerate covering matchings not including (u, v)

3. Analysis of the Time Complexity

In this section, we now start with some definitions. We define an iteration of
the enumeration algorithm of edge colorings by the set of operations to generate
subproblems for enumerating edge colorings from an input graph, i.e. the union of
the iteration of ENUM_EDGE_COLORING inputing graph G and all the iterations
of
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ENUM_COVERING_MATCHING which enumerate covering matchings of G. For each
iteration z, we denote the input graph of x by G, = (V, E,). Iterations generated
by x are called the children of z. The depth of the recursion is up to A, and each
iteration on the bottom of the recursion outputs an edge coloring.

Lemma 2. For a graph G with A > 3, a covering matching for 1% including an
edge e = (u,v) is unique if and only if all edges of G are adjacent to e.

Proof. The ‘if’ part is obvious, thus we prove the ‘only if’ part by its contraposition.
Let M be a covering matching for V. We show that D (G — {u, v}, M,V \ {u,v})
includes a directed cycle. From Lemma 1, this implies that G has a covering
matching different from M. Since at least one edge is not adjacent to e, G — {u, v}
contains at least one edge. For any vertex w of V'\ {u, v}, w is incident to at most
one of u and v. Hence, its degree in G — {u,v} is no less than two, and w has
at least one out-going arc in Dy (G — {u,v}, M,V \ {u,v}). For any vertex w in
V\ V\ {u,v}, there is an arc (w, s) or (w,z) for some & # u, v since (w,z) in M.
Hence the out-degree of any non-isolated vertex of Dy (G — {u, v}, M,V \ {u,v}) is
at least one. Therefore, a depth-first search for the graph always reaches a vertex
that has already been visited, and gives a directed cycle. O

If any edge of G, is adjacent to all the other edges, then all the edges are
incident to a vertex (note that G is bipartite), and G is a star. In this case the
algorithm outputs the unique edge coloring in (1) and the iteration terminates, in
O(]V|) time. In the other case, the algorithm chooses an edge e so that at least
one edge is not adjacent to e. From Lemma 2, at least two covering matchings
includes e. Thus, we have the following corollary.

Corollary 1. In algorithm ENUM_EDGE_COLORING, if an iteration has a child, the
number of its children is at least two. O

This corollary implies that the number of vertices in the enumeration tree
is at most twice the number of leaves, which is the same as the number of edge
colorings in G. To bound the number of iterations more, we give the following
lemmas, where the first one is a standard result of graph theory.

Lemma 3. For a directed graph H = (Vig, Ap) in which each arc is included in
a directed cycle, H contains at least |Ap| — |Vi| + cc(H) directed cycles, where
cc(H) is the number of strongly connected components of H.

Proof. If all the arcs are self-loops or |Vy| = 1, the statement holds. Assume that
the statement holds if |Vy| < k, and we consider the case that |Vy| = k and
not all arcs of H are self-loops. Let C be a shortest directed cycle of H including
no self-loop, and |C| denote the number of arcs in C. Note that |C| > 2. Let
H' = (Vg:, Ag) be the graph obtained from H by removing all the arcs of C' and
contracting vertices of C' into a vertex. Since |Vy/| = |Vy| — |C| + 1 < k, H' has
at least

[ A | = [Var| + ce(H') = (|Au| = |C]) = ([Va| = [Cl + 1) + cc(H)
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directed cycles. Note that cc(H) = cc(H'). Since H has at least one more directed
cycle (which is C') than H', H has at least

(lAu|=[C) = (Vu| = [Cl+1) + cc(H) + 1 = |Au| = [Vi| + cc(H)
directed cycles. O

Theorem 1. Any graph G with A > 3 and |V| > 3 has at least (|E| — |V| +
Dmax{2273 2(|V|/2 + 1)273/(A — 1)} /A edge colorings.

Proof. Let Z be the set of isolated vertices in G, and M be a covering matching. In
Dy (G, M, V), any non-isolated vertex not in V is connected to s, hence its degree
is at least 2, and the degree of s is [V| — | Z| — [V|. Therefore, the number of arcs
in Dy (G, M, V) is at least |E|+ (|V|—|Z| —|V|). For any edge e, an edge coloring
of G includes both a covering matching which includes e and another covering
matching which does not. This means that any arc of Dy (G, M, V) is included in
a directed cycle. From Lemma 3, Dy (G, M, ‘7) includes at least

Bl + (VI = 12| = V) = (VI + 1) + 2] + 1= |E| - V]

directed cycles. Thus, G includes at least |E| — |V| + 1 covering matchings.

Let v be a vertex in V and F be the set of edges incident to v. Any covering
matching includes an edge in F', hence there is an edge f in F such that f is
included in at least (|[E| — |V| + 1)/A covering matchings. Thus, if A = 3, G
includes at least (|E| — |V| 4 1)/3 edge colorings.

We next consider the case A > 3. Similar to the above, for any covering
matching M, the graph H = (V, E\ M) includes at least (|[E\ M|—|V|+1)/(A—1)
covering matchings including an edge f, which is incident to a vertex in V(H ).
Since |E| > A|V]/2), we have

(IB\ M| = |VI+1)/(A=1) > (A =3)|V(H)|/2+1)/(A - 1).

From Lemma 3, if |V| > 3, there is an edge f incident to a vertex in V(H) included
in at least two covering matchings. Therefore, by induction, G has at least

A-1
(1B = [VI+1)/48) x [T max{2, ((i = D|VI/2+1)/i)
i=3
> (B = [VI+ D) max{257°,2([V|/2+ 1)7%/(A - 1)}/A
edge colorings. O

In particular, we can directly obtain the following corollary from the fact that
[E| = AV]/2.
Corollary 2. Any graph G with A = 3 has at least |‘7|/6 edge colorings.

From these lemmas and corollary, we obtain the following theorem.

Theorem 2. The algorithm ENUM_EDGE_COLORING enumerates all minimum edge
colorings of a bipartite graph G = (V, E) with multiple edges in O(|]V|N) time,
where N is the number of minimum edge colorings of G.
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Proof. For any child y obtained at iteration z, we have |E,| > |E,| — |V|/2, since
E, is obtained by removing a matching from E,. An iteration z takes O(|E,| +
V| + [V(G2)PA(G,)) time and O(|E,| + |V|) time per child. By assigning a
computation cost of O(|E;| 4+ |V|) to each child, we suppose that the computation
time T'(z) of x is

T(z) = cx V] if A(G;)<3 or G is a star
T ex ([V(G2)PA(G,) + |Ex| + |V])  otherwise
Here ¢ is a constant, and T'(z) does not include the computation time for out-

putting the edge colorings. We have |V (G,)| < [V(G,)], since any vertex of V(G
is the maximum degree in G,. Hence, if A(G,) > 3 and G, is not a star,

e x ([V(Go)PA(Gy) + |Bu| + V)
ex ([V(Gy)P(A(Gy) +1) + |By| + L5[V]).
Hence, from Corollary 1, for any 4 < k < A(G),

Z T(x)

z|A(G.)=k,G, is not a star

T(x)

IN

< > ex (IV(G)P(AGY) + 1) + | By + 1.5]V])/2
YIA(Gy)=k—1

< > 3T(y)/4
YIA(Gy)=k—1

Therefore, from Lemma 2,

Y. T@ < ) AT(@)
2|A(G)>3 2|A(GL)=3
< Y Be(IVGIV)
z|A(Gy)=3
< 48cN|V|

Next we consider the computation time for outputting the obtained edge
colorings. Consider the recursive structure of our algorithm as a recursion tree.
Our algorithm outputs the difference from the edge coloring output just before.
From the edge coloring which is outputted just before, the size of the difference
is at most |V|/2 times the number of edges in the recursion tree traced by the
algorithm. Hence, the sum of these numbers of edges in the output is at most
[V|/2 x 2(# of iterations). Since the number of iterations is less than 2N, the
computation time for output is O(|V|N) per output. We note that the algorithm
outputs the unique edge coloring in a star in O(|V|) time. O
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4. Reducing Delay

The delay is the maximum computation time between two consecutive outputs.
An enumeration algorithm is said to be polynomial delay if its delay is polynomial
of the input size[6]. If an enumeration algorithm is polynomial delay, it is output
polynomial time, but an output polynomial time algorithm is not always polyno-
mial delay. Thus, polynomial delay is a stronger result than output polynomial.
We recall that an enumeration algorithm is output polynomial if the computation
time is bounded by a polynomial of the input and output size. In this section, we
carefully analyze the delay of our algorithm.

First, we show that the delay of covering matchings enumeration can be
bounded by O(|E|). In [10, 17], they claimed that if an enumeration algorithm
outputs a solution in each iteration, then the delay can be 3 times the maximum
computation time of an iteration. Algorithm ENUM_COVERING_MATCHING finds
a new matching in each iteration, thus we can modify the algorithm to satisfy the
condition. The idea in [10, 17] is to modify the algorithm so that the algorithm
outputs a solution before executing recursive calls at odd levels of the recursion,
and after the recursive calls at even levels. Then, we can see that at least one
iteration of any consecutive three iterations must output a solution. Thus, delay
is O(| E|) without increasing neither time nor space complexity.

Next, we reduce the delay of the main algorithm. For an iteration I of an
enumeration algorithm, let Out(I) be the set of solutions output by the iterations
which are descendants of I. Suppose that the delay of an enumeration algorithm
A is D, and satisfies that for any iteration I, the amortized computation time
taken by all descendants of I is T per solution in Out(I). In [17], we can see that
under these conditions, the delay can be reduced to O(T') with using O(D/T x S)
memory where S is the maximum size of output. The main idea is that we make
a buffer and insert each solution into the buffer when the algorithm outputs it.
The solutions in the buffer is extracted and output one by one with keeping the
intermediate computation time equal to 67" unless the buffer is overflow. We can
prove that after the buffer is once full, it never be empty. At the beginning of the
enumeration, we do not extract solutions from the buffer until the first overflow
of the buffer. Then, the delay is 67" = O(T).

On our algorithm, " = O(]V]) and S = |V|. Since each iteration of both
procedures takes O(|E|) time, and the depth of the recursion is O(A), the delay
is O(A|E|). According to the above, we can reduce the delay to O(|V]) by using
O(A|E|) memory.

Theorem 3. Minimum edge colorings in a bipartite graph G = (V, E) can be enu-
merated in O(|V|) delay by using O(A|E|) memory, where A is the mazimum
degree in G.
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FIGURE 3. An example of G and G(I U M, ). In the figure, the
edges of I U M are shown by the bold lines, and [ = 6.

5. Reducing Space Complexity

In this section, we describe a way for reducing the space complexity. Since our
enumeration algorithm is composed of two nested enumeration algorithms, which
are for edge colorings and for covering matchings, the total depth of two recur-
sions can be up to O(A|E|). Note that here the iterations are different from the
definition in Section 3. Here we consider that an iteration is the computation time
in a recursive call except for the computation done in the further recursive calls
generated in it.

Each recursive call requires (1) memory, hence the total required memory
is up to O(A|E|). When ENUM_COVERING_MATCHING generates a subroutine call
of ENUM_COVERING_MATCHING, O(|E| + |V|) memory is required to store H in
each level, hence the accumulated memory for storing H is up to O(A(|E|+|V])).
These two parts are the bottle neck of the space complexity. Note that the total
accumulated memory to store M and I is O(]E|), since each time the algorithm
executes, stored matchings M U I compose a subset of an edge coloring. Note also
that V can be computed from V and I in O(|E| + [V time.

To improve these memory-consuming parts, we add the following two modi-
fications to ENUM_COVERING_MATCHING. The first one is to use a loop instead of
generating a recursive call with respect to H \ e. By this modification, a recursive
call always adds an edge to I or a matching to C, hence the depth of the recursion
is at most |E| + |V|.

The second modification is to use the minimum possible index edge e to par-
tition the problem, in ENUM_COVERING_MATCHING. For a graph G, a matching
M, and an index j, let G(M, j) = (V, X) where

X ={e; € E|i > j and (e; is not adjacent to any edgee, € M, h < j}
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For an example of G(M, j), see Figure 3.

Suppose that an iteration of ENUM_COVERING_MATCHING inputs a graph H
and a covering matching M. Let ¢; be the minimum index edge of H. If ¢; € E(C)
for a directed cycle C of Dy(H, M, V), the condition holds for both subproblems
generated by e;. If ; ¢ F(C) for any directed cycle C of Dy(H, M, V), the con-
dition holds for H and G(I U M,!). Therefore, by induction, at any iteration of
ENUM_COVERING_MATCHING inputting H, V,M, and [ such that the minimum
index edge of H is e;, the set of covering matchings in H and that of G(I U M, 1)
are equal. From this, we can see that a graph equivalent to H can be constructed
from G,IUM,1in O(|E| + |V]) time.

By using these two modifications, the space complexity is reduced to O(|E|+
[V]). We now describe the algorithm with these two modifications.

ALGORITHM: ENUM_COVERING_MATCHING2 (H, M, V)

(1) If Dy(H, M, V) includes no directed cycle then output M ; return

(2) e;(= (u,v;)) := the minimum index edge of H included in some directed cycle

(3) H :=G(M,l) // remove edges less than [ and not included in M

(4) C := a directed cycle including ¢; ; M' := MAE(C)

(5) If e, € M then swap M and M’

(6) Call ENUM_COVERING_MATCHING2 (H — {ug,v;}, M’ U {(ug,v))}, V \ {ug,v})
// H will be changed by the execution of the recursive call

(7) H := G(M, 1)

(8) Remove ¢; from H ; go to (1)

Step (1) outputs a covering matching if the covering matching of H is unique.
An execution of (2) through (8) corresponds to an internal iteration which has some
children in the enumeration tree. ¢; is the edge to be used partitioning the problem,
step (6) generates a recursive call for enumerating covering matchings including e;,
and step (8) corresponds to the recursive call for enumerating covering matchings
not including e;. Setting H to G(M,1) in (3) is equivalent to removing the edges
whose indices are less than [ and not included in M. Since the recursive call in (6)
changes H, H is not preserved after the termination of the recursive call. However,
G is preserved in the execution!, we can reconstruct H by setting H to G(M,1).
This is the key to save the memory for storing H during the execution of the
recursive call. Step (8) removes e; from H and go to the beginning. It corresponds
to the recursive call for enumerating covering matchings not including e;.

By using this algorithm, we obtain the following theorem.

Theorem 4. The algorithm ENUM_EDGE_COLORING with ENUM_COVERING_MATCHING2
enumerates all minimum edge colorings of a bipartite graph G = (V, E) with mul-
tiple edges in O(|[V|N) time and O(|E| + |V|) space, where N is the number of
minimum edge colorings of G. O

n exact, G is changed by recursively calling ENUM_EDGE_COLORING, however it is reconstructed
after the termination by adding the covering matching which is removed before the execution
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6. Conclusion

We proposed an algorithm for enumerating all minimum edge colorings in a bi-
partite graph G = (V, E) without using any sophisticated data structure or any
sophisticated algorithm. The amortized time complexity of the algorithm is O(|V|)
per output. It improves the previous algorithm by a factor of |E|log |V|/|V]. We
also reduced the space complexity of the algorithm from O(|E|A) to O(|E| + |V]).
Although the delay of the algorithm is O(A|E|), we can reduce it to O(|V]) by
using a queue with O(A|E|) memory. We further give a lower bound (|E| — |V| +
1) max{2273,2(|V|/2 + 1)273/(A — 1)}/A of the number of edge colorings in-
cluded in G.
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